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Abstract

This paper extends recent work on nonlinear Independent Com-

ponent Analysis (ICA) by introducing a theoretical framework

for nonlinear Independent Subspace Analysis (ISA) in the pres-

ence of auxiliary variables. Observed high dimensional acous-

tic features like log Mel spectrograms can be considered as sur-

face level manifestations of nonlinear transformations over in-

dividual multivariate sources of information like speaker char-

acteristics, phonological content etc. Under assumptions of en-

ergy based models we use the theory of nonlinear ISA to pro-

pose an algorithm that learns unsupervised speech representa-

tions whose subspaces are independent and potentially highly

correlated with the original non-stationary multivariate sources.

We show how nonlinear ICA with auxiliary variables can be

extended to a generic identifiable model for subspaces as well

while also providing sufficient conditions for the identifiability

of these high dimensional subspaces. Our proposed method-

ology is generic and can be integrated with standard unsu-

pervised approaches to learn speech representations with sub-

spaces that can theoretically capture independent higher order

speech signals. We evaluate the gains of our algorithm when

integrated with the Autoregressive Predictive Decoding (APC)

model by showing empirical results on the speaker verification

and phoneme recognition tasks.

Index Terms: ISA, speech representation learning, unsuper-

vised learning

1. Introduction

The speech signals that we observe can be viewed as high-

dimensional surface level manifestations of samples from inde-

pendent non-stationary sources, that are entangled via a non-

linear mixing mechanism. These sources can be entangled at

session, utterance or segment levels [1]. Speech representations

learnt by training deep recurrent models [2, 3] over these surface

level features fail to capture the original signals in their purest

disentangled form. Unsupervised disentanglement of speech

representations has been an active area of research [4, 5] since it

has been shown that recovering independent factors of variation

can improve the performance of downstream tasks like Auto-

matic Speech Recognition (ASR), especially under low resource

constraints and domain mismatch [1]. Inspired by this, we pro-

pose an algorithm to learn unsupervised speech representations

with independent subspaces, each of which can capture distinct

disentangled source signals. These distinct subspaces can be

potentially informative of patterns based on speaker character-

istics or subphonetic events. This can be useful in learning a

variety of acoustic models given very few labeled samples for

each.

Recently [6] it has been shown that learning disentangled

representations is impossible without explicit bias on the algo-

rithm and the data. Hence, we leverage a more principled ap-

proach to capturing the independent sources through the lens of

nonlinear Independent Subspace Analysis (ISA) in the presence

of auxiliary variables.

Nonlinear Independent Component Analysis (ICA) is a

provably unidentifiable problem [7] as opposed to linear ICA

[8] which is identifiable given non-gaussian sources and other

fundamental restrictions on the mixing matrix [9]. Attempts

[10, 11, 12] have been made to solve nonlinear ICA for i.i.d

distributions under slightly stronger assumptions on the genera-

tive process [13, 14]. Recent progress in the field [15, 16] has

revolved around a generic identifiable model that renders the

latent sources conditionally independent in the presence of aux-

iliary variables. But most of the work [17, 18] has been focused

on univariate sources which means that these models can’t be di-

rectly applied to speech where the source signals are very high

dimensional. Hence, we extend the auxiliary variables model

proposed by [17] for multivariate sources by first stating suffi-

cient conditions for the separability of sources and then, provid-

ing training objectives suitable for learning speech representa-

tions with finite audio samples. Nonlinear ISA is leveraged to

learn unsupervised features on large unlabeled speech datasets.

Using these features, simpler (linear) models are learnt on small

labeled datasets.

Numerous approaches [5, 19, 20, 21] have been proposed

for learning unsupervised speech representations. Recent ones

[2, 5] have been based on predictive coding schemes that use

language model like objectives. In parallel, there have been ef-

forts to learn quantized representations via temporal segmenta-

tion and phonetic clustering [22] so as to map frame representa-

tions to linguistic units. But such models are fairly complicated

and tricky to train. Also, most of these methods learn highly

entangled representations that suffer from spurious correlations

in the underlying data and thus fail to generalize. Our proposed

algorithm improves upon these approaches by advocating for

independent subspaces attained via additional constraints in the

original optimization objectives. We begin by providing a the-

oretically identifiable model for nonlinear ISA and then discuss

how the model can be incorporated into existing methods for

learning unsupervised speech representations.

