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Abstract

Neural controllable text generation is an impor-
tant area gaining attention due to its plethora
of applications. Although there is a large body
of prior work in controllable text generation,
there is no unifying theme. In this work, we
provide a new schema of the pipeline of the
generation process by classifying it into five
modules. The control of attributes in the gen-
eration process requires modification of these
modules. We present an overview of different
techniques used to perform the modulation of
these modules. We also provide an analysis
on the advantages and disadvantages of these
techniques. We further pave ways to develop
new architectures based on the combination of
the modules described in this paper.

1 Introduction

Controllable text generation is the task of generat-
ing natural sentences whose attributes can be con-
trolled. The attributes to control can range from
being stylistic such politeness, sentiment, formality,
etc.; demographic attributes of the person writing
the text such as gender, age, etc.; content such as
information, keywords, entities, etc.; ordering of
information, events, like plot summaries etc. Con-
trolling various attributes of text generation has
manifold applications. For instance in dialogue
response generation task, work has been done in
controlling persona (Zhang et al., 2018; Li et al.,
2016b), controlling various aspects of the response
such as politeness (Niu and Bansal, 2018), formal-
ity, authority etc, grounding the responses in ex-
ternal source of information (Zhou et al., 2018;
Dinan et al., 2018; Ghazvininejad et al., 2018), and
controlling topic sequence (Tang et al., 2019; Prab-
humoye et al., 2020). Another application is story
generation where you can control the ending (Peng
et al., 2018), the persona (Chandu et al., 2019),
the plot (Yao et al., 2019), and the topic sequence

(Huang et al., 2019). Controllable text generation is
also used to modulate the formality and politeness
of emails (Madaan et al., 2020). Report genera-
tion can be controlled by pulling disparate source
documents into a coherent unified whole, which
can use a shared set of sources such as Wikipedia
article generation (Liu et al., 2018; Prabhumoye
etal., 2019).

Although there is a large body of prior work in
controllable text generation, there is no unifying
theme. Each work addresses a specific task in a
specific context. In this paper we outline a new
schema which connects prior work and provides
an insight into various aspects of controllable text
generation. The schema contains five modules that
cover the overall generation pipeline and provide
an understanding of the effect of each component
on the generation process. Prior work has focused
on specific parts of the schema that we outline here
and we provide insights into their similarities. We
provide an overview of these modules and also
present an exploration of the various techniques
used to control and update each of these modules.

Most of the controllable text generation tasks can
be framed as conditional language generation tasks.
They have an input or a source sequence U and an
output or a farget sequence Y to be generated. In
this case, we model the probability of the target
sequence conditioned on the source sequence given
by P(Y|U) = Hthl P(y:|U,y<:). The genera-
tion of the target tokens of the sequence Y unfolds
as a time series where each token y; is generated
at a time step t. Ata given time step ¢, a generative
model takes in the previous hidden state h;_; and
the input x; at current time step. It performs a set
of operations denoted by G to produce the output
o, which is used to predict token %X;. The ground
truth token to be generated is denoted by y;.

Figure 1 shows the schema proposed in this work
consisting of five modules which can be used for
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Figure 1: Modules that control the generation process. Each module is numbered by the circle next to it.

controlling the generation process: (1) External
Input module is responsible for the initialization
hy, of the generation process. (2) Sequential In-
put module is the input x; at each time step of
the generation. (3) Generator Operations mod-
ule performs consistent operations or calculations
on all the input at each time step. (4) Output mod-
ule is the output o, which is further projected on
to the vocabulary space to predict the token %X; at
each time step. (5) Training Objective module
takes care of the loss functions used for training
the generator.

This schema provides an insight into the contri-
butions of the various modules for controllable text
generation. The main advantage of this schema is
that it can be used with any algorithmic paradigm
like sequence-to-sequence, adversarial methods, re-
inforcement learning, etc. The schema can also
be used with non-autoregressive algorithms which
may generate text using graphical structures like
trees (Welleck et al., 2019; Guo et al., 2019). In this
paper, we focus on how this schema can be used
to describe controllable text generation focusing
particularly on the use of autoregressive models.
This work paves way to designing new architec-
tures based on our schema. This can be done by
identifying promising techniques for each module
and then combining them. Our schema can also
be potentially used for applying these techniques
on new tasks of similar nature. It also provides a
standardized framework to position and compare
new architectures with existing techniques.

