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ABSTRACT
Neural models for end-to-end text-to-speech (TTS) synthe-
sis are increasingly outperforming traditional approaches in
statistical parametric speech synthesis. Speech generation in
these neural models predominantly relies on using free-form
text as the input modality. However, the earlier statistical
parametric models were built on encoded phonetic and syn-
tactic features. In this work, we explore the possibility of
explicitly feeding deterministic linguistic structure to a neural
TTS system in the form of Heterogeneous Relational Graphs
(HRGs), an expressive formalism capable of representing pho-
netic and syntactic information. Specifically, we use Graph
Convolutional Networks to learn structurally informed contin-
uous representations of the HRGs, which can be seamlessly
passed to the encoders of popular neural TTS models like
TransformerTTS or Tacotron. Furthermore, our simple HRG
based text-to-speech synthesis leverages the syntactic bias in
HRGs as demonstrated by improvements in automated met-
rics and human evaluation on i) the single speaker dataset
LJSpeech; ii) the multi-speaker dataset Arctic; and iii) out-of-
domain test sets from the Blizzard challenge.1

Index Terms— text-to-speech, end-to-end neural TTS,
Graph Convolutional Networks, Heterogeneous Relation
Graphs.

1. INTRODUCTION

In end-to-end text-to-speech (TTS) synthesis, the objective is
to learn a function that maps a given input text sequence to
human-like audio (waveform). Early work on speech synthesis
followed unit-selection based models [1] or multi-phase statis-
tical parametric approaches [2] where constructing individual
phases of feature extraction and waveform generation required
extensive domain expertise. Recently, end-to-end neural mod-
els [3, 4, 5] for TTS have been shown to generate close to
human-level audio when trained on large datasets (∼ 24 hrs)
of high-quality audio samples for long hours.

Neural TTS systems typically take free-form text as in-
put and treat it as a sequence of characters. This form of
input misses important linguistic information, which can be
∗Equal contribution. Correspondences to asetlur@cs.cmu.edu.

1The code, trained models, and our dataset of HRGs will be released at
https://github.com/ars22/GraphNeuralTTS/.

Fig. 1. Example of a Heterogeneous Relation Graph (HRG)
that linguistically represents the pronunciation of the word
“structure” [13].

indicative of phonetic information, stress patterns, syllable
structure, and word structure [6]. On the contrary, in the past,
the benefits of incorporating linguistic structures have been
made evident by statistical parametric synthesis models that
explicitly encode the structure in terms of local neighborhoods
around each phonetic/syntactic unit [2], for e.g., the number of
phonemes in a word. Motivated by this, there has been an in-
creasing interest in learning neural speech models [7, 8, 9], and
representations [10] that can recover linguistically informed
latent spaces capturing continuous sub-unit representations
for syllables and phones. There has been extensive work in
such structural encoding and even inferring latent phonetic
relationships in a neural model [11, 12]. However, the utility
of a generic representation framework that can encapsulate all
forms of structured phonetic, acoustic, and syntactic features
has not yet been investigated.

In this work, we explore the possibility of feeding lin-
guistic structure to neural TTS systems by revisiting the for-
malism of Heterogeneous Relation Graphs (HRGs) [13] as a
generic expressive data structure that can represent complex
phonetic and syntactic patterns via a graph. Heterogeneous
Relation Graphs were designed as a data structure to enable
statistical methods to jointly handle linguistically informed
heterogeneous features including syntactic analysis, morphol-
ogy, phonology, phonetics, prosody, articulatory control, and
acoustics. Formally, an HRG is a graph G(V,E) where the
set of vertices V includes syntactic, phonetic and acoustic
units, and the set of edges E represents the various sequential
(across time) and top-down (word → syllable → phoneme)
dependencies that are present in any text utterance (Figure 1).
Concretely, we pass the text input through the commonly used
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Fig. 2. The proposed pipeline for using Heterogeneous Relation Graphs (HRGs) to encode linguistic structure in the input text
“to England”. Graph Convolutional Networks (GCNs) are used to learn representations for words, syllables and phonemes in the
HRG. The phoneme embeddings are extracted and passed to a neural TTS system like Tacotron or TransformerTTS which then
output the corresponding mel spectrogram.

