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Abstract
Code-Switching (CS) is a common phenomenon observed in
several bilingual and multilingual communities, thereby attain-
ing prevalence in digital and social media platforms. This in-
creasing prominence demands the need to model CS languages
for critical downstream tasks. A major problem in this domain
is the dearth of annotated data and a substantial corpora to train
large scale neural models. Generating vast amounts of qual-
ity text assists several down stream tasks that heavily rely on
language modeling such as speech recognition, text-to-speech
synthesis etc,. We present a novel vantage point of CS to be
style variations between both the participating languages. Our
approach does not need any external annotations such as lexical
language ids. It mainly relies on easily obtainable monolingual
corpora without any parallel alignment and a limited set of nat-
urally CS sentences. We propose a two-stage generative adver-
sarial training approach where the first stage generates compet-
itive negative examples for CS and the second stage generates
more realistic CS sentences. We present our experiments on
the following pairs of languages: Spanish-English, Mandarin-
English, Hindi-English and Arabic-French. We show that the
trends in metrics for generated CS move closer to real CS data
in each of the above language pairs through the dual stage train-
ing process. We believe this viewpoint of CS as style variations
opens new perspectives for modeling various tasks in CS text.
Index Terms: code-switching, style transfer, non-parallel data,
adversarial training

1. Introduction
Code-Switched [1] text is prevalent in semi-formal and infor-
mal communication platforms. A major challenge in addressing
this widely observed form of mixing languages is the scarcity of
curated data, thereby making it a low resource setting [2]. How-
ever, there are plenty of monolingual corpora available for each
of the participating languages. We present a novel standpoint
to transfer knowledge from monolingual corpora without addi-
tional annotations such as language ids or parse trees. The re-
cent advances in cross-lingual pretrained language models [3, 4]
call out for vast amounts of code-switched data. Hence, our
work on automatic generation of CS text is relevant for several
downstream tasks.

We propose a novel vantage point for CS to be observed as
stylistic variation between the participating embedded and ma-
trix languages. For the scope of this paper, we define the style
variations between languages to be extrinsic properties such as

surface lexical forms and intrinsic properties such as underlying
grammar, word order etc,. We address this problem with adver-
sarial training in two stages: (1) Stage 1: transfer the style of
each of the monolingual participating languages into the content
of the other language; (2) Stage 2: discriminating between the
incorrectly switched and naturally switched sentences. The four
styles in play here are the following: (1) lm: matrix language
style (2) le: embedded language style (3) la: incorrect/artificial
code-switching style (4) ln: natural code-switching style. The
goal is to traverse smoothly across these styles without affecting
the content. The first stage generates negative examples facil-
itating the discriminative training for the second stage. This
dual stage training eliminates the need for additional linguistic
annotations, such as language id used by several contemporary
works. We present our results on four pairs of languages.

2. Related Work
Constraint Theory based Generation: [5] combined syntac-
tic constraints by predicting language boundary to reconstruct
CS text. [6] and [7] present techniques based on Equivalence
Theory [8] and Matrix Language Frame Theory [9] to create
grammatically valid CS text. While these methods demonstrate
the use of expert knowledge to assist generation, the same is
difficult to replicate and scale to other languages.
Language Informed Modeling: Prior works rely on annota-
tions of language spans in multi-task setup [10] or using dual
RNN to handle each language [11]. They generated sentences
which are used to pretrain the model which essentially is aug-
menting the original data with generated data. In contrast, our
approach uses the generated data to discriminate against the real
CS data in Stage 2 to enhance the generation. As a result, [11]
trains on CS data to generate new CS text. Our approach re-
lies primarily on a lot of monolingual data in Stage 1 and some
amount of CS data. Capturing syntactic and language switching
signals prove effective in a hierarchical VAE architecture [12].
[13] proposed a GAN based approach to generate language id
tags and discriminate whether it is a valid sequence. The sim-
ilarity between this and our works is that the fundamental ar-
chitecture is a GAN. Lexical level translation is needed by [13]
which cannot be done by a simple word lookup but depends on
the context. The language id based lookup for translation may
not perform well in all cases especially when transliteration is
also needed.
Dependence on Parallel data: [14] proposed a seq-to-seq
model with copy mechanism limiting the method to rely on
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Figure 1: Transformer based GAN architecture for generating CS text. Note: The same architecture is used for two stages. Matrix
language sentence is the embedding of the text and language encoding is the embedding of the language.

parallel monolingual translations of CS text. However, more
often there might be limitations on gathering parallel data not
only across languages but in this case also with CS text. There
has been some prior work in style transfer techniques for non-
parallel data such as [15, 16].

