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ABSTRACT

Although substantial progress has been achieved in
speech-to-speech translation systems over the last few years,
such systems still require that the speech be written in some
appropriate orthography. As speech may differ greatly from
the standardized written form of a language, it can be non-
trivial to collect written data when there is no standard way
for it to be represented. This project addresses the prob-
lem from the other end and expects that speech alone is
available in the target language, and that no (standard or non-
standard) orthography exists. It, therefore, treats the acoustic
representation of the language as primary and uses language-
independent methods to produce a phonetically-related sym-
bolic representation that is then used in the translation system.
Thus, the speech translation system is created for the target
language as defined by the recording of that language rather
than some body of orthographic transcripts.

In this work, we are creating an application called APT
(Acoustic Patient Translator), which uses a novel scheme of
speech recognition and translation within a targeted domain.
By working with a set of predefined sentences appropriately
chosen to fit a scenario, we use utterance classification as a
speech recognition algorithm. The utterance classification is
achieved using cross-lingual, language-independent phonetic
labeling. Since we are working with a set of select phrases,
the translation part is trivial. We are concentrating on com-
munication with hospital staff, such as scheduling a doctor’s
appointment, as our domain. In addition to English, we also
run experiments on Tamil.

Index Terms— zero-resource languages, speech-to-
speech translation, utterance classification, speech recog-
nition

1. INTRODUCTION

There are many languages in the world which are severely
lacking in language technologies. Although a lot of work is
being done for languages such as English and Spanish, very
little is done towards speech technology for languages with
fewer resources. This may be because of the limited data
available or a relatively much smaller number of speakers.
This work concerns building speech technology and transla-

tion systems for languages where only limited audio is avail-
able and there is no readily-available or well-defined writing
system. Since there is no text data available, we cannot eas-
ily train standard language models, or convert speech to text,
thus making the task of translation quite different.

Some earlier speech-to-speech translation systems have
addressed the issue of there being no recognized written script
by defining one. Kathol et al. [1] developed a Romanized
writing system for Pashto, but admitted that training people to
use it consistently was a limitation when collecting later data.
Within the DARPA TransTac program, inconsistencies were
noted in word representation choices in the defined orthogra-
phy of the Iraqi Arabic dialect [2]. We take a different route,
by discovering a data-driven, phonetically-directed symbolic
representation of the acoustics. We then use a classification
technique to distinguish between each utterance type. At
some level this is similar to Voxtech’s Phraselator [3], but we
have a two-way system and do not require a language-specific
speech recognizer.

Stüker and Waibel [4] present experiments toward extract-
ing wordlike sequences and bilingual alignments from pho-
netic representations of utterances that could be generated us-
ing bilingual speakers. Their system relies on ideal transcrip-
tions, and is based on a preexisting corpus.

We are developing a way to make a language-independent
dialogue system which can easily support new languages
without any linguistic knowledge or expertise of the user. All
that is needed is a set of recordings dynamically generated
from a few speakers.

We intend to simplify this problem by only selecting a
small set of phrases pertinent to a topic of conversation. In
this project, we picked the topic of administrative processes
surrounding a doctor’s appointment. The conversation is be-
tween a non–English-speaking immigrant and an administra-
tive staff member at an American hospital. For initial work,
we further simplify the problem by using data from a se-
lect demographic. We utilize cross-lingual phone-recognition
technologies to find phonetically inspired symbolic represen-
tations of speech. This work is in collaboration with Univer-
sity of Pittsburgh Medical Center (UPMC) Montefiore.
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2. THE PHONE APPLICATION

We are developing a smartphone application with three main
functions. First, the app allows a bilingual speaker of both a
zero-resource language—the source language—and English
to read the English phrases and record their spoken transla-
tions. Second, it allows other source language speakers to
listen to each recorded phrase and to record themselves re-
peating each phrase. These two functions together will enable
users to easily supply additional languages. Third, by apply-
ing our research methodology to the collected data, it will
allow an English-speaking staff member and a non–English-
speaking patient to hold a turn-based conversation by rec-
ognizing the phrase one user speaks and playing the corre-
sponding translated phrase in the other user’s language. The
app is being developed for Android, and we intend to make
it available for download for a variety of smartphones and
tablets. This way, the hospital staff will not need any special-
ized equipment to use the interface.