The prior work on unifying text generation mod-
els has mostly focused on building efficient tool-
kits and modular views of generation. For instance,
(Reiter and Dale, 2000) details seven sub-tasks
which are conceptually distinct to describe the gen-
eration process. These sub-tasks can be modelled

separately or in some cases they may interleave.
In (Reiter and Dale, 2000), these seven sub-tasks
are primarily characterized as content or structure
tasks. Note that Reiter and Dale (2000) is not spe-
cific to neural text generation. Our work focuses
specifically on controlling attributes in neural text
generation process. We don’t divide the genera-
tion pipeline into several sub-tasks but we divide
the neural text generation process into modules all
of which are required for generation. In (Hu et al.,
2019b), the focus is on building a toolkit for various
text generation tasks based on the three properties
of versatility, modularity and extensibility. This
work enlists few model architectures and learning
paradigms for various text generation tasks. In our
work, we focus only on the generation process of
controllable text generation tasks. We specifically
detail the inputs, outputs and operations of the gen-
eration process. We do not provide any specific
examples of architectures but provide an overview
of the basic underlying modules which can be used
with any learning paradigm. Xie (2017) provides
a practical guide to the neural generation process
describing it in terms of initialization, optimiza-
tion, regularization and decoding strategies. Our
work on the other hand does not delve into the im-
plementation details of the generation pipeline but
provides an overall schema for understanding of
the various components involved.

In the remainder of the paper, we denote the
representation of the control attribute by s and the
representation of the input or source sentence re-
turned by the encoder as h.. In what follows, we
first describe the possible ways of controlling at-
tributes by modulating the external input in §2, the
sequential input in §3, the generator operations in
§4, the output in §5 and the training objective in §6.
At the end of each section, we provide an analysis



of each of the techniques described and how they
fit together.

2 External Input

In this section we discuss the different techniques
which can be used to control the generation process
by updating the initialization of the generator hy.
In the standard generation process, hg is equal to
h.. This is marked as module (1) in Figure 1.

2.1 Arithmetic or Linear Transform

One of the easiest ways to control the generation
is to concatenate a control vector s to output of the
encoder h,.. The external input of the decoder hg
will be [h,; s], where [a; b] denotes concatenation.
Here, the control vector s would provide the gen-
erator with a strong signal to guide the generation
process.

Fu et al. (2018) use this technique to control
the style representation for their generator. The
encoder builds representation that is devoid of the
style and only retains content. The control vector
for style is then concatenated to the encoder repre-
sentation to initialize the decoder. This technique
is commonly used in (Ghazvininejad et al., 2018;
Zhou et al., 2018; Dinan et al., 2018) to concate-
nate information from external sources to dialogue
context to generate dialogue responses. Chandu
et al. (2019) concatenate personality representation
‘P derived from a separate corpus to generate visual
stories. They also experiment with a simple arith-
metic operation on h, given by hg =h, — S + P
to get the initialization of the generator (here S de-
notes the average representation of the story). They
observed that while concatenation technique is bet-
ter at preserving the meaning of the generated story,
the arithmetic operation provides a better signal of
the personality for the generation process.

Hoang et al. (2016) uses both the concatenation
technique as well as performs a linear transform of
s to obtain hy for language modelling task. The
control vectors in this case represents meta data
such as key-words, topics etc. In case of the linear
transform hy = tanh(Wh, + Wss + b). The
paper also explores adding the control vector to the
encoder representation (hg = h, + s).

In case of addition, the resulting hg would be
averaged representation of the input representation
h, and s. Information could be lost in this case as
control is not explicit. In case of concatenation, if
the size of the control vector s is too small com-

pared to he, then s can be over-shadowed by h.
and the generator may not be able to pay attention
to s. Hence it is important to choose comparable
dimensions for s and h.. But this increases the size
of model considerably and could be quite costly.
Linear transform avoids these issues and performs
better than the other two techniques for Hoang et al.
(2016).

