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ABSTRACT

Multilingual models can improve language processing, particularly
for low resource situations, by sharing parameters across languages.
Multilingual acoustic models, however, generally ignore the differ-
ence between phonemes (sounds that can support lexical contrasts in
a particular language) and their corresponding phones (the sounds
that are actually spoken, which are language independent). This
can lead to performance degradation when combining a variety of
training languages, as identically annotated phonemes can actually
correspond to several different underlying phonetic realizations. In
this work, we propose a joint model of both language-independent
phone and language-dependent phoneme distributions. In mul-
tilingual ASR experiments over 11 languages, we find that this
model improves testing performance by 2% phoneme error rate
absolute in low-resource conditions. Additionally, because we are
explicitly modeling language-independent phones, we can build a
(nearly-)universal phone recognizer that, when combined with the
PHOIBLE [1] large, manually curated database of phone invento-
ries, can be customized into 2,000 language dependent recognizers.
Experiments on two low-resourced indigenous languages, Inukti-
tut and Tusom, show that our recognizer achieves phone accuracy
improvements of more than 17%, moving a step closer to speech
recognition for all languages in the world.1

Index Terms— multilingual speech recognition, universal
phone recognition, phonology

1. INTRODUCTION

There is an increasing interest in building speech tools benefiting
low-resource languages, specifically multilingual models that can
improve low-resource recognition using rich resources available
in other languages like English and Mandarin. One standard tool
for recognition in low resource languages is multilingual acoustic
modeling [2]. Acoustic models are generally trained on parallel
data of speech waveforms and phoneme transcriptions. Importantly,
phonemes are perceptual units of sound that closely correlate with,
but do not exactly correspond to the actual sounds that are spoken,
phones. An example of this is shown in Figure 1, which demon-
strates two English words that share the same phoneme /p/, but
different in the actual phonetic realizations [p] and [ph]. Allophones,

1A web demo is available at https://www.dictate.app, the pre-
trained model will be released at https://github.com/xinjli/
allosaurus

peak speak ping bing

ENGLISH MANDARIN CHINESE

‘level’ ‘ice’
/pik/ /spik/ /phiN/ /piN/

[phik] [spik] [phiN] [piN]

Fig. 1: Words, phonemes (slashes), and phones (square brackets).

the sets of phones that correspond to a particular phoneme, are lan-
guage specific; distinctions that are important in some languages are
not important in others.

Most multilingual acoustic models simply use existing phoneme
transcriptions as-is, taking the union of the phoneme sets to be shared
by all training languages [3, 4, 5, 6, 7]. The assumption is reasonable
under some circumstances as phoneme names are typically associ-
ated with their most common or least marked allophone. However,
this is obviously an over-simplistic view: in Figure 1, for example,
this would mean that all training in English would assign the phones
[p] and [ph] to phoneme /p/. This is detrimental if we want to rec-
ognize Mandarin Chinese, for instance, where the two phones are
corresponding to two distinctive phonemes /p/ and /ph/.

In this paper, we propose a novel method for multilingual
recognition based on phonetic annotation to tackle this problem: Al-
losaurus (allophone system of automatic recognition for universal
speech). Our method incorporates knowledge of phonology into the
multilingual model through an allophone layer, which associates a
universal narrow phone set with the phonemes that appear in the
transcription of each language. Our model first computes the phone
distribution using a standard ASR encoder, then the allophone layer
maps the phone distribution into the phoneme distribution for each
language. This model can be trained end-to-end using only standard
phonemic transcriptions and an allophone list created by phoneti-
cians. The allophone layer is first initialized with the allophone list,
then is further optimized during the training process. We demon-
strate that accounting for the phoneme-phone mismatch in this way
improves the accuracy of multilingual acoustic modeling by 2.0%
phoneme error rate in low-resource conditions.