3. THE CORPUS

In establishing a corpus of phrases of sufficient size and
breadth to enable conversation in the domain, several cultural
factors must be considered. The phrases, though we devise
them in English, should translate well into other languages
and be relevant to other cultures. However, phrases like “Is
she a minor?” and “Are you her legal guardian?” do not
translate well to cultures in which the concepts of “minor” or
“legal guardian” do not exist or are defined differently from
the American legal system. Regardless, these are questions
that the hospital staff are expected to ask, and therefore they
should be accounted for.

With this in mind, we began with an initial set of 102
phrases intuitively relevant to the domain, standing in for
a more expanded and fine-tuned set to be constructed later.
Examples include: “I’d like to reschedule my appointment,”
“Do you have insurance?” and “What is the patient’s date of
birth?”.

We interviewed two staff members at UPMC Monte-
fiore who regularly engage with non–English-speaking pa-
tients. We based model conversations on our initial phrases,
constructing interactive scenarios in which our respondents
provided examples of their typical dialogue during such in-
teractions. Similar methods with standardized scenarios have
been used to create a corpus of patient-doctor interactions [5].
We identified the most common and useful statements result-
ing from the interviews. Using these as a guide, we wrote
somewhat more general phrases that captured the meaning of
the originals. Each original statement maps to one or more
general phrase semantically. There are currently around 750
phrases in the list. For many of the statements, we wrote
one or more paraphrases—other ways that the same semantic
meaning could plausibly be conveyed—that our system can
recognize as alternatives of the same basic statement. We
have not yet collected audio data for all the phrases; experi-
ments are conducted using the original 102-phrase list.

The subjects we used for data gathering are played a series
of audio prompts and asked to repeat them. This is necessary
for the “zero-resource” scenario in which no standard written
form exists for the source language, and also for collecting
spoken data from illiterate people who would not be able to
read a textual prompt even if one was available. Therefore,
our mobile app makes the recording process easy for the user.

3.1. Languages

All recorded speakers are young adults (20-35 years old), and
are native speakers of Tamil or American English. There are
12 American native English speakers (5 male and 7 female)
and 5 male native Tamil speakers. We also perform exper-
iments with 3 of the American English speakers (2 male, 1
female). We chose the non-English language owing to ease
of access to speakers, as well as for being distinctly different
from English. All of the speakers of Tamil are also fluent in
English, but we acknowledge and expect that end users of the
app may not know any English.

3.2. Collection

For each language, we designated one speaker to provide the
recordings that the later speakers would hear as prompts.
For Tamil, these initial speakers first translated the En-
glish phrases into their language before recording themselves
speaking.

The audio was recorded in 16-kHz mono using our app in-
terface running on various phones and tablets. Silences at the
beginnings and ends of sound files were trimmed using Au-
dacity’s “Truncate Silence” tool. Participants were informed
of the purpose and application of the recordings.

4. METHODS

After concluding the recording step, the datasets on which we
experiment consist of, for each language, recordings made by
each speaker of all 102 phrases in that language. (For clarity,
we refer to a “phrase” as one of the 102 sentences, and an
“utterance” as a recorded instance of the phrase said by one
of the speakers.) The overall goal of our experiments is to
be able to consistently and accurately match a given utterance
from a held-out speaker to the same utterance as spoken by
the non–held-out speakers. With one speaker at a time held
out, we train on the rest of the speakers and use the held-out
speaker for testing (leave-one-speaker-out cross-validation).
The accuracies that we report are from averaging over the val-
ues produced from each held-out speaker.

By optimizing performance of the classification through
training on our datasets, we aim to be able to perform accu-
rate classification of utterances spoken by end users during a
real-time dialogue. In pursuit of optimizing classification, we
experimented with a variety of representations of the utter-
ances and types of metrics for computing string edit distance
(SED) between them.
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4.1. MFCC Dynamic Time Warping

We began by transcribing all utterances as vectors of mel-
frequency cepstral coefficients (MFCCs). To compute simi-
larity between utterances in this representation, we used dy-
namic time warping (DTW). For each held-out speaker, for
each utterance, we compute the mean and standard devia-
tion (SD) of the pairwise comparisons between non–held-out
speakers; then for each utterance we compute the mean of the
pairwise comparisons between the held-out speaker and each
non–held-out speaker, compute the z-score for that utterance,
and return a tuple of the utterance number and the z-score.
We sort the tuples by increasing z-score (lower is better), and
record whether the original (correct) utterance number is in
the top 1, top 5, or top 10 results and record the mean rank of
the correct utterance.