2.2 Stochastic Changes

Kingma and Welling (2014) introduce variational
auto-encoder, where you can stochastically draw a
continuous latent variable z from a Gaussian dis-
tribution. The initialization of the generator hy is
based on this latent variable. Bowman et al. (2016)
use this concept for generating sentences from this
continuous latent representation. This process of
changing the encoder state h, can only be used
with Kullback-Leibler (KL) Divergence training
objective described in §6.2.

In (Wang et al., 2019b), Variational Auto-
Encoder (VAE) is used to guide the generation
process with topics of a document. A gaussian
mixture model is used to incorporate topics into
latent variables. In (Xu et al., 2019), VAE is used
to control for sentiment attribute in style transfer
task by constraining the posterior mean to a learned
probability simplex.

Such a design of controllable text generation
works when the control attributes can be repre-
sented as latent variables for example style, top-
ics, strategies etc. This design is difficult to work
for content grounded text generation tasks where
specific information, keywords or entities have to
guide the generation process.

2.3 Decompose

The encoder representation h, can be decomposed
into multiple subspaces, each of which signifies a
different attribute to be controlled. Liu and Lapata
(2018) split the encoder representation h, into two
components, one which represents the structure in
the document and the other represents the semantic
information. This formulation was used by (Bal-
achandran et al., 2020) for controlling structure in
abstractive summarization. This work performs the
split with respect to the dimensions of h.. The
method forces the first n dimensions of h, to cap-
ture meaning and the latter to capture structure.
Balachandran et al. (2020) also show quantitative
and qualitative analysis on the types of structures
of documents learnt by this technique.



Romanov et al. (2019) decompose the encoder
representation h, into a form vector f and a mean-
ing vector m. During the training phase, a discrim-
inator enforces m to not carry any information
about the form using an adversarial loss and a moti-
vator is used for a motivational loss that encourages
f to carry the information about the form. The gen-
eration process can then be guided to adhere to the
desired target form. As opposed to splitting h, with
respect to dimensions, this work learns subspaces
W, and W¢ given by m = tanh(W,,,h. + b,;,)
and f = tanh(Wh, + by) respectively. When
h. is projected on W ,,,, it yields the meaning vec-
tor m and similarly when it is projected on W it
yields the form vector f. This work shows quali-
tatively how m and f are learnt in the subspaces
using t-SNE plots. It also shows quantitatively the
use of m and f in downstream paraphrase detection
tasks. This builds interpretable representations for
control attributes. Although, the effectiveness of
this technique is not yet proven in the style trans-
fer task or the abstractive summarization task. In
both the above mentioned works, the models learns
interpretable representations of control attributes
but were not able to beat state of the art methods in
their respective tasks. It is also worth noting that
learning good decomposed vectors is especially
hard when no supervision is provided on what the
decomposed components are supposed to learn.

This technique works well when the represen-
tation space of the input x can be decomposed
into subspaces which can represent the control at-
tributes. This means that the input x needs to con-
tain signal of the control attributes. It is unlikely
to work when the control attributes need to be ex-
ternally provided. For example in case of content
grounded generation tasks described in (Prabhu-
moye et al., 2019; Dinan et al., 2018; Zhou et al.,
2018), the input may not necessarily contain the
content that needs to be generated. A separate input
of the content to be generated is provided in these
cases.

2.4 External Feedback

A regularizer is often used to control the external
input hy to the generator. In many cases, an adver-
sarial loss to manipulate the latent space is used as
an external feedback mechanism. This essentially
controls the latent space of the encoder which is
eventually provided as an initialization to the gen-
erator. In (Fu et al., 2018), a multi-layer perceptron

(MLP) is used for predicting the style labels from
hg. Similarly, the adversarial loss is also used in
(Wang et al., 2019a) to control the latent represen-
tation hg for style attributes. In (Romanov et al.,
2019), an adversarial loss is used to ensure that
the meaning representation m does not carry any
style signals. The adversarial loss is obtained by
training a discriminator which takes as input a rep-
resentation m and indicates if it carries the target
style signal. Similarly, this work also employs a
motivator loss which is the opposite of the adver-
sarial loss to ensure that the style representation f
actually does carry the stylistic information. John
et al. (2019) use multiple losses to control the style
and content information represented in hg.