2. Theory

We introduce a generative model of the observed data that we

assume henceforth and present conditions under which, the orig-

inal multi-dimensional sources are identifiable. We assume that

the observed data x ∈ X ⊂ R
nd is generated by applying a non-

linear invertible transform f on n source signals s1 . . . sn ∈
S ⊂ R

d. We are given a dataset D = {(x(i),u(i))}Ni=1 with

N samples where each x(i) = f(s(i)) , s(i) =
⊗n

j=1 s
(i)
j =

[s
(i)
1 . . . s

(i)
n ]1. Here, u(i) ∈ U ⊂ R

p denotes the correspond-

ing auxiliary variable for x(i) and f : Sn → X is a non-linear

mixing function (eqn. 1), which is invertible and continuously

1Here
⊗

denotes the concatenation operation.
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differentiable almost everywhere (a.e). The objective is to learn

representations that can recover the source signals ({si}
n
i=1) up

to an identifiability factor that we shall define shortly. For nota-

tional convenience, we denote the jth scalar element in a vector

z as zj and the ith consecutive d-dimensional vector (ith sub-

space) in z as zi or as zi: =
[
z(i−1)d+1 . . . zid

]
.

Model The source distributions {pi(si)}
n
i=1 are assumed to

be independent given the auxiliary variable u (eqn. 1) and their

densities are given by conditional energy based models (eqn. 2)

which have universal approximation capabilities [16].

x = f(s) log p(s|u) =
n∑

i=1

log pi(si|u) (1)

pi(si|u) =
expφi(si)

T ηi(u)

Zi(u)

φi : S → R
m

ηi : U → R
m (2)

Definition of Identifiability We shall define the original

sources {si}
n
i=1 to be identifiable if there exists an algorithm

that takes as input a pair comprising of the observed sample and

the corresponding auxiliary variable (x = f(s),u), and outputs
[
g1(sπ1), . . . , gn(sπn)

]
, for some permutation π : Nn → N

n

over {1 . . . n}. Each gi : S → S is an invertible (a.e) function

and is defined as a function of a single distinct source sπi .

Popular algorithms [8] in linear ICA [9] rely on estimators

of Mutual Information (MI) to be able to separate the observed

mixed samples into samples from the original source signals.

Similarly, for nonlinear ICA we compute MI between the ob-

served and auxiliary variables (I(x,u) in eqn. 3) using Noise

Contrastive Estimation (NCE) [23]. A nonlinear logistic clas-

sifier is used to distinguish between correct (observed) pairs

(x(i),u(i)) and randomly generated incorrect pairs (x(i), ũ(i))

where ũ(i) is drawn from the marginal distribution over u. The

regression function for this logistic classifier is given by r(x,u),
where hi : X → R

d , ψi : R
d × R

p → R ∈ L2 are sufficiently

smooth universal function approximators (neural networks) and

∀i , hi is invertible a.e.

I(x,u) =

∫

x,u

log
p(x,u)

p(x)p(u)
dP(x,u) =

∫

r(x,u) dP(x,u)

where, r(x,u) =
n∑

i=1

ψi(hi(x),u) (3)

The following main ISA separation theorem states that the vec-

tor h(x) =
⊗n

i=1 hi(x) ∈ R
nd, with subspaces hi(x) ∈ R

d

can recover si since ∃π, {gi}
n
i=1 such that hi(x) = gi(sπi).

Theorem 1. Given that we observe the dataset D with N sam-

ples: {x(i) = f(s(i)),u(i)}Ni=1 generated by a model based on

eqns. (1, 2), then under the following assumptions2:

1. Realizability Assumption: Given infinite (N → ∞)

samples one can efficiently learn ψ∗
i , h

∗
i such that the

NCE algorithm can estimate the mutual information

I(x,u) with an arbitrarily small error, using the regres-

sion function r(x,u) which follows the form in eqn. 3.

2. Separability Assumption: ∀s ∈ Sn, z 6= 0 ∈ R
d

with first and second order derivatives given by tensors

∇φi(si) ∈ R
m×d and ∇2 φi(si) ∈ R

m×d×d respec-

tively; ∃{ul}
2nd
l=0 ∈ U2nd+1 such that:

{
n⊗

i=1

([
∇φi(si)

T

(∇2φi(si) ×̄3
3 z)T

]

ζi(ul,u0)

)}2nd

l=1

2 The separability assm. requires the auxiliary variables u to have
a sufficiently strong and diverse effect on the source distributions [17].

spans R2nd for ζi(ul,u0) = (ηi(ul)− ηi(u0)),

the subspaces {hi(x)}
n
i=1 can identify the conditionally inde-

pendent sources {si}
n
i=1 up to the definition of identifiability.