This process has the benefit of being language-independent,
since the method of representing the data as MFCCs is di-
rectly acoustically derived and takes no language-specific
information into account. The drawback is that it is very
slow and computationally expensive; also, the accuracy in
our experiments was low. Therefore, we investigated more
high-level approaches that use symbolic representations. The
results for this baseline are shown in Table 1.

Experiment % Top 1 % Top 5 % Top 10 Avg.
Rank

DTW-Pruned 7.108 16.585 21.814 57.453

Table 1. Results for English Experiments with MFCCs

4.2. Features

Due to the expense and limited success of the MFCC ap-
proach, we investigated using faster, symbolic representa-
tions. We used two types of automatically-extracted sym-
bolic features: English phonemes and language-independent
inferred phones (IPs).

4.2.1. English Phonemes

We began by creating a phonemic language model of English.
This model is not trained on English words, but rather on
the phonemic sequences that compose words. We trained the
model on a corpus of transcribed TED talks that we converted
into Arpabet notation using the Carnegie Mellon University
Pronouncing Dictionary. Then, using the work of Sitaram et
al. [6], we predicted English phonemes from our audio.

An example from our English data:
Original Phrase: “What brings you here today?”
Eng. Phones: “SIL W AH T P R IH NG Z IY HH IH R D IH D EY”

For our initial work, we use only one phone recognizer,
trained on English, since we will be translating to and from

English. However, we intend to use multiple phone recogniz-
ers trained on different languages to make the phone recogni-
tion step more robust.

4.2.2. Inferred Phones

After predicting and outputting phonemic transcriptions of
the utterances, we extracted “Inferred Phones,” or IPs. The
IPs are produced by creating a tree of clustered groups of
sounds which share similar articulatory features [7]. We cre-
ated several trees for each language that varied in the number
of IPs. Due to the nature of the tree creation, we cannot spec-
ify exact numbers of IPs; but we can produce configurations
in a “ballpark” range. These configurations are:

English: 15, 17, 30, 47, 84, 92, 101, 123, 171 IPs (12 speakers).
Tamil: 14, 17, 24, 51, 82, 93, 103, 118, 165 IPs (5 speakers).

An example from our English data:
Original Sentence: “What brings you here today?”
47 IPs: “ip25 ip26 ip26 ip26 ip25 ip4 ip13 ip13 ip13 ip13 ip14 ip14
ip14 ip14 ip24 ip25 ip24 ip28 ip21 ip17 ip15 ip15 ip13 ip13 ip13
ip47 ip33 ip47 ip42 . . . ”

4.3. Logistic Regression With N-grams

Since the number of output classes (the same as the number
of phrases) is high and the data is limited, we used a two-step
classification scheme. In the first stage, we reduce the number
of possible classes to 10 using regularized multiclass logistic
regression (LR). LR is preferred over support vector machines
because it provides class probabilities for each input. The
second stage picks the best class among the top 10 classes
using a nearest-neighbor search.

We use binary (0/1) features of bigrams of English
phonemes for the classifier. Since phoneme sequences for
each phrase are short, n-gram models (even bigrams) are very
sparse. For a dataset of about 100 phrases and 5 speakers,
only 2% of the bigram features have non-zero values. The
usage of skip-grams solves this problem to an extent.

Since we have multiple speakers repeating the same
phrase, we use cross-speaker bigrams as shown in Fig. 1.
The intuition for cross-speaker bigrams is that we expect
the phone recognizer to make similar mistakes for future
(test) data. Before we count the cross-speaker bigrams, both
sequences are aligned to minimize their SED.

The second stage involves a nearest-neighbor search for
the test phrase among the top 10 classes picked by LR. Be-
cause of this, average rank is only calculated for those ut-
terances found in the top 10, creating artificially low values
compared to our other experiments (*). Levenshtein distance
is used as the metric for the nearest-neighbor search.

4.3.1. Results

Using the two-stage classification described, accuracies are
reported in Table 2. In the case of English, the nearest-
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Fig. 1. Cross-speaker bigrams (shown using dotted lines ”W
IH”, ”W AH”, etc.) illustrated for a short sentence

neighbor search leads to a slight drop in accuracy. For Tamil,
which has less data, it improves the performance of logis-
tic regression quite well. However, the algorithm performs
poorly on Tamil in comparison to English. This could be
either because of the difference in the dataset size or that the
phone recognizer (which is trained for English) is not appli-
cable for other languages. We intend to answer this question
by collecting more data and using multiple phone recogniz-
ers trained on different languages. In addition, we intend
to try using high-level features such as utterance length (in
phonemes) or duration (in seconds) in this classifier.