The discriminator which provides external feed-
back has to be jointly trained with the genera-
tor. This technique can be useful with the decom-
pose technique to ensure that the decomposed sub-
spaces represent the desired control attributes.

3 Sequential Input

In this section we discuss the different techniques
which can be used to manipulate the sequential
input x; to the decoder at each time step. x; here
is used to denote the word embedding of the token
at time step ¢. This is marked as position (2) in
Figure 1.

3.1 Arithmetic or Linear Transform

Similar to changing the initialization, we can
change the input to the decoder by concatenating
the information at each time step with some addi-
tional control vector s. Typically, teacher forcing
method (Williams and Zipser, 1989) is used to train
the generator. At time step t, the generator takes
as input the word embedding x; of the word that
was predicted at step t — 1 and predicts the word
to be generated y; at the current time step. Note
that x; = y;—1. The input x; can be concatenated
with s at each time step to control the generation
process. Hence, X; = [xy;s].

Noraset et al. (2017), use this technique in the
task of definition modeling. They concatenate word
embedding vector s of the word to be defined at
each time step of the definition generation process.
Unfortunately, for this task, this technique has not
proved to be effective compared to other techniques
of controlling the generation. Zhou et al. (2018)
concatenate the hidden representation of the exter-
nal source of information s to each time step of dia-



logue response generation. Similarly, Prabhumoye
et al. (2019) also concatenate the hidden representa-
tion of the external source of information s to each
time step of Wikipedia update generation process.
This technique did not achieve impressive results
in this work as well. Harrison et al. (2019) concate-
nate a side constraint s which represents style and
personality into the generation process. For this
task of generating language from meaning repre-
sentations with stylistic variation, this method per-
formed better than conditioning the encoder with
side constraint in terms of BLEU metric. Chandu
et al. (2019) also concatenate the personality repre-
sentation P at each time step of the story generation
process. This is used to control the personality of
the visual stories. In addition to concatenation, this
work proposes to modify the sequential input as
X; = x¢t — S + P (here S denotes the average
representation of the story and P denotes the repre-
sentation of the personality). The latter technique
is better at generating personality conditioned sto-
ries than the concatenation technique. Neither of
these techniques prove to be conclusively better
than making similar changes to the external input
module (§2.1). Note that in this technique, changes
are made directly to the input of generation and
not the context which is the case with external in-
put. Also, most of the prior work has focused on
recurrent neural network and its variants for mak-
ing such changes. It could be interesting to see
such changes made to transformers (Vaswani et al.,
2017).

4 Generator Operations

This module takes in the external input hy, the
sequential input x; at time step ¢ and performs the
same set of computations (G) to return an output
0;. Changes can be made to the set of operations
G to include the the control vector s in computing
0;. This is shown as position (3) in Figure 1.

4.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed
to model sequential information. RNNs perform
the same operations for every element of a se-
quence, with the output depending on previous
computations. This recurrence serves as a form
of memory. It allows contextual information to
flow through the network so that relevant outputs
from previous time steps can be applied to network
operations at the current time step. Theoretically,

RNNs can make use of information in arbitrarily
long sequences, but empirically, they are limited to
looking back only a few steps.

The Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) units are
a type of RNNs that have additional ‘memory
cell’ apart from standard units of basic RNNs.
The memory cell can maintain information in
memory for long periods of time. A set of gates
is used to control when information enters the
memory, when it’s output, and when it’s forgotten.
This architecture lets them learn longer-term
dependencies. The vanishing gradient problem
of RNNs is resolved here. Gated Recurrent
Units (GRUs) (Cho et al., 2014) are similar to
LSTMs, but use a simplified structure designed to
adaptively capture dependencies of different time
scales. They also use a set of gates to control the
flow of information, but they don’t use separate
memory cells, and they use fewer gates.