Proof Sketch4: For an observed sample x ∈ X , let y =
h∗(x) be given by the optimal functions {h∗

i }
n
i=1. The func-

tions {ψ∗
i , h

∗
i }
n
i=1

5 are learnt using the NCE objective whose re-

gression function is given by r(x,u). Since s = f−1(h−1(y))
is a composition of two invertible transforms, we introduce

v : Rnd → Sn where s = v(y). Also, let f−1 be denoted by g.

From eqn. 3 we know that r(x,u) = log p(x|u)− log p(x),
Using the density transformation rules [25] for invert-

ible functions we can show that, log p(x|u) = log p(s|u) +
log |detJg(x)| and log p(x) = log p(s) + log |detJg(x)| .

Thus, r(x,u) = log p(s|u)− log p(s). Using eqn. 3:

n∑

i=1

ψ∗
i (yi,u) = log p(v(y)|u)− log p(v(y)) (4)

We begin by substituting eqns. 1, 2 in the above result. Also,

since eqn. 4 holds true for {ul}
2nd
l=0 , we can get 2nd + 1

such equations and from each we can subtract the equation

given by u0, which leaves us with 2nd eqns. of the form
∑n
i=1 φi(v(y)i:)

T ζi(ul,u0) − (logZi(ul) − logZi(u0)) =
∑n
i=1 ψ

∗
i (yi,u). Taking the derivative of both sides of this eqn.

w.r.t. yj and subsequently w.r.t yk s.t. ⌈j/d⌉ 6= ⌈k/d⌉ we get,

0 =
n∑

i=1




∇φi(v(y)i:)
︸ ︷︷ ︸

1©

∂2v(y)i:
∂yj∂yk






T

ζi(ul,u0)

+








(

∇2φi(v(y)i:)×̄3
∂v(y)i:
∂yj

)

︸ ︷︷ ︸
2©

∂v(y)i:
∂yk








T

ζi(ul,u0)

Concatenating 1©, 2© into a single matrix in R
2d×m, the above

can be written as a single euclidean inner product in R
2nd.

(
n⊗

i=1

([
∇φi(si)

T

(

∇2φi(si) ×̄3
∂v(y)i:
∂yj

)T

]

ζi(ul,u0)

))

Γ(y) = 0

For Γ(y) =

(
n⊗

i=1

[
∂2v(y)i:
∂yj∂yk

∂v(y)i:
∂yk

])

∈ R
2nd the above equa-

tion holds true for 2nd distinct values of the auxiliary variable

ul. For invertible v, if we assume that
∂v(y)i:
∂yj

6= 0 then we can

apply the separability assm. which implies Γ(y) = 0. This

further implies that
∂v(y)i:
∂yk

= 0. Thus ∀i, ∂v(y)i:
∂yj

∨ ∂v(y)i:
∂yk

.

Since ⌈j/d⌉ 6= ⌈k/d⌉, yj and yk belong to distinct subspaces

of y = h(x). Hence the ith source given by v(y)i: cannot si-

multaneously be a function of two distinct subspaces of h(x).
Given the invertible function f(h(·)) with its full rank jacobian

we can recover the sources {si}
n
i=1 via the subspaces of h(x);

hi(x) = gi(sπi) for an invertible function gi, permutation π.

3×̄3 denotes the 3rd mode product [24].
4For more details on the validity and necessity of similar results for

independent components (as opposed to subspaces) we refer the reader
to [17]. Also, for the sake of completion we show a proof sketch for the
identifiability of our ISA model. It’s an extension of the proof for the
univariate case [17, 18].

5Subscript i is dropped wherever it can be understood from context.



Hilbert-Schmidt Independence Criterion (HSIC) [26]

