
BUILDING VOICEXML-BAS

Christina Bennett, Ariadna Font Llitjós, Stefanie Shriver

Language Technologies
Carnegie Mellon University, Pittsbu

{cbennett,aria,sshriver,air,a

ABSTRACT

The Language Technologies Institute (LTI) at Carnegie Mellon
University has, for the past several years, conducted a lab
course in building spoken-language dialog systems. In the most
recent versions of the course, we have used (commercial) web-
based development environments to build systems. This paper
describes our experiences and discusses the characteristics of
applications that are developed within this framework.

1. INTRODUCTION

Spoken-language system development can be a time-
consuming process. One reason is that developers, if starting
from a blank slate, need to develop a large number of compo-
nents, drawing together complex and fundamentally different
technologies. Accordingly, a great deal of emphasis has been
placed on the development of toolkits and environments that
hide complexity and allow developers to rapidly prototype and
deploy speech-based applications. Many such environments
have been developed. The CSLU toolkit [1] is a notable exam-
ple of a toolkit developed for teaching purposes. Several com-
mercial systems, often derived from earlier IVR development
environments, have also come into use [2] [3], as have web-
based authoring tools using VoiceXML [4], [5], [6].

The essence of a useful development environment lies in its
ability to hide some layers of a spoken language system and to
present the user with an abstraction suitable for building an
application. We can in general identify three layers of technol-
ogy in such systems: 1) the base computation layer, consisting
of engines that interface with the environment and provide core
services such as recognition and synthesis; 2) the language en-
gineering layer, consisting of acoustic, language and lexical
models for the recognition engine, grammars for the under-
standing component, and generation and synthesis data for the
output component; and 3) a dialog structure and application
layer for defining the behavior of the system.

Most development environments focus on the dialog struc-
ture component of the process and offer users tools for con-
structing application call flow. Although in reality the imple-
mentation of a well-designed spoken language system will nec-
essarily touch all layers, the dialog flow layer is what we most
naturally understand as the core of a “dialog” system.

We have been teaching a speech system design course for a
number of years, using layer 1 components based on Sphinx
and Phoenix, and a variety of layer 2 tools (see, e.g.,
http://www.speech.cs.cmu.edu/tools).

We were nevertheless interested in finding a way to maxi-
mize the time students could spend on the interaction design
aspects of system building. Accordingly we investigated the

capab
found

O
teleph
tion b
the in
initial
their
interf
tion w
fact.
detail

In
dertak
style
as the
burgh
inform
unive
date
about
maril
1.0. T
2.0. (
the d
cours
to use

2.1. D

Bus s
ing (i
inform
or rou
tinatio
a bac
Alleg

2.2. T

The t
rently
the in
have
saw
differ

F
to so
ED APPLICATIONS

, Alexander Rudnicky and Alan W Black

Institute
rgh, PA 15213, USA
wb}@cs.cmu.edu

ilities of VoiceXML, a dialog markup language that has
widespread acceptance in the field [7], [8].

verall the course focuses on the process of developing a
one-based spoken-language application, with one applica-
eing the focus each time the course is given; in most cases
structors defined the application domain and provided an
backend, though students are also encouraged to propose

own domains. The course covers: task analysis, dialog and
ace design, representation of domain knowledge, integra-
ith a backend, and usability testing of the resulting arti-

Weekly meetings feature occasional lectures as well as
ed discussion of ongoing work.

this paper we describe two of the projects that were un-
en by students in the course and use these to assess the

of development that markup languages encourage as well
ir pedagogical suitability. The first project is the Pitts-
Busline, a telephone-based system that provides schedule
ation about buses traveling in and out of Pittsburgh’s

rsity neighborhood. The second project is the NBA Up-
Line, which provides callers with real-time information

NBA basketball games. The Busline systems were pri-
y developed using an early implementation of VoiceXML
he NBA Update Line was developed using VoiceXML

Respecting their terms of use, we do not further identify
evelopment environments). Note that the focus of the
e was not to teach the use of VoiceXML per se but rather
it as a tool for implementing dialog designs.