speech processing and synthesis tool: Festvox [6, 14], and ob-
tain the corresponding HRG representation in a deterministic
manner. After we get one such HRG for every text utter-
ance in our dataset, our goal is to train a standard neural TTS
model on this input modality of HRGs. For this work, we
experiment with two widely popular neural architectures: i)
Tacotron [3]; and ii) TransformerTTS [5], by suitably adapting
them to accept as input, representations of HRGs, as opposed
to the originally proposed character embeddings. To obtain
a dense representation of the graph-structured linguistic in-
formation present in HRGs, we rely on recent advances in
Graph Convolutional Networks (GCNs, [15]). A GCN refines
the representation of each node by pooling features from its
neighbors using a stack of convolutional layers. The GCN
representations for each phoneme node in the HRG are then
extracted and passed directly to the end-to-end neural model
Tacotron/TransformerTTS. We exhibit the benefits of our ap-
proach through automated metrics and human evaluations,
which indicate that neural models produce a higher quality of
generated speech when fed with supervised linguistic informa-
tion in the form of HRGs. In this work, we do not claim to
propose a generic improvement (over all existing neural TTS
models) in the output speech quality – but merely (re-)evaluate
the advantage of a structural bias via the formalism of HRGs
and further provide an easy way of mapping HRGs to neural
representations that can be directly plugged into existing end-
to-end models. Finally, we provide results in two additional
scenarios: i) multi-speaker low data settings; and ii) out-of-
domain speech synthesis where the model is trained on audio
samples from non-fiction books and tested on conversations,
and Semantically Unpredictable Sentences (SUS) from the
Blizzard challenge [16].

The main contributions of our work are as follows: i)
We revisit the utility of Heterogeneous Relation Graphs as a
generic framework to represent phonetic/syntactic information
in the input text utterances for state-of-the-art neural TTS mod-
els using Graph Convolution Networks ; ii) We empirically
demonstrate the gains furnished by the linguistic bias in HRGs
through experiments on the popular single-speaker dataset

LJSpeech; iii) Through additional results in the more chal-
lenging multi-speaker low data setting (Arctic) as well as tests
on out-of-domain text utterances from Blizzard, we further
establish the usefulness of HRGs; iv) Finally, we provide some
rationale for the observed improvements by analyzing the abil-
ity of HRGs to better predict duration (acoustic information)
for each phoneme in the input.

2. RELATED WORKS

End-to-end neural models. One of the pioneering models in
end-to-end synthesis is the deep neural network Tacotron [3]
which encodes characters using an embedding lookup followed
by a CBHG-based encoder and attention decoder to generate
the output mel spectrograms. A vocoder like WaveNet [17]
or the Griffin-Lim algorithm [18] is finally used to generate
the waveform from the spectrogram output. This work was
followed by rapid developments in end-to-end models [4, 19]
and more recently, the multi-head attention based model Trans-
formerTTS [5] has been shown to increase the training and
inference efficiency, while improving the output speech qual-
ity by reducing errors caused by long term dependencies. We
build on these advances by passing structured inputs (derived
from HRGs) to these systems.

Structural inductive bias. Reinforcing the utility of phonetic
and syntactic features in parametric speech synthesis, Ronanki
et al. [20] proposed an approach that took the input linguistic
features at their original timescales and preserved the rela-
tionships between words, syllables, and phones, improving
the performance of their statistical system. The benefits of
encoding prosodic words, intonational and prosodic phrase
boundaries (PPH) for the task of Chinese speech synthesis
was exhibited by Sun et al. [21]. Furthermore, Mametani et al.
[22] conducted an extensive study on latent contextual features
in end-to-end synthesis, comparing it with parametric TTS.
Owing to the joint optimization of context and acoustic fea-
tures, their work has shown that the encoder outputs reflect
both linguistic and phonetic contexts, such as vowel reduc-
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tion at phoneme level, lexical stress at the syllable level, and
part-of-speech at the word level.