The above theorem proves the existence of functions ψ∗, h∗

that can not only compute I(x,u) with arbitrary precision but

can also recover the original multi-dimensional sources. Al-

beit, NCE algorithm relies on the assumption of infinite sam-

ples of positive (x,u) and negative (x, ũ) pairs which is rarely

true in practice. Hence, along with the NCE objective which

learns r(x,u) that distinguishes between those pairs, we intro-

duce constraints imposed via the HSIC estimator that specifi-

cally accounts for independence amongst the subspaces of h(x).
This acts as a strong inductive bias to learn ψ∗, h∗ with fi-

nite observed samples of (x,u). HSIC is a kernel based sta-

tistical test of independence for two multivariate random vari-

ables and is well suited for high dimensional data as opposed

to tests [27, 28, 29] based on the power divergence family

and characteristic functions which are mainly meant for low-

dimensional random variables [26]. Given D = {x(i),u(i)}Ni=1

with N samples, let the set of features (h(x(i))) be denoted

by {y(i) = h(x(i))}Ni=1. For Rd dimensional subspaces j, k
let yj ∈ Yj ⊆ R

d, yk ∈ Yk ⊆ R
d and Pjk denote a

Borel probability measure over Yj × Yk with N i.i.d samples

Zjk := {(y
(i)
j ,y

(i)
k )}Ni=1 drawn from it. If F , G are two Re-

producible Kernel Hilbert Spaces (RKHS) equipped with ker-

nels6 kf , kg then the biased empirical HSIC criterion Ĥjk =
1
N2 tr(Kf

(j)HKg
(k)H) and Kf

(j)[p, q] = kf (y
(p)
j ,y

(q)
j ),

Kg
(k)[p, q] = kg(y

(p)
k ,y

(q)
k ), H = I − 1

N
11T ∈ R

N×N .

Algorithm (NCE-HSIC) We have shown that the NCE al-

gorithm can learn a regression function of the form r(x,u)
(eqn. 3) with optimal predictors ψ∗, h∗ such that the subspaces

of h∗(x) can recover the original sources si. Constrained by

a finite dataset we use the biased empirical HSIC estimator

Ĥjk (lower values imply more independence) as an additional

objective while optimizing for ψ∗, h∗. If the true and noisy

samples for the NCE algorithm are given by (x(l),u(l)) and

(x(l),u(l′ 6=l)) respectively, then the final loss objective Lnh for

NCE-HSIC is:

Lnh =
1

N

∑

l∈[N]

r(x(l),u(l′ 6=l))− r(x(l),u(l)) + λ
∑

j,k

Ĥjk

3. Proposed Methodology

Speech representations that can explicitly capture factors of

variation like phoneme identities or speaker traits while being

invariant to other factors like underlying pitch contour or back-

ground noise [4, 5] have proven to be beneficial since they are

less prone to overfitting on spurious correlations in the data.

Nevertheless, disentanglement is hard to achieve in general due

to the presence of confounding variables [6]. In this section,

we introduce our approach APC-NCE-HSIC or ANH to learn

representations with independent subspaces that can theoreti-

cally capture distinct acoustic/linguistic units relevant for down-

stream tasks like ASR.

Nonlinear ISA provides us with a simple yet principled

framework for learning speech representations in the presence

of auxiliary variables, which in the case of sequential data like

speech can be “time”. Learning unsupervised representations

can be posed as a problem of recovering from entangled sam-

ples the non-stationary sources that are independent given the

6kf : Yj × Yj → R, kg : Yk × Yk → R; for z, z′ ∈ Yj ,
kf (z, z

′) = 〈kf (z, ·), kf (z
′, ·)〉F and for z, z′ ∈ Yk , kg(z, z′) =

〈kg(z, ·), kg(z′, ·)〉G .

auxiliary variable (time frame sequence). The NCE-HSIC algo-

rithm can be used to identify original factors of variation via

distinct independent subspaces. In order to ensure that the in-

dependent subspaces are not only mutually exclusive but are

also having a high MI with surface features like Mel-frequency

cepstral coefficients (MFCC) or log Mel spectrograms (LMS) we

build on existing approaches based on predictive coding strate-

gies [19, 3]. Although our algorithm can be seamlessly inte-

grated into any of these methods, in this work we show empiri-

cal results that highlight the performance improvements gained

by incorporating the NCE-HSIC criterion into the APC model.

APC [2] is a language model based method to learn unsu-

pervised speech representations. It uses a Recurrent Neural Net-

work (RNN) to model temporal information within an acoustic

sequence comprising of 80-dimensional LMS features {xi}
T
i=0.