2. THE PITTSBURGH BUSLINE

omain

chedule information is a relatively simple domain, requir-
n the specification given to the class) only three pieces of

ation from the user: the departure location, the bus route
tes that the user is interested in, and the direction or des-
n of travel. Our Busline systems were designed to access

kend website that scrapes the transit schedules from the
heny County Port Authority site [9].

wo Busline applications

wo Pittsburgh Busline systems were developed concur-
and independently (see [9]). Despite domain simplicity,
dependent development of the systems caused them to
several functional differences. The individual developers
the domain from different viewpoints, and established
ent priorities for each system.
or example, each system uses a different order in which

licit information from the user. System A asks first for

location, then direction, and finally route, whereas system B
asks for location, route, and then direction. While this may
seem to be a superficial difference, but it stems from fundamen-
tal differences in design decisions. Figures 1 and 2 show the
call flow for the two systems.

Navigation help

Q1: Location location help

Q2: direction direction help

Q3: bus route bus help

Database retrieval

Present information

Figure 1: Call flow diagram for Busline A.

Figure 2: Basic call flow diagram for Busline B.

System A development focused on novices, aiming for a
helpful, informative system. This system has extensive help
information so that the user needs minimal domain knowledge
to get information (see ⊗ in Fig. 3). This was partly in response
to informal feedback from users during the early developmental
stages. Specifically, once the system has the location and direc-
tion, it can provide the novice user with all the possible bus
routes that travel in the direction specified. At the same time, it
was also designed to take the least possible amount of time to
complete the task, so it allows expert users to just say the in-
formation (even before prompting for it), and to quickly flow
through the dialog (see * in Fig. 3). This proved particularly
useful for this task, since most people calling the system had an
immediate need for the information (for example, hoping to
catch the very next bus). See Fig. 3 for a sample dialog.

System B, on the other hand, was developed with expert
users in mind. Since the focus of this system was to provide
information as quickly and easily as possible to someone famil-
iar with the domain (i.e. a frequent bus rider), it was designed to
eventually make use of a user profile database. The system
expects the user to be familiar with the city bus system, and
thus be able to provide the correct bus number(s) for the desired

destin
allow
instea
tem a
Fig. 4
quest

I
(Voic
the u
initiat

We
the

Hel

Lea
in)

Wh

Hea
[T

The
a.m
arr

[P
Wo

Tha

We
how
you

Lea
ple
fro

Hea
ule
bus

⊗ I
six
wel
500
to g

Wh

[da
You
you
The
For
5:4

Do

Tha

Intro

Location query

Context Help

Bus route query

Direction query

Retrieval

Another?
ation. As a result, system B has less help information but
s the user to specify multiple bus routes in a single query,
d of cycling through the dialog multiple times. The sys-
lso allows the user barge-in; an example is marked by * in
, which shows a short basic dialog (i.e. without any re-

s for help, undo, etc.).

Figure 3: Sample dialog using Busline A.

n both Busline applications, a dialog manager
eXML code) is responsible for filling all three slots from
ser, then building a query with those values, and finally
ing a backend retrieval [9] through a CGI invocation.

lcome to Busline! If you'd like to hear some pointers on using
system, you can say "pointers" at any time. What is your name?

This is Alex
lo Alex! What is your departure location?

Squirrel Hill
ving from Squirrel Hill. What buses do you need (User barges-
[the schedule for? You can list as many as you'd like.]

* 61 and 501
ich direction are you headed, inbound or outbound?

Inbound
ding inbound. [database retrieval]
he following are in the default TTS voice.]
current time is 11:14 a.m. The next 501 will arrive at 11:20

. The next 61 B will arrive at 11:23 a.m. The next 61 A will
ive at 11:32 a.m. The next 61 C will arrive at 11:36 a.m.
re-recorded agent voice now returns.]
uld you like to continue?

No thanks
nks for using Busline! Goodbye!

Figure 4: Sample Busline B dialog.

lcome to Busline! (User barges-in) [If you'd like some tips on
to use the system, you can say tips or press six at any time. I
need prompt specific help, just say more or press star.]