Language % Top 1 % Top 1 % Top 10 Avg.
Stage I Stage II Rank*

English 71.86 69.75 99.93 1.62
Tamil 34.51 41.6 71.38 2.82

Table 2. Results using logistic regression. Stage I is the
output of logistic regression; Stage II is the nearest-neighbor
search on the top-10 outputs of logistic regression.

4.4. String Edit Distance

The rest of the experiments consisted of configuring and/or
learning paradigms of weights for the SED algorithm. As
with the DTW experiment, we looked at 4 metrics per held-
out speaker: the number of test phrases that are predicted ex-
actly (% in top 1), the number of test phrases ranked in the top
5 (% in top 5), the number of test phrases ranked in the top 10
(% in top 10), and the average rank of the first correct match
(whether it be the same phrase spoken by a different speaker
or that phrase’s model).

First, we used SED without a model, where each test ut-
terance was compared to every other utterance individually.
Then, it would pick one of the other utterances with the low-
est SED and claim that it was that phrase. The following ex-
periments are variations on this basic SED setup.

4.4.1. Results

As seen in Table 3, the English phoneme experiment sig-
nificantly outperforms all of the experiments with inferred
phones.

Language Feats % Top 1 % Top 5 % Top 10 Avg.
Rank

English Eng 66.748 79.820 84.232 16.721
English IP-15 9.804 25.490 36.765 46.180
English IP-17 11.601 28.350 40.114 47.631
English IP-30 11.601 28.350 40.114 44.953
English IP-47 13.154 29.902 41.095 54.262
English IP-84 12.173 29.739 40.196 61.732
English IP-92 14.134 29.330 39.624 64.761
English IP-101 11.111 28.922 38.235 67.253
English IP-123 11.029 28.431 39.788 69.479
English IP-171 10.621 27.206 37.173 71.710

Table 3. Results for the standard string edit distance experi-
ments

4.5. Gaussian Model

As in the DTW experiment, utterances of the same phrase
across different speakers have their SED scores averaged in
order to create a model. In testing, each phrase is compared
to each model by its z-score, and all scores are sorted.

4.5.1. Results

The results (Table 4) drop sharply from using the English
phonemes to using the IPs when experimenting on English.
This drop is even sharper when we only look at 3 of the 12
English speakers. On the other hand, the best of the results
for Tamil are using the IPs, and these values are over 20%
lower than the best English results.

4.6. Weighted String Edit Distance

The following experiments share the same methodology as
the Gaussian model described above, with the exception of
using different weights for edge costs in calculating the SED.

4.6.1. Phonetic Distance Weights (PD)

Using the vowel and consonant charts of the International
Phonetic Alphabet as a guide, a table was created to estab-
lish SEDs between all possible pairs of phones. These dis-
tances, ranging from 0 (identical) to 1 (as dissimilar as possi-
ble), were then used as the weights in calculating the SED.

These experiments were only performed on the English
phonemes, since there is no way to find the phonetic distance
between the IPs. As seen in Table 5, English still performs
the best, but Tamil does better than the smaller set of En-
glish, showing that the number of speakers matters. All of
the results are worse than the results from the standard SED
experiments.

4.6.2. Articulatory Feature Weights (AF)

In order to create the IP trees for each language, it was nec-
essary to calculate values for the articulatory features of each
English phoneme using the given data. In these experiments,
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Language Feats % Top 1 % Top 5 % Top 10 Avg.
Rank