Graph based text-to-speech synthesis. Complementary to
this paper, recent works [8, 9] have explored the benefits of
structured/graph based inputs for neural TTS models. Sun et al.
[8] explore the possibility of using word-character graphs to
learn character representations that are fed to Tacotron. Liu
et al. [9] map the input sentence to a syntax tree and use the syn-
tactic relations between lexical tokens to derive syntactically
motivated character embeddings for TTS attention mechanism.
Although our results supplement their findings that structured
inputs improve model generalizability, we introduce a more
generic and rigorous structured representation framework of
HRGs which can encode the relations between a wider set of
syntactic, phonetic and (in some cases) acoustic units. HRGs
can also be generated with different phone sets which can aid
accent control, making our approach more widely applicable.
Furthermore, since HRGs can be fetched using the widely
recognized Festvox tool [6], they are easier to use and analyze.

3. METHODOLOGY

We begin with a brief overview of the expressivity of HRGs
and describe the set of features we use to construct our inputs
for the neural TTS models. We then provide details on extract-
ing neural features from HRGs that can be directly fed to the
encoders of the TTS models in their originally proposed form.

Heterogeneous Relation Graphs (HRGs). Taylor et al. [13]
introduced HRGs as a self-contained schema to structurally
represent the heterogeneous relationships present between syl-
lables, words, and phonemes in a given text utterance. This for-
malism allows linguistic information to be encoded as graphs
G = (V,E) s.t. V encompasses the sets of phonemes, sylla-
bles, words, and even phrase boundaries. The set of edges E
allows for interesting relationships: for e.g., a hierarchical tree
breaks words into phonemes (Figure 1). On the other hand,
multi-linear lists allow associations between a sequence of in-
tonational tones and corresponding syllables. Apart from fea-
tures that are solely derived from the lexicon, HRGs can also
have features obtained post Hidden Markov Model (HMM)
alignment between phonemes and speech frames. Specifically,
HRGs can encode timing information: the time (in ms) associ-
ated with each phoneme, along with F0 parameters and cepstra
(stored as multi-linear lists). Finally, the heterogeneity of the
relationships is exploited by having the same set of nodes V to
be part of different views/graphs G1 = (V,E1),G2 = (V,E2).
For e.g., syllable nodes are part of a hierarchy between words
and phonemes (E1), while also being part of a metrical struc-
ture (E2), which deciphers how much stress to lay on a subtree
of syllables.

In this work, we exploit a very limited view of HRG’s afore-
mentioned capabilities. Specifically, we only extract linguistic

information like phoneme and syllable sequences (Figure 2)
that can be derived via a deterministic set of predefined rules in
the Festvox [6] system. Since we don’t use information drawn
from the HMM alignment, we don’t need the speech signal to
obtain the linguistic structure for a given text utterance. We
would like to highlight that restricting our approach to only
use pre-alignment features benefits us in two ways: i) we allow
for the usage of HRGs during inference (where we don’t have
the speech waveform); and ii) given a character sequence the
corresponding HRG can be derived for it in a deterministic
manner with negligible additional processing cost.

Processing HRGs for Neural TTS. While the node set V can
contain a variety of information, we focus our experiments on
using the following three types of nodes: i) words, ii) syllables,
and iii) phonemes. Figure 2 shows a sample HRG for the
sentence “to England”. As shown, an HRG is a multi-granular
representation of a sentence: a word node is linked to its
syllables, and each syllable is further linked to the constituent
phonemes. Apart from the top-down links, some nodes like
syllables also have lateral links. The various levels in an
HRG are characteristic of representations that capture both the
surface level information in the form of words and phonemic
information. Each of these result in different manifestations of
acoustic units [20]. We posit that such a rich representation of
the input text would help the model to learn from fewer hours
of speech, and improve the quality of its generation by directly
feeding off the rich linguistic structure in the input.