Our approach eliminates the need for drafting constraint
theories, additional annotations for language ids and parallel
data. This enables scalability to new language pairs attributed
to the availability of monolingual corpora and limited CS text.

3. Datasets
Each of the participating monolingual utterances (belonging to
M (matrix language) and E (embedded language)) are treated
as two distinct styles. Note that the sentences are not aligned
either at phrase or sentence levels. We explored CS for four
language pairs as presented in Table 1.

The reasons behind selecting these language pairs are
multi-step. We selected Hinglish and Spanglish since they are
widely spoken languages. The usage of Hindi in Hinglish is
commonly romanized, bringing in a new variety to the platform.
Spanglish and Hinglish thus have very close scripts as opposed
to Mandarin-English where the scripts are different. While
the word order for English, Spanish, Mandarin and French is
subject-verb-object (SVO), the same for Hindi is subject-object-
verb (SOV) and Arabic is verb-subject-object (VSO). These dif-
ferences facilitate the stylistic attributes to the mixing of these
languages.

4. Model Description
The two problems we address are repealing the need for anno-
tations (such as language id) on CS data and maximizing the
utilization of monolingual data. Both the issues are addressed
using a two stage generative adversarial training paradigm with
a transformer based autoencoder. Unavailability of parallel sen-
tences is tackled by preserving semantics of the original sen-
tence of one language and mixing the attributes of the other lan-

Language Monolingual Code-Switched
Spanish [17] [18]English [19]
Mandarin [20] [21]English [19]
Hindi [22] [22]English [22]
Arabic [23] [24]French [25]

Table 1: Monolingual and Code-Switched Datasets used for
training Stage 1 and Stage 2

guage without disentangling the representation into these two
properties. Following are the two stages involved:
Stage 1: The embedded and matrix languages are mixed in ar-
bitrary ways to generate CS text. This stage simply uses the
corpora from each language as an individual style.
Stage 2: The sentences generated after Stage 1 were not su-
pervised via any real CS sentences. Hence, they are used as
negative examples (with style la) against limited amount of CS
text (with style ln) to generate naturally switched sentences.

The architecture remains same for both stages except for
variation in hyperparameters. Figure 1 presents our GAN setup
for Stage 1. The following subsections present the flow by in-
stantiating for Stage 1 for readability. The same process is ap-
plied for Stage 2 with the difference of using positive and nega-
tive examples of CS sentences.

4.1. Generator

The generator in our architecture comprises of transformer
based encoder and decoder. In Stage 1, our transformer encoder
takes in the matrix language sentence (sm ∈M ) along with the
matrix language encoding or style (lm) and produces a latent
representation (zm,m).

zm,m = TransEnc(sm, lm)∀sm ∈ M (1)

We use this zm,m along with the original matrix language sen-
tence sm and the matrix language encoding lm to reconstruct



the original sentence sm. Greedy decoding is performed that
uses argmax which is non-differentiable to compute the loss for
reconstructing the original sentence (LG(matrix)).

LG(matrix) = −
∑

sm∈M

log(Pr(sm|sm, l = m)) (2)

Next, the same matrix language sentence sm is considered
along with the embedded language encoding le to produce a
latent representation (zm,e).

zm,e = TransEnc(sm, le)∀sm ∈ M (3)

This zm,e is used to reconstruct the original sentence sm. This
means that the model is attempting to reconstruct the content
of the original sentence while varying the style i.e, language
encoding. The loss corresponding to this reconstruction is
(LG(embedded)).

LG(embedded) = −
∑

sm∈M

log(Pr(sm|sm, l = e)) (4)

Similarly, corresponding counterparts using ze,e and ze,m
are generated.

4.2. Discriminator

The discriminator is a classifier that predicts whether the current
distribution is closer to the original latent space or the generated
latent space. The purpose of generator reconstructing the orig-
inal sentence sm with matrix language encoding lm (contribut-
ing to LG(matrix)) is solely to make sure that the generator is
retaining the content of the original sentence, and has no con-
tribution towards training the discriminator. On the other hand,
the generation of the sentence sm with embedded language en-
coding le, say sm,e essentially establishes our end goal. In the
GAN architecture, we now have two choices i.e, sampling a
sentence from: (1) original distribution sm,m i.e, the matrix lan-
guage sentence with the matrix language encoding or (2) distri-
bution from the generator sm,e i.e, the matrix language sentence
with the embedded language encoding. The positive examples
to train the discriminator come from real sentences which are
trained by maximizing the probability for predicting that it be-
longs to label m.