The computations of the RNN or its variants can
be modified to account for the control attribute. Ad-
ditional gates can be added or the control attribute
can be provided as an additional input to the stan-
dard gates of RNNs. Gan et al. (2017) propose a
variant of the LSTM model, named factored LSTM,
which controls style representation in image cap-
tion task. The parameters of the LSTM module
which are responsible to transform the input x; are
factored into three components U, S and V. The
operations of the input (i;), forget (f;) and output
gate (o) are given by:

iy = sigmoid(U;ipSizViex: + Wirhy_1)
f; = Singid(foSfofot + thhtfl)
o, = sigmoid(U,ySosVoux: + Worhy—q)

Et = tanh(chSchc:cXt+Wchht—1)

Particularly, the matrix set {S} is specific to each
style in the task and is responsible to capture the
underlying style features in the data.

In (Kiddon et al., 2016), the GRU unit is mod-
ified to accommodate extra inputs - goal g and
agenda items L£}'*" in the recipe generation task.
The operation of the new component hy is given

by:

h; = tanh(Wyx; +1: @ Uphy ) +5, 0 Yg +
q © (1 ZE;)")

where s; is a goal select gate and q; is a item select
gate. With this modification, the generation process



is controlled for the items to be generation in the
recipe and the goal.

Wen et al. (2015) adapt the LSTM to control the
dialogue act information in the generation process.
The operation to compute the cell value c; is given
by:

¢t =f ®c1+1i © ¢ + tanh(Wydy)

The dialogue act representation d; is build using
another LSTM cell.

RNNs, LSTMs and GRUs are commonly used
to model controllable text generation tasks (Prab-
humoye et al., 2019; Rao and Tetreault, 2018; See
et al., 2017; Zhou et al., 2018; Fu et al., 2018).
Most of these variants still have trouble remember-
ing long sequences and are hence commonly used
with attention mechanism (§5.1) on the source se-
quence.

4.2 Transformer

Transformers are proposed by (Vaswani et al.,
2017) and they rely on attention mechanism to draw
global dependencies between input and output. The
Transformer uses stacked self-attention and point-
wise, fully connected layers for both the encoder
and decoder. The encoder stacks N identical lay-
ers, each of which has two sub-layers. The first
sub-layer is a multi-head self-attention mechanism
(§5.1), and the second sub-layer is a positionwise
fully connected feed-forward network. Each sub-
layer uses residual connections around each of the
sub-layers, followed by layer normalization. The
decoder has an additional third sub-layer, which
performs multi-head attention over the output of
the encoder stack.

Since, attention mechanism is at the core of this
generator, the decoder can attend over all positions
of input sequence. Computations over a sequence
can be parallelized in this case and hence it is faster.
The modifications made to the computing units
of RNN mentioned in §4.1 which use parameters
specific to control attributes such as style, dialog act
etc. have not been explored with the transformers
architecture.

4.3 Pre-trained models

Recently pre-trained conditional language models
are used for text generation like GPT (Radford
et al., 2018), GPT2 (Radford et al., 2019), XL-
Net (Yang et al., 2019), etc. Several works have
fine-tuned the pre-trained models for downstream

controllable text generation tasks (Sudhakar et al.,
2019; Dinan et al., 2018; Urbanek et al., 2019).
The language modeling aspects of generation like
fluency and grammaticality are already learnt if
pre-trained models are used.

These models are hard to fine-tune for sequence-
to-sequence tasks such as machine translation, ab-
stractive summarization etc. BART (Lewis et al.,
2019) is a denoising autoencoder built with a
sequence-to-sequence model and is particularly ef-
fective when fine tuned for text generation. Alter-
natively, TS (Raffel et al., 2019) treats every NLP
problem as a “text-to-text” problem, i.e. taking text
as input and producing new text as output. Hence,
it can be adapted to controllable text generation
tasks. Dathathri et al. (2019) propose a Plug and
Play Language Model (PPLM) for controllable lan-
guage generation. It combines a pre-trained LM
with one or more simple attribute classifiers that
guide text generation without any further training
of the LM. This is similar to the classifier feedback
technique described in §6.3. Some of the other
techniques described in this paper such as stochas-
tic changes §2.2 , external feedback §2.4 and §5.2,
decompose §2.3 etc would be hard to incorporate
into pre-trained language models without modify-
ing the model architecture or fine-tuning entailing
the significant cost of retraining.