Graph Convolutional Networks. We use Graph Convolu-
tional Networks (GCN, [15]) to learn rich node representa-
tions from the HRGs. GCNs can be used to learn node-level or
graph-level representations (features) for tasks like node and
graph classification. Our architecture consists of L layers of
GCN. For a graph G(V,E), features h0v ∈ Rk for each node
v ∈ V are randomly initialized from N (0, 0.3) (seed embed-
ding). Each layer then refines node-features by aggregating
information from its neighbors:

h(l+1)
v = σ

 1

|A(v)|

Wlhl
v +

∑
u∈A(v)

Wlhl
u


where σ is a non-linear activation function (e.g., ReLU), Wl ∈
Rk×k is the GCN weight matrix for the lth layer, and A(v)
is the list of neighbors of a node v. Finally, the representa-
tion hLv for each phoneme node is fed as a sequence of input
embeddings to the Tacotron/TransformerTTS model. This is
in contrast with the original formulation, which encodes the
input as a sequence of character embeddings.

Efficiency of HRGs. We note that apart from HRGs there
are other ways of encoding structural features, for e.g, by us-
ing boundary markers (tokens) that indicate syllable or word
boundaries in a sequence of phoneme tokens. However, such
flattened representations of graphical relationships would be
non-scalable (computationally heavy) since the length of the
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Spectral analysis
(Tacotron, TxTTS)

pre-emphasis: 0.97; frame-length: 50ms; frame-shift: 12.5ms; window type: Hann

GCN (Tacotron, TxTTS) num-layers (L): 2; hidden-size (k): 256; dropout-rate: 0.3; activation (σ): ReLU
Encoder CBHG (Tacotron) Conv1D Bank: K=16, conv-k-128-ReLU; Max-pooling: stride=1, width=2; Conv1D Projections: conv-3-128-ReLU→

conv-3-128-Linear; Highway net: 4 layers of FC-128-ReLU; Bidirectional GRU: 128
Attention RNN (Tacotron) num-layers: 1; gru-hidden-size: 256
Reduction Factor (Tacotron) 5 (Tacotron), 7 (Tacotron + Phoneme, Tacotron + HRG)

Table 1. Details on modified (from original implementation) or additional hyperparameters for Tacotron, TransformerTTS.

representation would grow exponentially with the depth of the
input graph. In contrast, HRGs provide us with a more effi-
cient way of encoding syntactic and phonetic features without
flattening the hierarchical relations. Since graph convolutions
are used to extract features for each node, the amortized pro-
cessing time does not increase with additional relationships
that may be represented by new edges in the HRG, and only
scales linearly with the number of nodes in the graph (less if
the graph convolutions are also parallelized).

4. EXPERIMENTAL SETUP

Dataset Details. For the in-domain setting, we train and test
models on two datasets: i) LJSpeech [23] which contains
13,100 (11,790 train, 655 val and 655 test) high quality audio
clips read from 7 different non-fictional books by a single
female speaker with an American accent; and ii) CMU Arctic2,
a multi-speaker dataset comprising of 1132 sentences spoken
by 18 different speakers (14,012 train, 785 val and 786 test)
with three distinct accents – European, American, and Indian
English. Furthermore, we use the conversational (Conv) and
Semantically Unpredictable Sentences (SUS) test sets from
the 2005 Blizzard challenge [16] to conduct an out-of-domain
evaluation of models trained and validated on the LJSpeech
corpus. The statistics for each dataset are provided in Table 2.

Arctic LJSpeech Blizzard

Train 14,012 11,790 -
Validation 785 655 -

Test 786 655 50 (SUS)
50 (Conv)

Table 2. Data statistics for number of audio samples in the
Arctic, LJSpeech and the Blizzard datasets.

Extracting HRGs. We use the Festvox toolkit [6] to extract
an HRG for every given text utterance in a dataset. In the
most general case, the Festvox steps include: i) initial text
processing to build appropriate prompts for each utterance;
ii) label alignment using Hidden Markov Models; iii) extrac-
tion of acoustic (duration), phonetic (syllables and phonemes)
and syntactic (part-of-speech tags) features via ClusterGen

2http://www.festvox.org/cmu arctic/

[24]; and finally iv) construction of nodes (phonetic and syn-
tactic units) and heterogeneous relations (in HRGs) from the
features. Note that as mentioned in Section 3 we only use
the pre-alignment features, to allow for the usage of HRGs
at inference where we only have the text utterance (and not
the corresponding speech file). We stress here that obtaining
HRGs from a text-utterance is a lightweight and deterministic
process (akin to POS-tagging). The official documentation3

provides scripts to easily automate each of these steps with
more details on the individual phases.

