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Kernel functions have become a great Kernel functions have become a great 
tool in MLtool in ML

• Useful in practice for dealing with many different kinds of data.
• Elegant theory in terms of margins about what makes a given kernel good for a given learning problem.



Kernel functions have become a great Kernel functions have become a great 
tool in MLtool in ML…but there’s something a little funny:

• On the one hand, operationally a kernel is just a similarity function: K(x,y) ∈ [-1,1],with some extra reqts.
• But Theory talks about margins in implicit high-dimensional φ-space.  K(x,y) = φ(x)·φ(y).
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I want to use ML to classify protein structures and I’m trying to decide on a similarity fn to use. Any help?

It should be pos. semidefinite, and 
should result in your data having a large 
margin separator in implicit high-diml
space you probably can’t even calculate.



Umm… thanks, I guess.

It should be pos. semidefinite, and 
should result in your data having a large 
margin separator in implicit high-diml
space you probably can’t even calculate.



Kernel functions have become a great Kernel functions have become a great 
tool in MLtool in ML…but there’s something a little funny:

• On the one hand, operationally a kernel is just a similarity function: K(x,y) ∈ [-1,1],with some extra reqts.
• But Theory talks about margins in implicit high-dimensional φ-space.  K(x,y) = φ(x)·φ(y).

– Not great for intuition (do I expect this kernel 
or that one to work better for my kind of data)

– Has a something-for-nothing feel to it. “All the 
power of the implicit space without having to 
pay for it”.  More prosaic explanation?
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Goal: definition of Goal: definition of ““good similarity good similarity 
functionfunction”” for a learning problem thatfor a learning problem that……

1.1. Talks in terms of more natural direct properties Talks in terms of more natural direct properties 
(no implicit high(no implicit high--dimldiml spaces, no requirement of spaces, no requirement of 
positivepositive--semidefinitenesssemidefiniteness, etc), etc)

2.2. If If KK satisfies these properties for our given satisfies these properties for our given 
problem, then has implications to learning         problem, then has implications to learning         
(can(can’’t just say t just say anyany function is a good one)function is a good one)

3.3. Is broad: includes usual notion of Is broad: includes usual notion of ““good kernelgood kernel””
(one that induces a large margin separator in (one that induces a large margin separator in φφ--
space).space). ““Learning problemLearning problem””: : distribdistrib P over labeled P over labeled 

examples x.  Assume examples x.  Assume ll(x(x) ) ∈∈ {{--1,1}.1,1}.



DefnDefn satisfying (1) and (2):satisfying (1) and (2):
• Say have a learning problem P (distrib over 

labeled examples).
• K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if at least a 1-ε prob mass of examples x satisfy:
Ey~P[K(x,y)|l(y)=l(x)] ≥ Ey~P[K(x,y)|l(y)≠l(x)]+γ

How can we use it?



How to use itHow to use it
At least a 1-ε prob mass of x satisfy:

Ey~P[K(x,y)|l(y)=l(x)] ≥ Ey~P[K(x,y)|l(y)≠l(x)]+γ

– Draw S+ of O(γ-2 ln(1/δ2)) positive examples.
– Draw S- of O(γ-2 ln(1/δ2)) negative examples.
– Classify x based on which gives better score.
– Hoeffding: for any given “good x”, prob of 

error over draw of S+,S− at most δ2.
– So, at most δ chance our draw is bad on more 

than δ fraction of “good x”.  So overall error 
rate � ε + δ.



But not broad enoughBut not broad enough

• K(x,y)=x·y has good separator but doesn’t satisfy defn. (half of positives 
are more similar to negs that to typical pos)
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But not broad enoughBut not broad enough

• Idea: would work if we didn’t pick y’s from top-left.  
• Broaden to say: OK if ∃ large region R s.t. most x 

are on average more similar to y∈R of same label 
than to y∈R of other label.