Furthermore, the architecture simultaneously makes it possible
to perform universal phone recognition. Previous approaches can-
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Fig. 2: Traditional approaches predict phonemes directly, either for
all languages (left) or separately for each language (middle). On the
contrary, our approach (right) predicts over a shared phone inventory,
then maps into language-specific phonemes with an allophone layer.

not perform phone recognition in a universal fashion as they de-
pend on language-specific phonemes, as illustrated with the previ-
ous example of English not distinguishing /p/ and /p h/ as required
in Mandarin. In contrast, because our approach allows recognition
of phones directly, it already has learned to make these fine-grained
distinctions. Taking advantage of this fact, we incorporate a large
phone inventory database collected by linguists, PHOIBLE [1], and
demonstrate that our phone recognizer can be customized to recog-
nize over 2000 languages without any training data in the languages
themselves. By evaluating the recognizer with completely unseen
testing languages, we found that our recognizer achieves 17% better
performance absolute compared with the traditional approach.

2. RELATED WORK

While some recent work in multilingual ASR focuses on end-to-end
models to directly predict graphemes [8, 9], most systems still de-
pend on phonetically inspired acoustic models. Multilingual acous-
tic models fall into two groups. The first group, shared phoneme
models, creates a shared phoneme inventory of all phonemes from
all training languages [3, 4, 5, 6, 7, 10]. The second group, pri-
vate phoneme models, treats phonemes from each language as com-
pletely different classes performs phoneme classification separately
for each language [11, 2, 12]. However, these two groups have their
own respective drawbacks: the first group fails to consider the dis-
connect between the phonemes across languages while the second
group completely ignores cross-lingual phonetic associations and is
not applicable to recognition of new languages. In contrast, our ap-
proach solves both of these problems by taking into account allo-
phones with phone-phoneme mappings.

There have been some attempts to apply phone recognizers to
low resource languages. For example, English recognizers have been
applied to align transcription corpora of an endangered language
[13], facilitate language documentation [14], identify languages
with language models [15], and perform linguistic annotation [16].
However, these approaches depend heavily on training data in the
language of interest and their specific phonemic transcriptions. Our
approach, on the other hand, abstracts away the dependency to
phonemes by applying the allophone transformations.

3. APPROACH

3.1. Phone-Phoneme Annotation

Suppose there are |L| training languages, and each language Li has
its own phoneme inventory Qi which can be easily obtained by
enumerating the phonemes appearing in its annotated training data.
Most traditional multilingual approaches handle inventories at the
phoneme level, and create a shared phoneme inventory Qsha by tak-
ing union of the phoneme sets:

Qsha =
⋃

1≤i≤|L|

Qi. (1)

In contrast, our method distinguishes phonemes from their
phone realizations. We have linguists annotate each phoneme
q ∈ Qi with its corresponding allophone set P i

q , where each phone
p ∈ P i

q is a realization of q in language Li. Merging these sets for
all languages, we obtain the universal phone inventory Puni.

Puni =
⋃

1≤i≤|L|

⋃
q∈Qi

P i
q (2)

Additionally, we obtain a signature matrix Si = {0, 1}|Qi|×|Puni|

describing the association of phone and phonemes in each language
Li: Suppose the phoneme q ∈ Qi has the row index j where
1 ≤ j ≤ |Qi| , phone p ∈ Puni has the column index k where
1 ≤ k ≤ |Puni|, if the p is a realization of q, then (j, k) cell of the
Si has a value of 1, otherwise it is assigned 0.

3.2. Allophone Layer

As mentioned in Section 2, traditional multilingual models can be di-
vided into two groups. The first group, shared phoneme models (Fig-
ure 2 left), predicts phoneme distributions over the shared phoneme
inventory Qsha. The second group, private phoneme models (Figure
2 middle), on the other hand, shares a common encoder but computes
distribution over private phoneme inventory Qi for each language
Li. These approaches handle phonemes directly with no concept of
underlying phones.