Given these features until a fixed time step t, the APC model

predicts the surface feature τ time steps ahead i.e. xt+τ . If

{p̂i}
T−τ
i=0 represents the sequence predicted by the RNN, then

the l1 loss used to train the model is given by:

Lapc(x) =

T−τ∑

i=0

− log p(xi+τ |x1 . . .xi) =

T−τ∑

i=0

|p̂i − xi+τ |

APC-NCE-HSIC or ANH is our proposed model where features

with independent subspaces are learnt through the NCE-HSIC

criterion which is applied to the hidden states of the RNN mod-

ule trained with the APC objective above. Specifically, the func-

tion h(x) is modeled using the RNN. The NCE-HSIC criterion

increases the correlation of the original sources with the sub-

spaces of h(x) or in this case the subspaces of the hidden states

of the RNN. If the RNN is parameterized by θ ∈ Θ then the

hidden state can be represented as the function h(θ,x). With

r(x,u) =
∑n
i=1 ψi(hi(θ,x),u) the final objective would be:

argmin
{ψi}

n
i=1

,θ

Lanh =
1

|D|

∑

x∈D

Lapc(x) + βLnh (5)

Auxiliary Variables7 The original LMS sequence of length T

is fragmented into time segments {sj}
⌈T/γ⌉
j=1 of length γ, and

each element xj,t in a given segment sj has its auxiliary vari-

able uj,t set to the value j, which is nothing but the corre-

sponding segment’s position in the input sequence. The hidden

states of the RNN along with the generated auxiliary variables

are passed to the NCE module which first, generates positive

(xt,ut) and negative (xt, ũt) pairs and then, learns ψ∗, θ∗ to

distinguish between them optimally. Upon the commencement

of the unsupervised learning phase, the hidden state for the tth

frame with surface features xt would comprise of n subspaces

({hi(θ
∗,xt)}

n
i=1) that capture different factors of variation, in-

dependent for the same value of the auxiliary variable ut. Thus

the hidden states can efficiently decouple factors that vary inde-

pendently locally.

NCE is a powerful tool to predict MI and has been used in

recent works like CPC [3] that rely on the NCE objective to dis-

tinguish pairs of context vectors from the same or different time

segments. This approach is similar to Time Contrastive Learn-

ing TCL [7] which is an algorithm for nonlinear ICA. Although

TCL has only been shown to work for univariate cases and CPC

fails to model independent subspaces explicitly, they serve as a

strong motivation for our approach which addresses both con-

cerns.

7Auxiliary variables can be potentially given by other domains like
the frequency spectrum, but in this work we focus only on time.



4. Experiments and Results

In this section, we empirically evaluate the performance of the

proposed ANH algorithm against two baseline models: APC and

CPC on two downstream tasks, (1) phoneme recognition (PR)

and (2) speaker verification (SV).

Datasets and Implementation LibriSpeech corpus [30]

was used for unsupervised training of the ANH model and other

baselines. The datasets for PR and SV were picked from WSJ

[31] and TIMIT corpora respectively 8. For APC we use a multi-

layer unidirectional LSTM with residual connections exactly as

detailed in [2], with the exception of using 4 layers in the LSTM

(wherever mentioned explicitly) and for CPC modifications sug-

gested in [2] are made for a fair comparison. In the unsuper-

vised phase we train the RNN using the Lanh objective. The

RNN hidden states which are 512-dimensional are assumed to

be a collection of n = 4 contiguous subspaces each of which

has d = 128 dimensions. These 4 subspaces of the RNN param-

eterized by θ, represent the output {hi(θ,x)}
4
i=1 where x is the

LMS feature and hi(θ,x) is the ith subspace. The NCE module

also needs ψi(·, ·) which is implemented using 4-layer MLPs,

with ReLU activations, dropouts and batch-normalization. For

Lnh
9, five negative pairs are drawn for every positive pair. In

the supervised phase, once the ISA features (h(θ∗,x)) given

by the hidden states (final layer) of the trained RNN (θ∗) are

extracted, a supervised linear classifier is trained over features

from each frame for PR whereas an LDA model is trained over

features averaged over the entire sequence for SV.

Phoneme Recognition Table 1 highlights the performance

(Phone Error Rates (PER)) of our approach (ANH)10 against the

best variants of the CPC, APC models. The supervised baseline

(LMS+MLP) which involves training a 3-layer nonlinear classi-

fier over the LMS features fails to capture contextual informa-

tion. Even though CPC can learn contextual features, it only

captures information relevant for recognizing contexts that are

τ steps apart. Thus it may ignore signals that remain relatively

stationary for the entire utterance [2]. On the other hand APC di-

rectly predicts surface features τ steps ahead and thus can model

sub-phonetic context useful in predicting the next phone. ANH

with τ = 5 has the least PER since the addition of the NCE-HSIC

objective enables the model to learn noise-free subspaces that

can capture relevant factors like formant movements. Finally,

adding layers to the RNN further improves the scores.