5 Output

In the standard generation process, o; is the output
of the generator module which is projected to the
vocabulary space to predict the token X;. Here, we
discuss the various techniques used to modulate the
sequential output o; at each time step ¢, before pro-
jecting it to the vocabulary space. This is marked
as position (4) in Figure 1.

5.1 Attention

Attention is the most popular way of guiding the
generation process. It is typically used to guide the
generation process to focus on the source sequence
(Bahdanau et al., 2015). The attention calculating
module takes as input the current hidden state hy
of the generator at each time step t. The aim of
this module is to determine a context vector c; that
captures relevant source-side information to help
predict the token X;. In case of global attention,
all the hidden states of the encoder are considered
to calculate the context vector c¢; (Luong et al.,
2015). This faces the the downside of expensive



calculation especially for longer source sequences
like documents. To overcome this challenge, local
attention only chooses to focus only on a small
subset of the source positions per target word. In
this case, c; is calculated over a window of size D
of the source hidden states.

Vaswani et al. (2017) view attention as a map-
ping a query and a set of key-value pairs to an
output, where the query, keys, values, and out-
put are all vectors. The output is computed as
a weighted sum of the values, where the weight as-
signed to each value is computed by a compatibility
function of the query with the corresponding key.
This work proposes the simultaneous use of scaled
dot-product attention which helps in parallelizing
computation and a multi-headed attention which
allows the model to jointly attend to information
from different representation subspaces at different
positions.

Sudhakar et al. (2019) use self-attention to con-
trol for style by simply adding a special target style
token in the source sequence. Dinan et al. (2018)
also use transformers to attend over information
from external document for guided dialogue re-
sponse generation. (Zhang et al., 2018) uses the
encoded representation of personas to compute the
attention weights a; at a given time step of the de-
coder. The attention is re-weighted according to
the persona of the response to be generated in dia-
logue. So far, work has not been done to modulate
the attention weights to control for attributes like
style, topic, content etc.

5.2 External Feedback

The output latent space of the generator can be
controlled by external feedback. Similar to chang-
ing the external input hy, the output latent space
can also be changed using adversarial loss. In (Lo-
geswaran et al., 2018), an adversarial loss is used
which encourages the generation realistic and at-
tribute compatible sentences. The adversarial loss
tries to match the distribution of sentence and at-
tribute vector pairs (x,s) where the sentence can
either be a real or generated sentence. Similarly,
in (Shen et al., 2017), a two discriminator losses
in the style transfer task. Each discriminator is
trained to distinguish between a sentence which
came from the real target attribute distribution and
a sentence that was transferred from source to target
attribute. This work uses Professor-Forcing (Lamb
et al., 2016) to match the hidden states of the gen-

erator and the discriminator. Gong et al. (2019)
also control the output latent space by providing
different types of rewards like style reward, seman-
tic reward and fluency reward in the reinforcement
learning setup. The discriminator used to obtain
the adversarial loss has to be jointly trained with
the generator.

5.3 Arithmetic or Linear Transform

Hoang et al. (2016) demonstrate three simple ways
of changing the output o, of an RNN to control
for meta information like topic, keywords etc. The
three ways demonstrated in (Hoang et al., 2016)
are: (1) addition, where the modified output o; is
0; = 0y + s, (2) concatenation, where the modified
output o; (0; = [0¢; s]), and (3) using a perceptron
layer dependent on s and o;. In this case, O; is
given by 6; = tanh(W,0; + Ws + b,). In each
of the three cases, the modified output 0; is then
projected to the vocabulary space to predict the
token X;.

6 Training Objective

In this section we describe various methods used
to control the generation using objective functions.
The output o; at each time step ¢ of the generation
process is projected to the vocabulary space using
a linear transform (6; = W,0; + b). A token
X, is predicted from the vocabulary by passing O;
through a softmax function and taking the max
value. The predicted token X; is compared with
the reference token y; using a loss function. This
loss function can be tweaked to ensure that the
generated text carries the desired control attributes.

6.1 General Loss Objective

Here, we describe the loss objectives commonly
used in natural language generation tasks. These
loss objectives do not try to control for any attribute.
Instead they try to ensure fluent, grammatical and
diverse generations.

