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ABSTRACT

Many languages have a non-obvious, but not unrelated,
relationship between orthography and pronunciation.
Traditional methods for automatic conversion from letters to
phones involve hand-crafted letter-to-sound rules, but these
require care and expertise to develop. This paper presents a
letter-to-sound rule system for Thai, that is trained automatically
from lexicons. A statistical model, decision trees, is used to
predict phones from letters. Letters mappping to multi-phones
are used to solve the problem of implicit vowels and final
consonants propagation and pre- and post-processing techniques
are used to handle the inversion of initial consonants and
vowels. For tone prediction, hand-crafted rules are used instead
since there is no ambiguation if the phonological composition is
known. Combining the n-gram of phone model with the
decision trees, we can achieve 68.76% word accuracy which is
better than 65.15% word accuracy in the rule-based approach.

1. INTRODUCTION

Finding the pronunciation of a word is important in both text-to-
speech and automatic speech recognition systems. Although
lexicons are the most reliable method for many languages, they
will never be complete due to neologisms, proper names,
morphological variants etc. Thus a fallback position is required
that predicts the pronunciation from the orthographic form.

For Thai, like many other languages, this problem is not trivial
due to a weak relationship between letters and phones. Some
letters produce different sounds in different context. For
example “h” can be pronounced as /h/ in “hat” or can become
silent in “hour”. In Thai, “�” can be pronounced as /th/ in
“����” or /d/ as in “����”. The pronunciation of the letter in
Thai is based on its phonological composition in the syllable
(initial consonant, vowel and final consonant). Traditional
letter-to-sound modules usually consist of two stages. First, the
input word is divided into a sequence of syllables by matching
the string of letter against hand-crafted rules of all possible
syllabic structures. After that, each phonological composition is
mapped to phone, and the rules for derived tone are then
applied. This technique is used in [5] and [6] for Thai speech
synthesis, and also in [2] and [4] for a similar problem
romanization and soundex system respectively.

The problem of the rule based approach is in the first step,
syllabification. There are many cases where more than one rule
can be applied to the input string, due to the implicit vowels and
final consonant propagation. In order to disambiguate between
these rules, extensive linguistic knowledge must be used.
However, the complicated rules may not be practical in the real
system and also consume a lot of time and prone to error. The

conventional approaches usually use context independent rules
and resolve the ambiguity by always choosing the longest rule
that match or the most frequently used one. This might cause
the system to make the mistake in the case that the context is
needed. Another technique is to generate all possible syllable
sequences and then use the probabilistic model to choose the
most probable one [2]. However, the number of all possible
syllable sequences is very large for some words. Therefore, a
searching technique must be used to reduce the search space.

Statistical modeling has been successfully applied to the
problem of letter-to-sound rules in many languages such as
English, French and German [1]. This approach can eliminate
the time consuming step of rule writing, so the training process
can be done almost fully automatically. Based on the techniques
in [1], we use decision trees to predict phones based on letters
and their context.  However, some augmentations need to be
done when we apply it for Thai. In those other languages, letters
map to epsilon, a phone or occasionally two phones.  For
example, in English letters map to epsilon in consonant clusters
and map to two phones for some letter such as “x”, which often
be pronounced as the phone combination of /k/ and /s/ as in
“box”. In Thai we found that letters may map to many more
phones for implicit vowels and final consonants propagation.
Another problem in aligning letters to phones is inversion of
initial consonants and vowels, which occurs in syllables with
leading vowels. To handle tones, hand-written rules are used
instead of the decision trees. If phonological composition and a
tone marker are known, applying the rules for predicting tone is
straightforward. The decision tree makes a prediction based on
the letter context alone. So we take into account the phone
context by using the n-gram of phone model on the possible
phone groups generated by decision trees.

2. PROBLEM IN THAI  LETTER-TO-
SOUND RULES

Mapping from letters to sounds in Thai is not a trivial problem
since the relationship between letters and sounds is not one-to-
one. The summary of Thai alphabet and phones in table 1 is
good evidence of this weak relationship. The numbers are based
on Thai pronunciation dictionary “LEXITRON” and [5].

Alphabet Phones
21 initial consonants
17 consonant clusters

44 consonants (42
currently in use)

8 final consonants
19 vowels (in term of
ASCII character)

24 unique vowels (excluding ones
that have implicit final consonants)

4 tones 5 tones
1 silent marker -

Table 1: Summary of number of alphabet and phones in Thai.