Model Details. Most of the hyperparameters for the base
Tacotron and TransformerTTS models are borrowed as is from
their respective original works [3] and [5]. In Table 1, we
describe some of the modified and additional hyperparameter
choices, including the hyperparameters of the GCN module.
We use popular open-source implementations for Tacotron
and TransformerTTS4 and suitably modify them to use GCN
representations of phoneme nodes withdrawn from HRGs. For
both, we use the Adam [25] optimizer with an initial learning
rate of 2e− 3 and update the learning rate based on validation
mel loss. In all our experiments, we use the Griffin-Lim [18]
algorithm (60 iterations) as the vocoder that maps mel spec-
trograms to waveforms. Note that in [5], TransformerTTS is
trained for longer hours (∼ 104 epochs), but owing to com-
putational constraints we train each model for a maximum of
500 epochs on each dataset. All the experiments use no more
than two Nvidia RTX 2080 Ti GPU cards.

Baselines. We primarily experiment with three baseline mod-
els: i) Tacotron: The original Tacotron [3] model that is trained
to output mel spectrograms for every input sequence of char-
acter embeddings, one for each character in the text utterance;
ii) Tacotron + Phoneme: The Tacotron model which uses
phoneme sequences instead of characters as the input; and iii)
TransformerTTS (TxTTS) + Phoneme or TxTTS: Similar to
Tacotron + Phoneme in terms of the input/output, but in princi-
ple based on the non-recurrent multi-head attention model [5].
Actually, we experimented with both phoneme and character
embeddings for TxTTS, but did not find any difference in per-
formance of the two variants for both Arctic and LJSpeech.
Thus, we only use TxTTS with phoneme embeddings and any

3http://festvox.org/bsv
4Tacotron: https://github.com/keithito/tacotron, TransformerTTS: https://github.

com/soobinseo/Transformer-TTS
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reference to TxTTS means TxTTS + Phoneme. We refer to
our proposed approaches as Tacotron + HRG and TxTTS +
HRG where we use GCNs over heterogeneous relation graphs
in conjunction with the baseline neural models of Tacotron
and TxTTS respectively.

Human evaluation. We compute the mean-opinion-scores
(MOS) over 9 annotators who are domain experts, and each
annotator evaluates the quality (on a scale of 1-5) of 130 un-
seen audio samples for each method (40 each for Arctic and
LJSpeech; 50 for Blizzard Conv) which allows us to get low
variance performance estimates. The test set for Arctic com-
prises of 40 sampled utterances over 15 speakers (the test is
unbiased since the number of test utterances for each speaker
is proportional to their training samples). The MOS scores
are averaged over all samples. The listening test samples for
Arctic and LJSpeech are randomly selected from the unseen
examples in the test splits for each, whereas the Blizzard test
sets are obtained directly from the 2005 Blizzard Challenge
[16]. Since the phoneme sequences in Blizzard SUS sentences
are hard to predict – making the speech harder to recognize –
the quality of the generated speech for these are judged on the
word-error-rate (WER) between the ground truth text utterance
and the annotators’ transcription of the generated speech. Each
of the 50 generated samples in the SUS set is transcribed by
three expert human annotators and the final WER is averaged
over these transcriptions.

Automated Evaluation. We use DTW-MCD5 which uses dy-
namic time warping (DTW) to compute the minimum (over
alignments) Mel Cepstral Distortion (MCD) between the gen-
erated and ground truth speech. Due to the lack of ground-truth
speech, DTW-MCD is not computed for out-of-domain evalua-
tions on the Blizzard sets.