Speaker Verification Results for SV are summarized in ta-

ble 2 which shows lower Equal Error Rates (EER) achieved by

ANH as compared to the baselines. It has been shown that in

deep language models, lower layers model local syntax while

the higher ones capture semantic content [2, 32]. We make sim-

ilar observations since the EER values increase (for all τ ) when

the ANH model has more than 3 layers. Lowering τ reduced

EER in most cases and had minimal impact on the independence

(Ĥjk).

Ablations NCE-HSIC model when trained without the Lapc
loss rendered independent subspaces but performed poorly on

PR since there is no reason to believe why such subspaces would

retain phonetic information. Adding the APC objective aids the

model (ANH) to learn acoustic features while disentangling the

factors across subspaces (table 1). Removing the HSIC criterion

increased the PER and the model training also took (×2) longer

to converge. This reinforces our hypothesis that the HSIC cri-

8For brevity we skip the details of the dataset and refer the reader to
[2] from where we borrowed the dataset splits and input LMS features.

9The optimal β in Lanh & λ in Lnh were found to be 0.1 and 0.02.
10Unless specified all ANH models are trained with γ = 30.

Table 1: Performance comparison (based on PER) on the

Phoneme Recognition task (WSJ corpus [31]).

Method PER

# lookahead-steps (τ ) 2 5 10

LMS+MLP (supervised) 42.5

CPC [3] 41.8 44.6 47.3

APC (3-layer) [2] 36.6 35.7 35.5

APC (4-layer) [2] 34.5 35.2 33.8

ANH (3-layer) (Ours) 33.2 31.3 34.7

ANH (4-layer) (Ours) 31.9 31.8 34.2

Ablations 2 5 10

APC + NCE 32.0 32.4 34.3

NCE-HSIC 49.8 48.5 54.6

NCE 49.4 53.2 55.9

Table 2: Performance (based on EER) on the speaker verifica-

tion task (TIMIT corpus). (∗choosing different layers [2])

Method EER

# lookahead-steps (τ ) 2 3 5 10

CPC features [3] 5.62 5.29 5.42 6.01

APC (3-layer)-1∗ [2] 3.82 3.67 3.88 4.01

APC (3-layer)-2∗ [2] 3.41 3.72 3.92 4.04

ANH (2-layer) (Ours) 3.53 3.35 3.91 4.12

ANH (3-layer) (Ours) 3.45 3.12 3.45 3.67

terion provides a good inductive bias for a more generalizable

model.

Independence In order to measure the independence of the

four 128-dimensional subspaces of the RNN states, absolute val-

ues of the Pearson’s Correlation were computed on the valida-

tion splits for PR,SV. When averaged over all possible pairs,

they were found to be 0.21, 0.19 on PR,SV respectively when

both NCE and HSIC objectives were considered in Lnh. With

λ = 0 these values were 0.29 and 0.33 but were still signifi-

cantly lower as compared to the case of APC which had average

absolute correlation values of 0.81 and 0.77 on PR and SV re-

spectively.

Time Segment Length (γ) We show the impact of the time

segment length γ on the phoneme classification task in table

3. As we increase γ the total number of segments (and auxil-

iary variables) reduce in an utterance. Theoretically, 2nd dis-

tinct auxiliary variables are needed to identify n sources each

of which is d-dimensional (sec. 2). Hence increasing γ to val-

ues greater than 50 leads to higher (> 40) PERs. Additionally,

we observe that when the RNN is trained with higher values of τ
for the APC objective PER drops by using wider segments. This

may indicate that the distribution of the underlying factors re-

main stationary for longer periods at higher values of τ .

5. Conclusion

We extend nonlinear ICA and show how the proposed algorithm

to compute MI between the observed and auxiliary variables can

provably identify independent subspaces under certain regular-

ity conditions. We also use the algorithm to learn unsupervised

speech representations with disentangled subspaces when inte-

grated with existing approaches like APC. Future work may in-



Table 3: Comparing different values of (γ) for ANH (3-layer)

model on the phoneme classification task.

Segment size γ PER

# lookahead-steps (τ ) 2 5 10

γ = 10 39.4 38.5 36.8

γ = 20 38.1 35.3 37.5

γ = 30 33.2 31.3 34.7

γ = 50 34.0 32.0 33.5

volve a close analysis of the features in these subspaces to un-

derstand which orthogonal components are represented by each

and how they can prove to be useful for downstream tasks.
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