LD(matrix) = −
∑

log(Pr(m|zm,m, l = m)) (5)

One particular problem for training GANs in text domain is
the non-differentiable function of argmax that is performed in
decoding. There are three prominent solutions to address this
problem including REINFORCE [26], Gumbel-Softmax [27],
manipulating the latent space. We proceed with the third option
by performing a continuous softmax of the words, thus elimi-
nating the need to perform argmax, which is described in detail
here. Let the vocab size be V and the embedding dimension be
H. Instead of discretely making a selection of the embedding
over the vocabulary space to select each word, we perform con-
tinuous softmax. The final softmax layer in decoder provides us
with a vector of size 1×V . Multiplying this with the embedding
weights (V × H) results in 1×H vectors for each word. Note

that in the case of argmax, we make a discrete selection of the
word, whereas, in the case of continuous softmax, we arrive at a
soft representation of the weighted combination of properties of
the words across different words in the vocabulary. Therefore
the latter does not enforce this soft representation to be a word.
This partially decoded representation now passes through the
transformer encoder to arrive at a latent representation to be fed
into the discriminator.

LD(embedded) = −
∑

log(Pr(e|zm,e, l = e)) (6)

4.3. Dual Stage Training Setup:

The task of generating CS text not only entails mixing lan-
guages but also mixing them appropriately. This means that our
discriminator performs two tasks of discriminating between:
(1) the participating languages, owing to the asymmetry be-
tween their interactions, such as matrix and embedded lan-
guages (Stage 1) and (2) incorrectly and correctly switched lan-
guages (Stage 2). Hence we dissolve the training procedure into
two stages with each stage dedicated to one of the aforemen-
tioned tasks.

In Stage 1, the sentences from sm ∈ M are transferred
to the style of le (sm,e). At any given point of time, there is
only one sentence and one language style that is encoded as pre-
sented in equations 1 and 3. We conflated this information while
presenting in Figure 1. For example, let the subscript ‘r’ be re-
constructed sentence from an original source sentence. In addi-
tion to the sentence, there is one style that is taken as input. This
style could be either (only one among) the matrix language or
the embedded language style which is encoded. Let the source
and the matrix language styles be sm and se respectively. The
discriminator labels the following representations in the corre-
sponding ways: (i) Label 0: (a) sm with lm style; (b) ‘s′mr with
lm style; (ii) Label 1: (a) se with le style; (b) ‘s′er with le style;
In this way, we train a model to generate sm,e and se,m which
are matrix language sentences in the embedded language style
and embedded language sentences in the matrix language style.
Since there is no supervision from naturally CS sentences, we
delegate this responsibility to the second stage of training with
the same architecture. We used sm,e as negative examples of CS
sentences for Stage 2 of training. We have also experimented
with a random subset of sm,e and se,m as negative examples.
This performed worse than the former setting since sm,e has
the underlying grammatical structure of M, thereby generating
stronger negative examples for adversarial training. In Stage 2,
the negative examples from generated above belongs to incor-
rect CS style because the words are mixed arbitrarily from both
the languages. The style from real CS data is the correct style
in which we want to finally generate CS text. The same model
is trained in the same way described above again with these two
styles in this second stage. Note that the training objective is
also the same in the second stage as the first stage. The goal
of the first stage is to generate robust negative examples of CS
style to train the model in the second stage.
Hyperparameter setup: We used 3 layers of transformer en-
coders and decoders with a maximum sequence length of 45
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Figure 2: Trends in metrics for evaluating the generation of CS text for four language pairs in dual stage training. The dotted line of
each color benchmarks the corresponding metric for real CS data.

words. The word embedding dimension is 256 with 300 itera-
tions of pre-training the generator before training our GAN.

In Stage 1, there is minimal overlap of vocabulary between
the languages. This is in contrary to data in typical style trans-
fer datasets which have overlapping vocabulary spaces. Hence
the discriminator learns much faster than generator in our case.
To combat this, the learning rate in Stage 1 for the generator
is 1e-3 and the discriminator is 1e-4. For Stage 2, the genera-
tor and discriminator are initialized with models learnt in Stage
1 thereby transferring the knowledge of each of the languages.
However, to quickly adapt to the parameter space of Stage 2,
we use slanted triangular learning rate [28] with a short linear
increase period followed by longer decay period. Adam opti-
mizers are used throughout the model. We plan to release our
code, models and generated samples upon acceptance.