Like English, multi-letter to phone mapping is needed for
consonant clusters and multi-letter vowels, this is achieved
through mapping some letters to epsilon. However, there are
some characteristics of Thai pronunciation system that poses
more difficulty in letter-to-sound rules.

1) Some letters can be pronounced differently depending
on its phonological composition in the syllable. For
instance, “�”�is pronounced as /r/ when it functions as
an initial consonant, but is pronounced as /n/ when it
functions as a final consonant. It can also be
pronounced as /a/ when it is combined with another “�”
and functions as a vowel.

2) Some vowels can be pronounced implicitly without
having  any  written  forms.   For  instance,   “���	”
/w-@:-0|r-a-3|ph-o-n-0/1, a single letter “�” is
pronounced as one syllable /w-@:-0/ with an implicit
vowel /@:/ while a single letter  “�”  is  pronounce as
/r-a-3/ with an implicit vowel /a/. The third syllable
“�	” also has an implicit vowel /o/.

3) Final consonants can be propagated to be initial
consonants of the following syllables. For example,
“
��
���” /c-a-t-1|t-u-1|r-a-t-1/, “�” functions as both a
final consonant, /t/, of the first syllable and an initial
consonant, /t/, of the second syllable.

4) The position of the initial consonant and vowel are
inverted in a syllable with leading vowel. For instance,
“��” /k-e-0/, “�” is the one that has /e/ sound and “�” is
the one that has /k/ sound. This is compounded when a
leading vowel is followed with multiple initial
consonants as phone order may be inverted across a
syllable boundary.  For example,  the  word  “����”,
/k-a-1|s-e-m-4|/, has two initial consonants “�” and “�”.
‘�’ is pronounced as /e/ in the second syllable while “�”
is pronounced as /k-a-1/ in the first syllable.

3. STATISTICAL TRAINED MODEL

3.1 Training Decision Trees

In our statistical trained model, we use decision trees to predict
phones from letters and their context. Decision trees are trained
from a lexicon of pronunciations. Before training, we must align
each letter to its corresponding zero or more phones. Then from
these alignments, a decision tree is trained for each letter. The
detail of the training process is given below.

1. Define the set of allowable par ing of letters to phones.
In this step, we define all possible phones and multi-
phones for each letter. From the first problem in the
previous section, /r/, /n/ and /a/ are considered as

������������������������������������������

1 “-” and “|” indicate a phone boundary and a syllable boundary
respectively. The numbers in the pronunciation represent the
tones.

allowable phones for a letter ‘�’. Letters map to epsilon
is needed for consonant clusters and multi-letter vowels.
For example, ‘�’ in ‘��’ is mapped to /pr/ while ‘�’ is
mapped to epsilon. All tonal makers are mapped to
epsilon since we will use rules to predict tones after we
predict all other phones. The detail of tone prediction is
described in section 3.3.

Mapping letter to multi-phones is used to solve implicit
vowels and consonants propagation. A syllable
boundary marker is also considered as a phone, as we
use it to predict a tone in the next stage. For the case of
implicit  vowel, consider the word “���	”  /w-@:-|-r-a-|
-p-o-n-|/2, “�” is mapped to three phones /w-@:-|/ and
“�” is mapped to /r-a-|/. For the last syllable, “�” is
mapped to two phones /o-ph/. The reason for the reverse
order of the phone will be described in the next step. For
the case of final consonant propagation, considered the
word “
��
���” /c-a-t-|-t-u-|-r-a-t-|/, “�” which functions as
both final consonant and initial consonant of the
following syllable is mapped to three phones /t-|-t /. We
need one letter to map up to five phones when the final
consonant that propagates also has implicit vowel. For
example,  “�����” /w-i-t-|-t-a-|-j-a:-|/, “�” is mapped to
/t-|-t-a-|/, since the final consonant of the first syllable
propagates to become the initial consonant of the second
syllable which also has implicit /a/ vowel.

2. Preprocess the lexicon.
Before aligning the letters to phones, some
preprocessing is needed. From the inversion of the initial
consonant and the leading vowel, we need to invert the
order of the phones in corresponding to the letters that
generate them. For instance, the pronunciation of “��” is
changed to /e-k-|/. The first letter is easily mapped to the
first sound and so is the second letter. For the implicit /o/
vowel, since /o/ is also a leading vowel, it is placed
before the initial consonant to be consistent. Therefore,
“�” with implicit /o/ vowel is mapped to /o-ph/.