5. RESULTS AND DISCUSSION

Main Results (in-domain). In Table 3 we note higher MOS
scores and lower DTW-MCD values for our proposed ap-
proaches: Tacotron + HRG and TxTTS + HRG over the
baseline models: Tacotron, Tacotron + Phoneme, and TxTTS
on the LJSpeech and Arctic datasets6. The improvements are
more pronounced for the TxTTS + HRG model, which im-
proves over the TxTTS model by 16% for LJSpeech, and 54%
for the Arctic dataset. Tacotron + HRG model improves over
the Tacotron + Phoneme baseline with a significant average of
4.5% and 6.9% over LJSpeech and Arctic, respectively. We
hypothesize that structural bias is more helpful in low-data
settings since the model needs to learn generalizable features
from fewer samples per speaker. This is further substantiated
by our findings where higher gains are observed on the Arctic

5https://github.com/festvox/festvox/blob/master/src/clustergen/get cd dtw.
6For transparency, we also provide the outputs used for human evaluation

at https://tinyurl.com/5ebpdnra.

dataset (roughly 1 hour speech for each speaker) than the
LJSpeech corpus (∼ 24 hrs of high-quality audio from a single
speaker). Note that in Table 3 the only case where the MOS
scores have slightly overlapping confidence intervals are for
Tacotron + Phoneme and Tacotron + HRG, but the difference
in performance is still statistically significant since it has a
very low p-value ≈ 1e− 6 for both Arctic and LJSpeech.

Model MOS (↑) DTW-MCD (↓)

Train and Test on LJSpeech

Tacotron 3.27± 0.10 5.88± 0.13
Tacotron + Phoneme 3.31± 0.10 5.43± 0.10
Tacotron + HRG (ours) 3.46± 0.10 4.79± 0.08
TxTTS 3.33± 0.09 5.31± 0.12
TxTTS + HRG (ours) 3.87± 0.08 4.70± 0.10

Train and Test on Arctic

Tacotron 1.84± 0.09 6.98± 0.17
Tacotron + Phoneme 2.93± 0.11 5.98± 0.07
Tacotron + HRG (ours) 3.12± 0.11 5.21± 0.09
TxTTS 1.80± 0.08 6.84± 0.13
TxTTS + HRG (ours) 2.78± 0.11 5.88± 0.12

Table 3. In-domain results: MOS scores and DTW-MCD values
comparing speech quality of baselines: Tacotron, Tacotron +
Phoneme, and TxTTS, with the proposed methods: Tacotron +
HRG and TxTTS + HRG. We specify both the average value
of the metric and the corresponding 95% confidence interval
for the MOS and DTW-MCD scores.

Main Results (out-of-domain). In Table 4 we note the higher
MOS scores and lower WER values for TxTTS + HRG, indi-
cating that the listeners were better able to discern the words
being spoken by the HRG model. The WER values are com-
puted without any form of post-processing as noted in [26]. A
substantial increase of 30% in MOS and a drop of 44% in WER
clearly exhibits the ability of HRG based models to improve
out-of-domain generalization. We observe inferior out-of-
domain performance for Tacotron based models compared to
TxTTS; hence we only experiment with the latter.

Train on LJSpeech and Test on Blizzard Conv [MOS (↑)]

TxTTS 2.67± 0.07
TxTTS + HRG (ours) 3.49± 0.09

Train on LJSpeech and Test on Blizzard SUS [WER (↓)]

TxTTS 40.76%
TxTTS + HRG (ours) 22.67%

Table 4. Out-of-domain results: MOS scores on Blizzard Conv
and WER metrics on Blizzard SUS, comparing the speech
quality of TxTTS and TxTTS + HRG.

1166



In comparison to other graph-based methods. Our results
which highlight the usefulness of a structural bias inherent
in the HRGs are not surprising since contemporary works
like [8, 9] have also investigated the benefits of syntactic in-
formation in the form of graph-based inputs and arrived at
a similar conclusion. However, as we mention in Section 2,
even with a more complicated approach, their graphs are rigid
and less general than HRGs. We tried to re-implement the
GraphTTS method [8], but we could not establish a good base-
line. In the absence of a public implementation for [8, 9], we
refrain from comparing our approach to their methods directly.
We believe that our generic approach envelops the specific
cases in each of them. Moreover, we make our implementation
publicly available for ease of use.