In contrast our proposed approach, Allosaurus, (Figure 2 right),
comprises a language independent encoder and phone predictor, and
a language dependent allophone layer and a loss function associ-
ated with each language. The encoder first produces the distribution
h ∈ R|Puni| over the universal phone inventory Puni, then the allo-
phone layer transforms h into phoneme distribution gi ∈ R|Qi| of
each language. The allophone layer uses a trainable allophone ma-
trix W i ∈ R|Qi|×|Puni| to describe allophones in the similar way as
Si. The allophone matrix W i is first initialized with Si, and is al-
lowed to be optimized during the training process, but we add an L2
penalty to penalize divergence from the original signature matrix Si.
The allophone layer computes its logit distribution gi by finding the
most likely allophone realization in Puni with maxpooling.

gij = max({wi
j,k · hk; 1 ≤ k ≤ |Puni|}), (3)

where gij ∈ R is the logit of j-th phoneme in gi for language Li,
wi

j,k ∈ R is the (j, k) cell of the allophone matrix W i, hk ∈ R is
the logit of k-th phone in h. Intuitively, if the j-th phoneme has the
k-th phone as an allophone, wi

j,k would be near 1, otherwise wi
j,k

would be near 0. Therefore, the phoneme logit of gij is decided by
the largest allophone logit hk. The phoneme distribution gi is further
fed into the loss function. This method for phoneme prediction can
be used with any underlying multilingual ASR system. Here we



Table 1: Results of three models’ phoneme error rate performance on 11 languages. The top-half shows the results trained with all training
datasets. The bottom-half shows the low-resource results in which only 1k utterances are used for training from each dataset.

Amh Eng Ger Ita Jap Man Rus Spa Tag Tur Vie Average

Fu
ll Shared Phoneme PER 78.4 71.7 71.6 62.9 65.9 76.5 76.9 62.6 74.1 76.6 82.7 73.8

Private Phoneme PER 37.1 22.4 17.6 26.2 17.6 17.9 21.3 18.5 47.6 35.8 56.5 25.6
Allosaurus PER 36.0 20.5 18.8 23.7 23.8 17.0 26.3 19.4 57.4 35.3 57.3 25.0

L
ow

Shared Phoneme PER 80.4 73.3 74.3 72.2 77.1 83.0 83.2 72.8 84.8 84.4 84.5 78.4
Private Phoneme PER 55.4 50.6 41.9 31.6 36.8 37.0 47.9 36.7 62.3 54.5 73.6 43.8
Allosaurus PER 54.8 47.0 41.5 37.4 40.5 33.4 45.0 35.9 70.1 53.6 72.5 41.8

Table 2: Training corpora and size in utterances for each language.
Models are trained and tested with 12 rich resource languages (top)
and 2 low resource unseen languages (bottom).

Language Corpora Utt.

English voxforge, Tedlium [17], Switchboard [18] 1148k
Japanese Japanese CSJ [19] 440k
Mandarin Hkust [20], openSLR [21, 22] 377k
Tagalog IARPA-babel106b-v0.2g 93k
Turkish IARPA-babel105b-v0.4 82k
Vietnamese IARPA-babel107b-v0.7 79k
German voxforge 40k
Spanish LDC2002S25 32k
Amharic openSLR25 [23] 10k
Italian voxforge 10k
Russian voxforge 8k

Inukitut private 1k
Tusom private 1k

specifically optimize the parameters by minimizing CTC loss [24]
for all training languages, with the addition of regularization of the
allophone layer controlled by hyperparameter α.

L =
∑

1≤i≤|L|

(Li
ctc + α

∥∥∥W i − Si
∥∥∥2
2
). (4)

3.3. Universal Phone Recognition

Not only does the allophone layer abstract away from the language-
specific phonemes, which contributes to the improvement in the mul-
tilingual acoustic modeling, the model also gives us the capability to
predict universal phones themselves. This has rarely been attempted
in previous work. By applying the greedy decoding strategy over
the phone distribution h, we can obtain a phone sequence in which
all phones Puni in the training languages are candidates. When com-
bined with a large training languages sets, our universal inventory is
expected to cover most common narrow phones appearing in many
languages in the world, which we show in the experiment section.