3. Align letters to zero or  more phones.
We find all possible alignments given the set of
allowable letter/phone group mappings and calculate the
likelihood of each. Then we use that information to
score all possible alignments and select the most likely
as the actual alignment.

4. Build decision trees
The CART technique is use to build decision trees. Up
to three letters preceding and following the considered
letter and word boundary markers are used as context for
predicting phones. A decision tree is trained for each
letter. Figure 1 shows a sample decision3 tree for “�”
which has three allowable phones, /a/, /n/ and /r/.

������������������������������������������
2 All tones are dropped from the pronunciation since we will use
rules to predict them instead of decision trees.
3 The real decision tree is much more complex than the sample
tree.



 ((p.name is �)
  ((n.name is #)
    (((a 0) (n 1) (r 0) n)))
  ((n.name is   �)
    (((a 0) (n 0) (r 1) r)))
 ((p.name is �)
   ((n.name is �)
     ((n.n.name is �)
       (((a 0.672) (n 0.251) (r 0.077) n))))))

Figure 1: Decision tree for “�”

“p.name” means previous letter while “n.name” and
“n.n.name” mean next letter and next next letter
respectively. The first rule can be read as following: If
the previous character is “�” and the next character is a
word boundary marker, then “�” should be pronounced
as /n/ with probability equal to 1 and should be
pronounced as /a/ and /r/ with probability equal to 0. So
given this context “�” should be pronounced as /n/.

3.2 Run-time Model

At run time we need to generate the string of phones from the
model. From the training, we have one decision tree for each
letter in the alphabet.  Thus we take the unknown word, split it
into a list of letter and apply the appropriate tree to each letter.
The result is a string of phone groups (possibly including
epsilon). This string is then processed to remove epsilons and
split the multi-phone groups giving a string of phones plus
syllable boundaries. After that, the corresponding phones of the
initial consonant and the leading vowel are reverted back to
their ordinary position in the pronunciation.

3.3 Predicting Tones

For predicting tones, hand-written rules are used as no
ambiguity exists, if the following components of each syllable
are known; Initial consonant group (high, middle and low), The
length of the vowel, Final consonant and A tone marker. The
detail of the rules can be found in [7] and also in most of the
Thai grammar books. The rules can cover most of the cases,
except for the following 2 cases.

1) A modified form of some words that still uses the same
tone as the original word instead of the tone which
correspond to the new form. For example, “�����” /k-a-
m-0|r-a:-p-1|/ is modified from “����” /kr-a:-p-1|/. So
“���” in “�����” has a low tone (represented by “1”) as
in “����” instead of a falling tone (represented by “2”)
as when it is alone, “���” / r-a:-p-2/.

2) For some loan words from Pali and Sanskrit, the tone in
a syllable may be influenced by the previous syllable,
which make it different from the tone predicted from
the written form of that syllable.

4. EXPERIMENT

Our training set consists of 22,818 words from a Thai
pronunciation dictionary, LEXITRON, with 2,535 words, which
is every tenth word in the dictionary, held-out for testing.

Word AccuracyM odel Letter
Accuracy Exp1 Exp2 Exp3

Rule-based - 68.23% 83.39% 65.15%
Decision Tree 94.47% 68.71% 79.21% 62.17%
Decision Tree (without
syllable boundaries)

95.25% 72.47% 83.50% 66.26%

Table 2: Accuracy of the models. Exp1 is the word accuracy
ignoring tones. Exp2 is word accuracy ignoring tones and the
length of the vowels. Exp3 is word accuracy including tones and
the length of the vowels.

In our initial model, we achieved 94.47% letter accuracy and
62.17% complete word accuracy.  Letter accuracy is defined as
the number of letters that are correctly converted to epsilon, a
phone, or multi-phone. Word accuracy is defined as the number
of words that all phones (once resplit) match exactly all the
phones in the entry in the test data.

As many of the errors were caused by misplaced syllable
boundaries, and assuming we can predict syllable boundaries
from a sequences of phones, we retrained without them.  This
improved our scores to 95.25% letter accuracy and 66.26%
word accuracy.  The second model out-performs a previously
existing rule-based model, which achieves 65.15% word
accuracy on the same data.