* I'm at CMU
ving from Carnegie Mellon.Now, if you are heading downtown,

ase say downtown, and (barge-in) [if you are heading away
m downtown, please say outbound]

I'd like to go to the airport
ding downtown .What busses would you like to have the sched-
for? (2 seconds pause). If you need information about what
es to take, say more or press star.

* more
f you want to know the schedule for the 61 buses, say 61 or press
then one. If you're on Forbes and Craig, you can take the 61s as
l as the 500 to go downtown. You could also take the 71s, the
, and the 59 U, if you go to Fifth and Morewood. If you want
o to the airport, say or press 28.

back
at busses would you like to have the schedule for?

I'd like the schedule for the 28.
tabase retrieval]

can interrupt me at any time by saying repeat, to start telling
the times again, or by saying quit, to hang up.
time is now 4:54 pm. In the next few hours, a 28X will reach

bes and Morewood at the following times: 5:03pm 5:23pm
3pm (...)

thanks
you want me to hang up?

yep
nks for using Busline. Goodbye!

Both systems allow the user to correct an utterance that
was misunderstood, start over from the beginning, request help,
have the last question repeated, and make multiple queries in
the same call. Both systems also used recorded prompts instead
of the platform's built-in TTS system, except for dynamically
generated query responses, which could not be prerecorded.

3. NBA UPDATE LINE

The target user of this system is a fairly knowledgeable basket-
ball fan; the system must therefore be able to provide detailed
information and as such deals with a greater range of informa-
tion than the Busline projects. In essence, this application pro-
vides a telephone interface meant to replicate existing sports
information web pages as closely as possible. Users can ask the
system about scores around the league for current and past
games, about statistics for players and teams in individual
games, for lists of games happening on the current day, and for
lists of players in each game (see [9]). The system was ex-
tended to include score updates for current NCAA basketball
games. Fig. 5 shows a sample interaction.

The NBA Line uses VoiceXML to handle speech input
and “special-event” dialog management, such as no-input
events, misrecognitions, and help and quit requests. All other
dialog management and backend information processing is
handled via CGI scripts which hold state information and
which scrape a variety of real-time-updated web pages to find
the appropriate information.

The NBA information domain differs from the Busline
domain in that users are likely to have multiple queries during a
single call (since the information is constantly being updated
while games are in progress, they might even ask the same

quest
cation
the ge
the c
game
game
a diff

I
states
tion o
ask a
ous
have?
Willia
reduc
ronto
anoth
quent
roster

B
essen
initiat
about
system
prom
help
you l
you li

S
dates
dialog
reduc
<noin
repor

Since
natura
icy, p
it bee
seems
drive
this i

Figure 5: Sample NBA Update Line interaction.

Welcome to the NBA Game Update Line. What would you like to
know?

Go to the Golden State game.

Golden State, 55. San Antonio, 71. 4:24 left in the 3rd quarter. The
last play was Antawn Jamison made layup. What would you like to
know about this game?

Who's in foul trouble?
Dampier and Arenas are in foul trouble for Golden State. No one is
in foul trouble for the Warriors. What else would you like to know
about this game?

Go to the Sonics game.
Sorry, Seattle is not playing today. Would you like to hear about
their last game?*

Yeah.

The last Seattle game was on March 7th. Seattle beat Charlotte at
home, 92 to 89. What would you like to know about this game?

Who had the most points for the Hornets?
Mashburn led the Hornets in points, with 27.

Start over
Going back to the main NBA Update menu. What would you like to
know?