5. Evaluation
We present our results on four pairs of languages from Table 1.
We evaluate trends in different metrics of CS proposed by [29]
in our dual stage training. Consolidated results are presented in
Figure 2. Metrics that we look into are multilingual-index, lan-
guage entropy, integration-index and burstiness. In Figure 2,
‘Stage 1’ contains generated sentences sm,e. The model learnt
in Stage 2 has options to generate from negative examples or
original text of each language as source. ‘Stage 2’ contains
sentences generated using negative examples from Stage 1 as
source. Similarly, ‘From <lang>’ uses the corresponding lan-
guage as source. We observe that the metrics move closer to
real CS in ‘Stage 2’ as compared to ‘Stage 1’. Within ‘Stage 2’,
metrics are closer to real CS data when the source text belongs
to M in comparison to E or sm,e from Stage 1. We plan to ex-
plore properties of syntactic and semantic mixing in each stage
in our future work.

6. Qualitative Analysis
The following are some of the common forms of errors ob-
served in the generated text for Hinglish when trained on the
blogging data collected from [10].

• Gender Disagreement: For instance, consider the sen-
tence ‘kyunki ye scam bhi ho sakti hai’ (Meaning: be-
cause this can also be a scam). The gender of the direct
object which is ‘scam’ should agree with the inflection
of the verb ‘sakti’. Hence this should have been ‘sakta’.
The gender of the word ‘scam’ (which is a borrowed
word from embedded language English) is unknown in
the matrix language, so it would be presumed to be mas-
culine. But this sentence used a feminine verb phrase.

• Incorrect Case markers: ‘agar aap bhi ye post pasand
aaye toh aap puch sakte hai’ (Meaning: If this post is
pleasing to you also, then you can ask). The words ‘to
you’ when used in Hindi is supposed to be in dative case
which is ‘aap ko’ in the first clause of the sentence. How-
ever ‘aap’ which is in the nominative case is generated.

• Semantically incorrect due to random mixing: Some-
times, the model also generate completely random mix
of words that semantically are incorrect. For instance,
this is one of the sentence from the output: ‘am bahut hi
achchi jankari aapko pata hi hoga’ (Loosely Translated
Meaning: very good information you must be knowing).
The sentence does not convey a coherent meaning. The
word order of the sentence is also jumbled and does not
strictly belong to either of the matrix or the embedded
languages.

• No mixing: In some cases, the entire sentence is built
from words belonging to the same language. For in-
stance, ‘the best way to improve your application for the
reasons listed below’.

• Incorrect sub-word mixing: Though the incorrect case
markers and gender disagreement are syntactic errors,
this seems to happen due to the modeling at word level.
Sub-word level modeling of text is a promising direction
to address this error category especially for morphologi-
cally rich languages.

The category of first two error types described above are
syntactic. Our current model is purely data driven from the sur-
face forms. This motivates the utility of inducing syntax while



generation. The semantically incorrect sentences seem to be
generated due to random mixing of the words from both the
languages. The loosely translated meaning of the sentence is
not utterly senseless but when framed in CS fashion does not
make sense. In addition, there is an inherent challenge while
dealing with multiple datasets that lead upto domain variation.
For instance, the vocabulary or the style on social media plat-
forms such as Twitter is very different from the domain of con-
versations. Although we have carefully selected the datasets
to belong to similar domains, this might often not be feasible
which invites the domain invariant modeling of text.

7. Conclusion
We present a novel perspective of viewing CS as style vari-
ants between participating languages. We believe this view-
point opens new avenues for dealing with mixed language text.
The main contributions of the paper are threefold. Firstly, we
eliminate the need for explicit language identification using two
stage adversarial training. Secondly, our approach transfers
from bountiful monolingual resources and relies on limited CS
data to generate new CS sentences. Thirdly, we present our ex-
periments on dual stage transformer based GAN model for gen-
erating four pairs of CS languages: Spanish-English, Mandarin-
English, Hindi-English and Arabic-French. In future, we would
like to compare the performance of this technique with other
style transfer models and also explore the possibility of end-to-
end training of both the stages.
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