Cross Entropy Loss: This is the basic loss used
to compare the generated tokens with the reference
tokens and is used in all text generation process. At
each time step ¢, the generation has to predict a to-
ken from the vocabulary. Hence, it could be seen as
a classification problem with number of classes be-
ing equal to vocabulary size. The categorical cross
entropy loss is given by —2£1yt7clog(pt,c). Here
Dt 1s the probability of the token c at time step



t. Note that p; = softmax(0;) is the probability
distribution over the vocabulary.

Unlikelihood loss: This maintains a set of nega-
tive candidates which is based on repeating tokens
or n-grams and frequent tokens (Welleck et al.,
2020). This set is updated at each time step as to-
kens are generated. This works at both token and
sequence level and the objective tries to minimize
the repetitions in generations. This is used at train
time in augmentation with the maximum likelihood
objective and can be used for any task.

Decoding strategies: These strategies are not
used as a loss objective during training. Many of
these objectives rely on post-hoc decoding strate-
gies such as stochastic decoding which include Top
k-sampling (Fan et al., 2018), nucleus sampling
(Holtzman et al., 2020), or beam search variants
(Paulus et al., 2018; Kulikov et al., 2019; Vijayaku-
mar et al., 2018; Holtzman et al., 2018).

Specifically, we discuss the Diversity-Promoting
objective which is used to generate a varied set
of sentences given similar inputs. Particularly, Li
et al. (2016a) use Maximum Mutual Information
(MMI) as an objective function for the dialogue
response generation task. Most generation systems
use maximum likelihood objective but this objec-
tive additionally tries to reduce the proportion of
generic responses. It is given by:

-

T = argmax,;{logp(T|S) — Alogp(T)}

where T is the generated target sequence, T is the
reference target sequence and S is the source se-
quence. The second term controls the generation of
the high frequency or the generic target sequences.
Note that this objective is only used during the in-
ference and the generators are trained using cross
entropy loss. Zhang et al. (2018), also use a diver-
sity encouraging objective for dialogue response
generation. They train a discriminator to calcu-
late similarity between the source S and target T
(Dy(T,S)), as well as between the source S and
the generated target T (D¢(T, S)). They finally
try to minimize the difference between D, (T, S)
and Dy (T, S).

6.2 KL Divergence

The Kullback-Leibler (KL) Divergence score, quan-
tifies how much one probability distribution differs
from another probability distribution. The KL di-
vergence between two distributions Q and P is

often stated using the notation KL(P || Q), where
the operator ““||” indicates divergence or P’s diver-
gence from Q. Note that KL Divergence is not
symmetric i.e KL(P || Q) # KL(Q || P). KL
divergence can be used to minimize the informa-
tion loss while approximating a distribution. In
text generation, the KL Divergence is combined
with the evidence lower bound (ELBO) to approx-
imately maximize the marginal likelihood of data
p(x) which helps in better generations. This ob-
jective is used in variational autoencoders and its
variants in combination with sampling techniques
described in §2.2. This objective fits in the control-
lable text generation paradigm because it allows
you to approximate the posterior distribution of the
control variables in the latent z-space.

6.3 Classifier Loss

This loss is specifically used to ensure that the gen-
erated tokens X comply with the control attributes
s. Note the difference between this loss and the
external feedback loss used for the external input
module and the output module is that this loss op-
erates at the token level and the external feedback
loss works on the latent hidden representations.

In case of style transfer task, this loss is used
to guide the generation process to output the tar-
get style tokens. Some works (Prabhumoye et al.,
2018; Sudhakar et al., 2019; Hu et al., 2017) use
this loss to discriminate between all the styles in
their task (one verses all fashion). This type of
design will suffer from low accuracy scores when
the number of styles increases. To counter this
problem, this loss can be setup to calculate if the
generated sentence X belongs to style s; or not and
similarly to calculate another separate loss term
for each style (Chandu et al., 2019). This type of
loss design encounters increasing number of loss
terms depending on the number of styles. The third
way to motivate this loss term is to discriminating
between a sentence x from data which belongs to
style s7 and a generated sentence X which belongs
to the same style s1 (Yang et al., 2018). Again, you
would need as many loss terms as the number of
styles in this case. All of these works use cross
entropy loss function to measure their losses.