Help
To hear all the current scores, say "all scores." To hear yesterday's
scores, say "yesterday's scores.” To hear information about a
specific game happening today, say the name of an NBA team…

College scores
Here are all the current top-25 NCAA scores: Boston College 62,
#10 Pittsburgh 76, Final score. Washington, 64, #13 Oregon 86,
final score….
ion several times). To help reduce complexity, the appli-
is divided into two main states, as shown in Fig. 6. From
neral state, the user can find out about all the scores for

urrent or prior day. To access statistics about specific
s, the user must request to change to a game. Once in a
state, the user can go back to the general state, or jump to

erent game state.
n this domain, the greatest advantage of having separate
for each game was that it allowed for the dynamic crea-
f grammars for each game. We wanted to allow users to

bout statistics for specific players, but this created a seri-
ambiguity problem: “how many points did Williams
” could refer to any of the 14 current NBA players named
ms. Creating grammars and a game state for each game

ed this problem (but did not completely eliminate it: To-
still has two Williams’ on their roster) and also addressed
er issue inherent in the sports domain: players are fre-
ly traded during the season, so implementing fixed team
grammars is an ineffective approach.

eyond the state constraints however, the NBA Line can
tially be considered a user-initiated system (a system-
ed exception is shown at * in Fig. 5, where the user asks
a Sonics’ game that is not in progress). Although the
always finishes its output with a prompt to the user, this

pt really only serves to remind the user to speak and to
the user remember which state they are in (“what would
ike to know?” for the general-state; “what (else) would
ke to know about this game?” for the game-state).
ystem-initiated dialog is also used to provide game up-
that the user has not necessarily asked about. When the
is in the game state, the VoiceXML <timeout> length is

ed, and rather than triggering an error, the resulting
put> event sends a request to the backend to retrieve and
t the last play of the game.

4. COMPARING THE SYSTEMS

the Busline domain supports a single task, it seemed
l to implement the systems using a system-initiative pol-

rompting the user for each of the required slots. Even had
n possible to create a more open-ended interaction, it
that for this particular type of task, having the computer

the dialog worked quite well. It could also be argued that
s the most efficient way to fill the three slots to retrieve

Figure 6: NBA Update Line state diagram.

GAME STATES

ask for • how is <player | team> doing?
• how many <stat> does <player | team> have?

• who has the most <stat> *(for <team>)?
• play-by-play update (for in-progress game only)

GENERAL
STATE
ask for

• all current
scores

• all yesterday’s
scores

• all NCAA
scores

20020306
LAC@MI

20020305
GS@SA

20020306
MIN@POR

20011219
CLE@BOS

etc…

the information: as with most simple information retrieval
tasks, a significant determiner of success is the user’s ability to
remember what the system needs to know. Transferring this
responsibility to the system increases its usability.

The NBA Update Line, on the other hand, supports sev-
eral different but related tasks. At any point in time the user
needs to have the option of switching between different tasks,
thus supporting mixed-initiative becomes more important.

Both systems rely on barge-in to give the user control over
system output. While barge-in may be construed as a facet of
mixed-initiative, it is probably more accurately thought of as a
way for the developer to simplify the problem of selecting
information for output. That is, the system can offer a superset
of what might actually be needed and the user can interrupt
output when sufficient information has been relayed.

5. DISCUSSION

Although the VoiceXML specifications [7] note that mixed-
initiative dialogs are possible with VoiceXML, in our experi-
ence, implementation involved adding a number of dummy
slots to the grammars and processing code to handle “missing”
information. Additionally it seems that VoiceXML (in the im-
plementations we made use of) does not support grammars that
provide partial parses, a feature that is exploited in many state-
of-the-art dialog systems [10], [11].

It is worth noting that the various web-based VoiceXML
development environments can be quite different. Even when
optimized for the same version of VoiceXML, the code still
may not be directly portable due to proprietary additions or
unsupported features. While we appreciate the reasons this
might come to be, we nevertheless consider it unfortunate.

5.1. Suitability

Although VoiceXML applications can become rather compli-
cated as they grow in size, it turns out to be quite easy to de-
velop a simple interactive system with the desired dialog flow
and basic functionality. Even novices can develop prototype
applications in a few days. (None of the developers of the ap-
plications discussed in this paper had any prior experience with
VoiceXML.)

VoiceXML applications have the advantage of allowing
developers (in this case students) to abstract away from low-
level implementation details and instead concentrate on the
specific domain and on dialog design. This proved to be par-
ticularly useful for our purposes, since during a 15-week course
there is simply not enough time to build a full dialog system
from scratch (including configuring components for speech
recognition, language modeling, grammars/parsing, dialog
management, backend functionality, and text-to-speech) that
exhibits a satisfactory level of functionality.