Remark on MOS scores. The absolute values of the MOS
scores on the Arctic datasets in Table 3 cannot be directly
compared to scores in [3] (Table 2) and [5] (Table 1) since
the Arctic dataset is much more challenging with its multiple
male/female non-native speakers, each having only ∼ 1hr of
sampled audio. In contrast, the internal dataset used by [3]
consists of ∼ 24.6 hours of speech sampled from a single
female native English speaker. Since the LJSpeech dataset has
more hours of speech from a single speaker, the performance
we observe on it is comparable to the MOS in [3] (Table 1). Fur-
thermore, as MOS scores are derived from human judgements,
the scores for the same model from two different experimental
setups cannot be compared directly. This is because the abso-
lute values of MOS are subject to annotator-specific biases [27].
Mayo et al. [28] used multidimensional scaling for identifying
the main acoustic dimensions to which listeners attend when
rating synthetic speech. They determine that several percep-
tually salient prosodic, segmental, and unit-level cues cause
the listeners to undergo complex psychoacoustic processes
influencing their decisions on the naturalness of the generated
speech. Due to similar reasons, benchmarks like the Blizzard
challenge [16] use a single standard dataset. Hence, because
of the unavailability of standardized human evaluation sets for
LJSpeech and Arctic, we limit our discussion to the relative
performance improvements in the in-domain setting.

Analysis. To understand the performance improvements ob-
served for the HRG model, we evaluate the utility of HRGs to
better predict post-alignment acoustic features like phoneme
level durations. For each phoneme node in the HRG, the ob-
jective is to predict a discretized value of the duration, which
captures the time needed to pronounce it. We divide the dura-
tions into ten discrete buckets (classes) and train two models
for duration classification: i) HRG: An MLP classification
head is attached to our GCN module. Essentially, this method
uses the phoneme representations learned by our GCN mod-
ule to perform duration prediction (Section 3); and ii) BiL-
STM: As a strong baseline, we train a bi-directional LSTM
[29] based sequence-to-sequence model [30] with global atten-

tion [31] and a hidden size of 500. Given an input sequence of
phonemes, the BiLSTM based method generates a sequence
of duration nodes (one for each phoneme) as the output. Both
the models were trained for 10 epochs and we report the test
accuracies of best validation checkpoints in Table 5.

Model Accuracy

BiLSTM 24.72
HRG (ours) 71.89

Table 5. Analysis for the task of duration prediction. Com-
paring the accuracies of the baseline BiLSTM model with our
GCN based HRG model.

The HRG based encoder clearly outperforms the BiLSTM
baseline in classifying phonemes into discretized durations.
We believe that these gains can be attributed to the fact that
the duration of a phoneme node depends predominantly on
the local context of neighboring phonemes and syllables. This
dependence is efficiently captured by the localized GCN convo-
lutions over the HRG nodes. The GCN representations drawn
from structural features (like the word to phoneme hierarchies
or syllable boundaries present in HRGs) enable our approach
to naturally learn these dependencies and invariances.

6. CONCLUSION

In this work, we take the first steps to re-purpose Heteroge-
neous Relation Graphs (HRGs) proposed by Taylor et al. [13]
to deterministically encode linguistic structure present in a
text sequence. We propose to feed the HRGs consisting of
syllables and phonemes as inputs to popular end-to-end neural
TTS models like Tacotron and TransformerTTS. Graph Convo-
lution Networks are used to learn continuous representations
for each phoneme node in the HRG, which are passed as a
stream of vectored inputs to the base neural TTS model.

As indicated by MCD and MOS scores, this simple adap-
tation furnishes significant improvements in speech quality
on both single speaker, large sample dataset LJSpeech; and
multi-speaker dataset Arctic which has much fewer training
samples per speaker. Additionally, we see that when the Trans-
formerTTS model is trained using HRGs, the out-of-domain
performance also improves. This is confirmed by higher MOS
and lower WER scores (on the 2005 Blizzard Challenge test
sets) for TransformerTTS + HRG trained on LJSpeech corpus.
Finally, we conclude with an empirical analysis that demon-
strates the ability of HRG trained models to better predict
post-alignment acoustic features like phoneme durations. In
the future, we plan to train end-to-end TTS models that im-
plicitly learn the relationships between phonemes, syllables
and other linguistic units in the natural text input. In such a
scenario, HRGs would serve more as an implicit regularizer as
opposed to an explicit input.
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