The accuracy drops more in our model than the rule-based
model when including the tone. This is due to the inconsistent
of the length of the compound vowels in the dictionary. Some
compound vowels are coded as short vowels, but the are
intended to be pronounced as long vowels as reflect in tones.
Even we can get the same vowel length as in the dictionary, we
cannot get the same tone since it does not follow the rules.

Another frequent mistake is the length of the vowels. However,
sometimes it is negligible since in some words both
pronunciations are actually acceptable. The length of the vowels
is sometimes depended on the context and also varies from
dialects to dialects. For example,  “���”  in “�������” /r-@:-ng-3|
h-a:-j -2|/ is pronounced using a long vowel, /a:/, while in
“������” /s-a-w-4| h-a-j -2|/ is pronounced using a short vowel,
/a/. Since we can ignore the variation in the length of the vowels
as long as it does not change to meaning of the word, the word
accuracy is higher about 10% on both models.

The above simple model uses decision trees to predict the most
likely phone group based on the letter context alone.  No
account of previous (or following) phone predictions is taken
into account.  In an attempt to improve prediction, we built a
second more complex model following [3] where the decision
trees predict a probability distribution of possible phone groups
and best path is selected using Viterbi search and n-grams. More
formally we wish to find most probable string of phone groups
given a string of letters

  argmax P(p1,...pn | l1, ... ln) (1)

We can approximate this as
 N

  argmax  ∏ P(pi | pi-1, p i-2, ...) P(l i) (2)
i=1



The P(li) term in (2) is approximated unigram, the results from
the decision tree, which actually gives P(p | l i-3,...l i+3) but can be
inverted by dividing by the unigram probability of p. P(p) is
approximated by an n-gram.  We tried varies n-gram, with
Good-Turing smoothing (sm1) and backoff (bk) and found the
following results.

Word AccuracyExper iment Letter
Accuracy Exp1 Exp2 Exp3

No ngram 94.47% 68.71% 79.21% 62.17%
Unigram (raw) 94.71% 70.29% 83.23% 65.25%
Unigram (sm1) 94.71% 70.29% 83.23% 65.25%
Unigram (bk) 94.71% 70.29% 83.23% 65.25%
Bigram (raw) 95.37% 74.79% 86.00% 67.53%
Bigram (sm1) 95.40% 74.79% 86.04% 67.53%
Bigram (bk) 95.33% 74.04% 85.76% 67.22%
Trigram (raw) 95.16% 73.33% 85.64% 67.14%
Trigram (sm1) 95.08% 73.17% 85.92% 67.18%
Trigram (bk) 95.60% 75.31% 86.94% 68.76%
Table 3: Letter accuracy and word accuracy of the n-gram
models. Exp1, Exp2 and Exp3 are the same as in Table 2.

When we use equi-probable phones we get the same result as
using the best predicted value from the decision tree.  But we
get an immediate gain with unigrams with appropriate
probabilities, this gets substantially better for bigrams, though
reduces for trigrams.  As we increase the size of the context the
n-gram representation gets larger such that even for trigrams we
have a model which requires hundred of megabytes of memory
to run.  Even if we had more efficient representations of n-
grams, it seems that bigrams offer the best compromise between
accuracy and space.

Interestingly when we apply the tree plus n-gram model using
the trees that do not predict syllable boundaries our overall word
accuracy on bi-gram and tri-grams drops some 1%.  This
implies that the syllable boundary information is in fact useful
in the prediction.

5. CONCLUSION

We have presented a statistically trained model, decision tree,
for Thai letter to sound rules, with augmentation for solving
letter to phone alignment problem in Thai. The results reveal
that the decision trees with n-gram of phones model out-
performs the traditional rule-based model. We also found that
the bigrams model offers the best compromise between
accuracy and space.

There is some more work that can be done to improve the
model. The problem which is still left unsolved is the inversion
of phones across syllable boundaries. One way to handle this
problem is to revert the position of the letters to make them
correspond to the pronunciation, in the preprocessing process.
The word “����” /k-a-1|s-e-m-4|/, will become “����” which
“�” is now easily mapped to the first syllable and so as “���” to
the second syllable. However, this will eliminate another
possible pronunciation /k-e-0|s-o-m-4|/, which “��” go to the
first syllable and “��” go to second syllable, that needs the
original written form. Giving both written forms to the model,

the normalized probabilities from the decision trees can be used
to select the most probable one.
Using the decision tree to predict syllable boundary instead of
phone is also worth a try. If a syllable boundary is obtained, the
pronunciation of most syllables can be predicted accurately by
using a rule.
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