English Eng 87.173 98.856 99.265 1.192
English IP-15 80.310 99.265 99.265 1.238
English IP-17 76.389 99.265 99.265 1.307
English IP-30 80.474 99.183 99.265 1.262
English IP-47 77.451 98.693 99.265 1.314
English IP-84 79.248 98.856 99.265 1.316
English IP-92 78.023 99.020 99.265 1.314
English IP-101 79.575 98.611 99.265 1.312
English IP-123 75.654 98.693 99.183 1.356
English IP-171 76.716 98.693 99.265 1.347
Tamil Eng 59.216 92.941 99.020 2.409
Tamil IP-14 60.392 98.627 99.608 1.821
Tamil IP-17 57.451 97.843 99.608 1.925
Tamil IP-24 59.608 97.647 99.804 1.749
Tamil IP-51 62.745 97.255 99.608 1.846
Tamil IP-82 62.157 97.255 99.608 1.755
Tamil IP-93 60.980 97.255 99.608 1.795
Tamil IP-103 58.824 98.039 99.608 1.839
Tamil IP-118 60.392 97.255 99.804 1.745
Tamil IP-165 62.941 95.882 99.412 1.820
Eng-Small Eng 80.392 87.255 88.235 7.072
Eng-Small IP-15 42.484 89.542 93.791 5.115
Eng-Small IP-17 40.523 86.275 92.484 6.246
Eng-Small IP-30 45.752 86.275 94.771 4.799
Eng-Small IP-47 39.216 84.967 94.118 5.151
Eng-Small IP-84 38.235 82.026 90.850 6.634
Eng-Small IP-92 37.908 79.412 88.889 6.760
Eng-Small IP-101 36.928 81.373 91.503 6.651
Eng-Small IP-123 35.294 74.837 85.948 8.643
Eng-Small IP-171 39.869 78.431 89.216 7.506

Table 4. Results for Gaussian experiments

Language % Top 1 % Top 5 % Top 10 Avg.
Rank

English 59.722 97.386 99.020 1.724
Tamil 39.020 88.431 97.843 2.845
Eng-Small 21.242 67.974 78.758 14.620

Table 5. Results for phonetic distance weights in SED using
English phonemes

we took the Euclidean distances of these values to use as
weights in calculating the SED.

These experiments were only performed on the English
phonemes since the articulatory features are only available
for known phones. The results, seen in Table 6, are similar to
the phonetic distance weight results.

Language % Top 1 % Top 5 % Top 10 Avg.
Rank

English 63.562 99.183 99.265 1.525
Tamil 37.843 94.510 99.216 2.714
Eng-Small 26.471 72.876 82.680 12.368

Table 6. Results for articulatory feature weights in SED using
English phonemes

P

T

IH

Test: 1w1 + 0w2 + 1w3 + 0w4 = ?

Z=ins + IH=IH + D=T + P=P  = 0

Match

Z=ins  IH=IH  D=T  P=P
1  1  1  1 = 0
0  1  0  0 = 1
1  1  0  1 = 0}
w1  w2  w3  w4

Linear Regression

classifications

Z IH D P

3 3 3 3 2

2 2 2 2 3

1 1 1 2 3

0 1 2 3 4

Fig. 2. A toy example illustrating the weight learning process

4.7. Learned Weights

We began this process with the original 0 (match) / 1 (non-
match) weights for SED. Using backpointers, we find the path
of the minimal SED. With the reference and the hypothesis
aligned, we get our weight labels from each pair along the
path. Once all of the paths are found, the weights are com-
bined into a giant vector of possible weights, such that if one
instance has that weight, it is set to 1; and otherwise is set to
0.

These strings of values are summed, and set to either 1 or
0. If the two phrases being compared match (speakers cannot
be compared to themselves), then the phrase is set to 0; and
otherwise is set to 1. We then use linear regression to find
the new weights, using them to predict the value of the held-
out set of phrases (all from one held-out speaker), such that
it predicts which phrase is the best match. The weights are
trained so that the smaller the score, the better the match be-
tween two phrases. This way we can use the new weights in
the next iteration for our SED costs and still continue to find
the cheapest path (Fig. 2).

This results in a sparse vector where each of the listed
pairs equals 1, and the other pairs that were found in other ut-
terance comparisons equal 0. Each sparse vector is set to ei-
ther 0 or 1, and we learn the weights per phrase, per held-out
speaker. Once the weights are found through linear regres-
sion, they are used as the new costs in the SED algorithm,
and the rest of the procedure continues for n iterations.

Here we used 3 speakers in our English collection, instead
of all 12, in order to find the best use of this process. This
way, we could judge how many iterations would be optimal
without wasting computational time and resources.
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4.7.1. Results

Using the smaller English dataset, we see in Table 7 that using
one iteration of the weight learning outperforms the standard
SED Gaussian results.