On the other hand, given enough time and energy, one
can build almost arbitrarily complex applications. Though de-
velopment time was limited to one semester, the NBA Update
Line system provides access to a wide variety of information.
The addition of NCAA scores to the system was a successful,
late-semester experiment in seeing how well the NBA Line
dialog structure could be adapted to new, yet similar domains
(i.e. other sports/leagues). In fact this was quite simple, requir-
ing only an adaptation to the grammar and a minimal change to
the backend CGI script.

F
even
inform
applic
the ta
for c
effect

Voice
sign.
a rela
to be
tent h
be ad
level

H
works
more
analy
testin
actua
cover
frame
such
ing o
would
infras
this w
levels
text o

This
No. N
publi
icy of
be inf

[1] O
[2] P
[3] U
[4] B
[5] H
[6] T
[7] V
[8] S
[9] h
[10] S

a
p
&
S

[11] R
S
D
S

[12] h
urthermore, VoiceXML allows enough flexibility that
given the same assignment (e.g. create a bus schedule
ation system), students are likely to create very different
ations based on their perceptions about the domain and
rget user. The resulting systems provide the opportunity

omparative user studies and discussions on the relative
iveness of different dialog strategies.

6. CONCLUSIONS / FUTURE WORK

XML enables effective exploration of dialog system de-
Commercial VoiceXML development environments offer
tively easy entry point that allows diverse dialog systems
built. Dialog design problems such as providing consis-
elp, dealing with users with varied experience, etc., can
dressed easily without concerning oneself with lower-
mechanics, such as synthesis and recognition.
owever, we are aware of the limitations of such frame-
, and we are investigating alternatives. For instance, a
comprehensive logging functionality would help us better
ze problems within dialogs: currently, when building and
g our grammars, we are unable to find out what a user
lly said, necessary information for extending language
age. Such limitations are not inherent in the VoiceXML
work per se and some environments may now provide
a feature. But from a pedagogical perspective, maintain-
ur own platform, such as one based on OpenVXI [12],

offer that desired control, though with an increase in
tructure cost. Properly integrated with our existing tools,
ould allow us to support teaching activities at different
of spoken language system architecture, all in the con-

f a complete and open working system.

research was sponsored in part by the SPAWAR, Grant
66001-99-1-8905. The content of the information in this

cation does not necessarily reflect the position or the pol-
the US Government, and no official endorsement should

erred.

7. REFERENCES

GI Tookit: http://cslu.cse.ogi.edu/toolkit/
eriphonics: http://nortelnetworks.com/products/04/oscar/
nisys: http://www.unisys.com/comm/
eVocal: http://cafe.bevocal.com
ey Anita: http://freespeech.heyanita.com
ellme: http://studio.tellme.com
oiceXML: http://www.w3.org/TR/VoiceXML20
ALT: http://www.saltforum.org/
ttp://www.speech.cs.cmu.edu/BusLine/icslp02
trik, H., Russel, A., van den Heuvel, H., Cucchiarini, C.
nd Boves, L. “A spoken dialogue system for public trans-
ort information,” in H. Strik, N. Oostdijk, C. Cucchiarini,

P.A. Coppen (eds.) Proc. of Dept of Language and
peech, 19: 129-142, Nijmegen, The Netherlands, 1996.
udnicky, A. I., Thayer, E., Constantinides, P., Tchou, C.,
hern, R., Lenzo, K., Xu, W., Oh, A., "Creating Natural
ialogs in the Carnegie Mellon University Communicator
ystem", Proc. of Eurospeech 1999, 4: 1531-1534, 1999.
ttp://www.speech.cs.cmu.edu/openvxi/index.html

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	New Search
	Next Search Hit
	Previous Search Hit
	Search Results

	Also by Christina Bennett
	Also by Stefanie Shriver
	Also by Alexander I. Rudnicky
	Also by Alan W. Black

	pagenumber1: 2245
	pagenumber2: 2246
	pagenumber3: 2247
	pagenumber4: 2248