+ +
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Broader Broader defndefn……
• Say K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if exists a weighting function w(y)∈[0,1] s.t. at least 1-ε mass of x satisfy:

• How to use:
– Draw S+ = {y1,…,yn}, S- = {z1,…,zn}. n=Õ(1/γ2)
– Use to “triangulate” data:

F(x) = [K(x,y1), …,K(x,yn), K(x,z1),…,K(x,zn)].– Whp, exists good separator in this space:  w = [w(yw = [w(y11),),……,w(y,w(ynn),),--w(zw(z11),),……,,--w(zw(znn)])]

Ey~P[w(y)K(x,y)|l(y)=l(x)] ≥ Ey~P[w(y)K(x,y)|l(y)≠l(x)]+γ



Broader Broader defndefn……
• Say K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if exists a weighting function w(y)∈[0,1] s.t. at least 1-ε mass of x satisfy:

– Whp, exists good separator in this space:  w = [w(yw = [w(y11),),……,w(y,w(ynn),),--w(zw(z11),),……,,--w(zw(znn)])]–– So, take new set of examples, project to So, take new set of examples, project to this space, and run your favorite learning this space, and run your favorite learning algorithm.algorithm.

Ey~P[w(y)K(x,y)|l(y)=l(x)] ≥ Ey~P[w(y)K(x,y)|l(y)≠l(x)]+γ



And furthermoreAnd furthermore
– An (ε,γ)-good kernel [margin ≥ γ on at least 1-ε fraction of P] is an (ε’,γ’)-good sim fn under this definition.
– But our current proofs suffer a big penalty: ε’ = ε + εextra, γ’ = γ4εextra.



And furthermoreAnd furthermore
– An (ε,γ)-good kernel [margin ≥ γ on at least 1-ε fraction of P] is an (ε’,γ’)-good sim fn under this definition.
– But our current proofs suffer a big penalty: ε’ = ε + εextra, γ’ = γ4εextra.Proof sketch:
– Set w(y)=0 for the ε fraction of “bad” y’s.
– Imagine repeatedly running margin-Perceptron 

on multiple samples S from remainder.
– Set w(y) ∝ l(y)·E[weight(y) | y ∈ S]



And furthermoreAnd furthermore
– An (ε,γ)-good kernel [margin ≥ γ on at least 1-ε fraction of P] is an (ε’,γ’)-good sim fn under this definition.
– But our current proofs suffer a big penalty: ε’ = ε + εextra, γ’ = γ4εextra.

Should be possible to improve bounds.
Maybe one can find better (more intuitive) defs that still capture large margin kernels.



Examples of settings satisfying Examples of settings satisfying 
defsdefs but not legal kernelsbut not legal kernels

• Suppose positives have K(x,y) ≥ 0.8, negatives have 
K(x,y) ≥ 0.8, but for a pos and a neg, K(x,y) are 
uniform random in [-1,1].

• For a kernel, if a & b are very similar, and a & c are 
very dissimilar, then b & c have to be pretty 
dissimilar too.  [triangle inequality]

• Natural scenario:
– Say two people are similar if either they work together 

or they live together.



Can we use this angle to help think Can we use this angle to help think 
about clustering?about clustering?

Let’s define objective like this:
• Given data set S of n objects.
• Each x∈S has some (unknown) “ground truth” label 
l(x) in {1,…,k}.

• Goal: produce hypothesis h of low error up to 
isomorphism of label names:

Err(hErr(h) = ) = minminσσPrPrx~Sx~S[[σσ(h(x(h(x)) )) ≠≠ ll(x(x)])]
Like transductive learning from unlabeled data only. 

(could define inductive version too)



What conditions on a similarity function What conditions on a similarity function would be enough to allow one to would be enough to allow one to clustercluster well?well?
Let’s define objective like this:
• Given data set S of n objects.
• Each x∈S has some (unknown) “ground truth” label 
l(x) in {1,…,k}.