Iterations % Top 1 % Top 5 % Top 10 Avg.
Rank

No Weights 80.392 87.255 88.235 7.072
1x 88.235 95.425 96.732 1.913
2x 79.739 90.196 92.484 2.837
3x 76.797 87.255 92.157 3.433
4x 79.412 90.850 93.137 3.047
5x 76.797 89.216 92.484 3.700
6x 81.046 91.176 93.464 3.187

Table 7. Results for learned weights experiments using the
“Eng-Small” dataset and English phonemes

Results obtained from repeating the one-iteration process
on the IPs from the Eng-Small dataset and all of the Tamil
dataset are shown in Table 8. The English phones work much
better than IPs for Eng-Small. The English phones and the
IP-103 experiment are comparable for Tamil, though both are
less effective than the Gaussian experiment. Some of the ex-
periments with high numbers of IPs were omitted due to com-
putational expense.

Language Feats % Top 1 % Top 5 % Top 10 Avg.
Rank

Eng-Small Eng 88.235 95.425 96.732 1.913
Eng-Small IP-15 13.072 34.641 48.039 27.437
Eng-Small IP-17 15.033 40.523 55.556 22.447
Eng-Small IP-30 21.895 49.020 60.458 16.623
Eng-Small IP-47 16.667 47.712 58.824 19.823
Eng-Small IP-84 18.627 42.157 55.556 20.077
Eng-Small IP-92 19.608 41.503 56.863 18.210
Eng-Small IP-101 15.033 37.908 49.673 20.467
Tamil Eng 49.608 77.255 86.078 8.128
Tamil IP-14 25.098 53.529 65.882 13.736
Tamil IP-17 33.529 65.098 76.471 10.532
Tamil IP-24 37.843 70.784 83.137 6.375
Tamil IP-51 47.647 75.686 86.275 5.816
Tamil IP-82 47.647 74.510 82.745 7.000
Tamil IP-93 46.275 76.471 84.510 6.569
Tamil IP-103 49.608 76.667 84.314 6.413

Table 8. Results for SED with learned weights, one iteration

5. DISCUSSION AND FUTURE WORK

Throughout all of our experiments, we have seen that En-
glish phonemes work the best with English. Specifically, SED
weight learning through linear regression appears best.

However, the results are less clear for Tamil. It seems
that for Tamil, the IPs work somewhat better than the En-
glish phonemes. However, unlike for the English 3-speaker
experiments, learning SED weights does not appear to im-
prove upon results using the default (Levenshtein distance)

weights. This may be due to overfitting, especially consider-
ing that the English 3-speaker experiments do poorly with the
IPs as well.

From this we conclude that the more speakers we can
acquire, the better the result will be. This is to be expected.
From here, the question arises: How many speakers are
needed to build an adequate system, and which ones are most
useful? We have begun to investigate how to determine the
quality of utterances, so that the program knows when a user
should repeat what they said. We have also started using
an empirical method to determine whether a speaker is of
low quality or utility overall and therefore should be left out
of training. This approach also enables us to identify the
speakers that are most useful for classification, so that we use
only as many such speakers as are necessary to improve the
model, in order to optimize for both accuracy and runtime.
Preliminary results on the full English speaker set suggest that
for that model, a set of five specific speakers is optimal; we
expect this will vary based on the language and the speakers.

We are currently collecting Telugu data, but have not ac-
quired sufficient data to reliably test these techniques on that
language yet. We are also collecting utterances for Mandarin
Chinese and will use that as our next language to experiment
with, since we have access to numerous speakers.

We will finish developing the smartphone application by
incorporating our best classification algorithm in order to pre-
dict phrases in real time. We will then test the application at
both CMU and UPMC.

At the moment, our 102 phrases are fairly phonetically
distinct, but our full set of 750-plus phrases will be harder
to distinguish. It remains to be seen how well our classifi-
cation algorithms will perform with several times as many
phrases. This is a major open question going forward. There-
fore, it will be necessary to experiment with subsentential
approaches such as low-resource keyword spotting, which
will enable the system to recognize important patterns in the
phonemes/IPs and limit the search set.

With data collected from a dialogue system we have de-
veloped that uses only our predefined phrases, we plan on
using dialogue-state tracking to improve performance of the
recognition. For example, one would be less likely to ex-
pect a user to say “hello” again halfway through the con-
versation. Combining this model with the phonetically-based
model should improve classification.

Finally, because no one modeling approach has yet been
conclusively shown to be best overall, in moving toward a
practical system that will run on the app in a reasonable
amount of time, we will focus more attention on the English
phones representation than the IPs. We intend to try combin-
ing the Gaussian approach and the weight-learning approach
that uses linear regression. We also continue to find and apply
other algorithmic optimizations; for instance, using a beam
search for the edit distance grid calculations improves both
speed and accuracy.
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