Furthermore, this recognition protocol can take into account
phone inventories that have already been created for many lan-
guages in the world by linguists. For example, PHOIBLE [1] is a
database of phone inventories for more than 2000 languages and
dialects, allowing our model to be applied to these languages with
some degree of accuracy. If the phone inventory for language Li is
Pi, we can restrict the decoder to only produce phones in Pi ∩ Puni

by filtering out other phones. When the universal inventory Puni

covers most frequent phones in the world, we could expect that
Pi ≈ Pi ∩ Puni.

4. EXPERIMENTS

4.1. Settings

As we are interested in creating a large universal phone inventory,
we select a phonetically diverse set of 11 training languages as sum-
marized on the top of Table 2. We include corpora from a vari-
ety of speech domains to make our model robust (e.g., read speech,
sponatenuous speech). 5% of the dataset is used as the test set, and
the remaining data are used as the training set and the validation
set. We also consider a low resource condition, where 1,000 random
utterances are used from each corpus to train the model. As base-
lines, we compare with the previously-described shared phoneme
and private phoneme models. All methods use the same encoder
and features. Features are high-resolution 40 dimensional MFCCs
extracted with Kaldi [25]. The encoder is a 6-layer stacked bidirec-
tional LSTM with hidden size of 1024 in each layer. The regulariza-
tion hyperparameter α is set to 10. Phonemes for training languages
are assigned using the grapheme-to-phoneme tool Epitran [26]. For
each phoneme in each language, phoneticians (mostly authors of this
paper) create the allophone mappings.2

We evaluate using phoneme error rate for the training languages.
Furthermore, we select two languages not included in the training
data: Inukitut and Tusom. These languages are indigenous lan-
guages with few training resources, representing a realistic scenario
where our model is applied to entirely new languages, as may be
done when ASR is used for documentation of endangered languages.
The datasets of these two languages are transcribed with phones, and
accordingly we use phone error rate rather than the phoneme error
rate. While Allosaurus is able to predict phones in a natural way by
decoding h, the two baselines could not predict phones directly. In
this unseen language experiment, we assume phonemes predicted by
the baselines correspond to phones of the same name.

4.2. Main Results

Table 1 demonstrates the performance of the baseline models and
Allosaurus evaluated on 11 languages. The top half of the table sum-
marizes the performance when trained with the full training set. The
results suggests both the private phoneme model and the Allosaurus
model outperforms the shared phoneme model significantly. The re-
sults of the shared phoneme model can be explained by the disagree-
ment of phoneme assignments across languages. In contrast, the pri-

2This work has been accepted to LREC 2020 and its database is available
at https://github.com/dmort27/allovera

https://github.com/dmort27/allovera


Table 3: Statistics of the phone coverage mean (standard deviation)
of areas. Phone coverage of language Li is defined as |Puni∩Pi|

|Pi|

Area # Language Shared Allosaurus

Africa 875 53% (13%) 84% (11%)
America 659 52% (14%) 81% (13%)
Asia 377 46% (15%) 79% (13%)
Pacific 152 59% (15%) 87% (12%)
Europe 92 35% (9.5%) 69% (13%)

All 2155 52% (15%) 82% (13%)

Table 4: Comparisons of phone error rates in two unseen languages

Inuktitut Tusom

Shared Phoneme PER 94.1 93.5
Best Private Phoneme PER 86.2 85.8

Allosaurus PER 84.1 77.3
Allosaurus+PHOIBLE PER 73.1 64.2

vate phoneme model handles this issue by using language specific
phoneme layers. Our model also circumvents this issue by introduc-
ing the language-specific allophone layers. The bottom half of the
Table 1 highlights the results when the training set of each language
is limited as mentioned above. Unsurprisingly, limiting the amount
of training data hurts accuracy across the board. While the private
phoneme model and our model achieve similar results when using
the full training set, our model outperforms the private phoneme
model by 2.0% when training data is limited. This suggests that
our model is better at sharing parameters across languages by us-
ing prior phonetic knowledge in this case, likely due to the fact that
the private phoneme model needs to learn each phoneme predictor
from scratch, while our model already has phone-phoneme mapping
knowledge seeded by linguistically motivated annotations.