• Goal: produce hypothesis h of low error up to 
isomorphism of label names:

Err(hErr(h) = ) = minminσσPrPrx~Sx~S[[σσ(h(x(h(x)) )) ≠≠ ll(x(x)])]
Like transductive learning from unlabeled data only. 

(could define inductive version too)



Here is an extremely restrictive Here is an extremely restrictive 
condition that trivially works:condition that trivially works:

Say K is a good similarity function for a 
clustering problem if:

•• K(x,yK(x,y) > 0 for all ) > 0 for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < 0 for all ) < 0 for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).
If we have such a K, then clustering is pretty trivial.
Now, let’s try to make this condition a little bit less restrictive….



Proposal #2:Proposal #2:
Say K is a good similarity function for 
a clustering problem if exists c such 
that:

•• K(x,yK(x,y) > c for all ) > c for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < c for all ) < c for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).
Problem: the same K can be good for two very different clusterings of the same data!



Proposal #2:Proposal #2:
Say K is a good similarity function for 
a clustering problem if exists c such 
that:

•• K(x,yK(x,y) > c for all ) > c for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < c for all ) < c for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).
Problem: the same K can be good for two very different clusterings of the same data!Big problem: unlike with learning, can’t test your hypotheses!



LetLet’’s change our objective a bits change our objective a bit……
to be to get a small (polynomial) number of clusterings such that at least one has low error.

– Like list-decoding
Now previous case is fine: exists c such that
•• K(x,yK(x,y) > c for all ) > c for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < c for all ) < c for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).
Sort pairs by decreasing value of K(x,y).  Add in 

edges one at a time as in Kruskal.  Output all (at 
most n) different clusterings produced.



How about our 1How about our 1stst defndefn for learning?for learning?

• Extend to multi-class by requiring this to be true separately for all labels j ≠ l(x). 
• (“P” = unif distr over S for transductive)
Can we use this to cluster?

• K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if at least a 1-ε prob mass of examples x satisfy:
Ey~P[K(x,y)|l(y)=l(x)] ≥ Ey~P[K(x,y)|l(y)≠l(x)]+γ



How about our 1How about our 1stst defndefn for learning?for learning?

• If # clusters k is small, each has Ω(1/k) prob mass, γ large, then can do:
– Pick O(k/γ2 log k/δ) random points.
– Try all KO(k/γ2…) possible labelings of them.
– Use to cluster remaining points.
– Output all different clusterings produced.

• K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if at least a 1-ε prob mass of examples x satisfy:
Ey~P[K(x,y)|l(y)=l(x)] ≥ Ey~P[K(x,y)|l(y)≠l(x)]+γ



How about our 1How about our 1stst defndefn for learning?for learning?

• Ought to exist a more efficient algorithm.
• Maybe given x,y, determine if in same cluster by extent to which they agree on similarity to other examples z.
• Other natural defns/sufficient conditions?

• K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if at least a 1-ε prob mass of examples x satisfy:
Ey~P[K(x,y)|l(y)=l(x)] ≥ Ey~P[K(x,y)|l(y)≠l(x)]+γ



How about our 1How about our 1stst defndefn for learning?for learning?

• Other natural defns/sufficient conditions?
• E.g., usual notion of “good kernel”: draw subsample S’ and try all possible large-margin partitions of S’…. again exp’l in K,1/γ.

• K:(x,y)→[-1,1] is an (ε,γ)-good similarity function for P if at least a 1-ε prob mass of examples x satisfy:
Ey~P[K(x,y)|l(y)=l(x)] ≥ Ey~P[K(x,y)|l(y)≠l(x)]+γ



Open ProblemsOpen Problems
• Other/better definitions of “good similarity function” for learning.  Ideally prove direct implications to standard algslike SVM etc.
(But don’t want a def like: “K is a good similarity function for P if Algorithm X works…”)

• Other/better definitions of “good similarity function” for clustering. 