Hu et al. (2019a) use a classifier based loss in
the visual storytelling task. The classifier is a pre-
trained language model (Devlin et al., 2019) used
to measure the coherence between generated sen-
tences of the story. Particularly, the classifier takes



as input two sentences at a time X; and Xo and
outputs a binary label which indicates if X5 follows
X1. In this case, the control variable is coherence
in stories which is used to guide the generator to
produce consistent sentences.

6.4 Task Specific Loss

Depending on the end task and the attribute to be
controlled, you can design different loss objectives
to ensure that generations abide by the target at-
tributes.

Strategy Loss: Zhou et al. (2020) use a dialogue
strategy based objective to generate responses for
negotiation tasks. This task has ground truth strate-
gies that lead to better negotiations. This loss cap-
tures the probability of a particular strategy occur-
ring for the next utterance given the dialogue his-
tory. It guides the generator to align the responses
with particular strategies.

Coverage Loss: Generating repeated words or
phrases is a common problem for text generation
systems, and this becomes especially pronounced
for multi-sentence text generation task such as
abstractive document summarization. See et al.
(2017) introduce a coverage loss which penalizes
repeatedly attending to the same locations of the
source document.

Structure loss: Li et al. (2018) introduce two
new loss objectives structural compression and
structural coverage based on sentence-level atten-
tion. These objectives are specially designed for the
task of abstractive document summarization. struc-
tural compression is used to generate a sentence by
compressing several specific source sentences and
structural coverage is used to cover more salient
information of the original document. These ob-
jectives leverage document structure in document
summarization, and explore the effectiveness of
capturing structural properties of document summa-
rization by regularization of the generative model to
generate more informative and concise summaries.

7 Discussion

Discrete space issues: The classifier loss (§6.3)
is used to determine if the generated tokens X are
in accordance with the target control attribute s.
To calculate the loss, the generated tokens X are
provided as input to the classifier. If the tokens
in this case are generated using the argmax then

this function is not differentiable. Hence, passing
tokens effectively to the classifier is a challenge.

In (Yuetal., 2017), the REINFORCE (Williams,
1992) algorithm is used and rewards are calculated
using Monte Carlo search sampling for the next
tokens. This technique is known to be unstable
due to the high variance of the sampled gradient
during training (Shen et al., 2017). Kusner and
Hernandez-Lobato (2016) introduce the Gumbel-
softmax distribution as a solution. It approximates
the multinomial distribution parameterized in terms
of the softmax distribution. Here the predicted
token is:

X; = softmax(1/7(6: + g¢t)),

where 0 is described in (§6), 7 is temperature pa-
rameter and g; is sampled independently from the
Gumbel distribution. Hu et al. (2017) use this tech-
nique without sampling from the Gumbel distribu-
tion but by only training the temperature parameter.

Combined module architecture: It is also pos-
sible to combine techniques from multiple mod-
ules to control the generation process. We men-
tion some of the prior works that have successfully
combined various modules here. Hu et al. (2017)
combine stochastic changes (§2.2), KL Divergence
loss (§6.2) and a classifier loss (§6.3). It adopts a
variational auto-encoder along with KL divergence
loss objective and further adds a discriminator loss
which signifies if the generated sentence belong
to the target attribute. As mentioned earlier, Ro-
manov et al. (2019) combine the decomposition
of the external input (§2.3) with external feedback
provided to the external input (§2.4). External feed-
back is used to ensure that the decomposed latent
sub-spaces represent the desired target attributes.
Hu et al. (2018) establishes formal connections
between generative adversarial networks (related
to §5.2 and §6.3) and variational auto-encoders
(related to §2.2 and §6.2). Determining the best
possible combination of modules through empirical
evaluation remains an open challenge.

8 Conclusion and Future Work

In this paper we propose a new schema to organize
the prior work in controllable text generation. The
schema contains five modules, each of which plays
an important role in the generation process. We
detail the various techniques used to modulate each
of the five modules to perform controllable text



generation. We also provide theoretical understand-
ing and qualitative analysis of these techniques.
This understanding paves way to new architectures
based on combinations of these modules. The fu-
ture work will focus on empirical comparison of
these techniques to gain an insight into their useful-
ness and strength.
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