4.3. Universal Phone Recognition Results

In addition to the improvements over low resource settings, our
model enables us to predict (nearly-)universal phone distributions.
By merging phone inventories from all of our languages, we obtain
a shared inventory of 187 phones. First, we assess how close this
inventory gets to covering the languages registered in PHOIBLE.
The Allosaurus column in Table 3 summarizes the phone coverage
of our model, split into different geographic areas. The phone cover-
age in each cell represents the mean and standard deviation for each
category. As the table suggests, our model has a promising phone
coverage over all areas consistently. On average, it has 82% mean
phone coverage and 12.8% standard deviation over all PHOIBLE
languages. Furthermore, by comparing our model with the baseline
model in which we merged all the phoneme inventories from the
corpus as-is, we significantly improve the phone coverage by 30%.
Additionally, the standard deviation shows that our model covers
phones more consistently than the baseline model.

Next, we actually evaluate the model with respect to its ability
to recognize phones. Table 5 shows a decoded English example.
The utterance contains three English phonemes /p/ in word people
and speak. The underlying allophones, however, are [ph] and [p]
as mentioned in Section 1. While the original English training set

Table 5: An English example from switchboard in which Allosaurus
could distinguish [ph] and [p] for phoneme /p/

Model Phones

Utterance the quebec people that that speak french
Annotation /ð @ k w @ b E k p i p @ l .. s p i k f ô E n Ù/
Allosaurus [ð @ x o b @ k 5 ph i T o: l .. s p ô I k f ô E n d]

Table 6: A qualitative example from Inuktitut dataset

Model Phones

Ground Truth [i l i t s i l: i]
Allosaurus [e l e p ö I l: e]
Allosaurus+PHOIBLE [i l i t i l: i:]

annotates those two words with the same phoneme /p/, Allosaurus
is able to predict different allophones by leveraging knowledge from
other languages (e.g: Mandarin). We also note that Allosaurus is
still not perfect: it fails to recognize the second /p/ in “people.”

Additionally we also investigate unseen languages on the Inuk-
titut and Tusom datasets. The results are summarized in the Table 4.
As the result show, the shared phoneme model can hardly recognize
any phonemes in these two languages, with more than 90.0% phone
error rate on both datasets. Next, we try all 11 private phoneme
models from the training datasets and use the one with the lowest
phoneme error rate. Unsurprisingly, this also can not achieve satis-
fying results on both datasets, as none of our 11 languages is simi-
lar to Inuktitut and Tusom; they both have over 85.0% phone error
rate. On the other hand, the proposed Allosaurus model achieves
84.1% phone error rate on Inuktitut and 77.3% phone error rate on
Tusom, a significant drop. When combined with the PHOIBLE in-
ventory, the error rates are further improved to 73.1% and 64.2%
respectively, which shows 17% improvements on average over the
shared phoneme baseline. Table 6 shows one qualitative example
from Inuktitut data. It suggests that simply applying Allosaurus
could capture some aspects of the target phonemes, but it still made
many errors especially substitution errors between [e] and [i]. The
reason is Allosaurus has a much broader phone search space (187
phones), it might be difficult to distinguish similar phones (e.g: both
[e] and [i] are front vowels, but [e] is a close vowel and [i] is a close-
mid vowel). We find those substitution errors account for the ma-
jority of errors in the test sets. Those confusing phones, however,
might be solved when combined with an appropriate inventory such
as PHOIBLE. The last row suggests that Allosaurus could fix those
substitution errors as [e] does not exist in Inuktitut’s inventory.

5. CONCLUSION

In this work, we propose Allosaurus, which considers the relation-
ship between phones and phonemes in multilingual acoustic model-
ing. It improves significantly the phone recognition accuracy over
unseen languages by 17%.
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