Towards a more intuitive theory of
learning with similarity functions

(with extensions to clustering)

Avrim Blum
Carnegie Mellon University

[joint work with Nina Balcan]

Kernel functions have become a great
tool in ML

» Useful in practice for dealing with many
different kinds of data.

* Elegant theory in ferms of margins about
what makes a given kernel good for a given

learning problem.

Kernel functions have become a great

tool in ML
..but there's something a little funny:

* On the one hand, operationally a kernel is
just a similarity function: K(xy) € [-1,1],
with some extra reqfs. *— -

* But Theory talks about margins in implicit
high-dimensional ¢-space. K(x,y) = @(x)-q@(y).

"I want to use ML fo classify pr'o’rm
structures and I'm trying to decide

__ona similarity fn to use. Any help?

It should be pos. semidefinite, and o
should result in your data having a large
margin separator in implicit high-dim|
space you probably can't even calculate.

N —

" Umm. thanks, I guess.

\

It should be pos. semidefinite, and o
should result in your data having a large
margin separator in implicit high-dim|
space you probably can't even calculate.

N —

Kernel functions have become a great

tool in ML
..but there's something a little funny:

* On the one hand, operationally a kernel is

just a similarity function: K(xy) € [-1,1],

with some extra reqfs. *— -

* But Theory talks about margins in implicit

high-dimensional ¢-space. K(x,y) = @(x)-q@(y).

- Not great for intuition (do I expect this kernel
or that one to work better for my kind of data)

- Has a something-for-nothing feel to it. "All the
power of the implicit space without having to
pay for it". More prosaic explanation?

Goal: definition of "good similarity
function” for a learning problem that..

1. Talks in terms of more natural direct properties

2. If K satisfies these properties for our given
problem, then has implications to learning
any
3. Isbroad: includes usual notion of “"good kernel”
(one that induces a large margin separator in ¢-

space).|“Learning problem": distrib P over labeled
examples x. Assume €(x) € {-1,1}.

Defn satisfying (1) and (2):

» Say have a learning problem P (distrib over
labeled examples).

+ Ki(x,y)—[-1,1]is an (g,y)-good similarity
function for P if at least a 1-€ prob mass of
examples x satisfy:

E,-o[K(Xy) Y)=E00)] > E,-o[K(xy) ey)2E(x)Joy

How can we use it?

How to use it

At least a 1-€ prob mass of x satisfy:
E,-o[K(x.y)l€ly)=€(x)] > E, [K(xy)|€(y)2e(x)]+y

- Draw S* of O(y?1In(1/38%)) positive examples.
- Draw S- of O(y?In(1/8%)) negative examples.
- Classify x based on which gives better score.

- Hoeffding: for any given “"good x", prob of
error over draw of S*,S™ at most &2

- So, at most d chance our draw is bad on more
than 6 fraction of "good x". So overall error
rate < e+ 0.

But not broad enough

.............
°° ®e
°® ®e
. .
°® .

* K(x,y)=x-y has good separator but
doesn't satisfy defn. (half of positives
are more similar to negs that to typical pos)

But not broad enough

.............
°° ®e
°® ®e
. .
°® .

.
. .
. .
.....
.......
oooooooooo

» Idea: would work if we didn't pick y's from top-left.

» Broaden to say: OK if 3 large region R s.t. most x
are on average more similar o yeR of same label
than to yeR of other label.

Broader defn...

» Say Ki(x,y)—[-1,1]is an (g,y)-good similarity
function for P if exists a weighting function
w(y)e[0,1] s.t. at least 1-€ mass of x satisfy:

E,-»[1/(y K y)IEY)=E0)] = E,-pL(y K(x y) ey 2e(x)Joy

- How to use:
- Draw S* = {y,,...Y,.}. S ={zy,....Z,}. n=0(1/y?)
- Use to "triangulate” data:
F(x) = [K(X,y1), ..K(X.yn), K(X,2y),... K(x,2,)]
- Whp, exists good separator in this space:
w = [w(yy),..w(y,).-w(zy).....-w(z,)]

Broader defn...

» Say Ki(x,y)—[-1,1]is an (g,y)-good similarity
function for P if exists a weighting function
w(y)e[0,1] s.t. at least 1-€ mass of x satisfy:

E,-»[1/(y K y)IEY)=E0)] = E,-pL(y K(x y) ey 2e(x)Joy

- Whp, exists good separator in this space:
w = [W(y1)... W(Yn) . -W(Z1)....~W(Z,)]
- So, take new set of examples, project to

this space, and run your favorite learning
algorithm.

And furthermore

- An (g,y)-good kernel [margin > yon at least
1-¢ fraction of P]is an (¢',Y)-good sim fn
under this definition.

- But our current proofs suffer a big
penalTy: g=¢g+ Eex’rra' V = y4‘c:ex‘rr'a°

And furthermore

- An (g,y)-good kernel [margin > yon at least
1-¢ fraction of P]is an (¢',Y)-good sim fn
under this definition.

- But our current proofs suffer a big
penal‘ry: 8’ -t gex’rm' V = y48€x’rr'a°
Proof sketch:
- Set w(y)=0 for the € fraction of "bad" y's.

- Imagine repeatedly running margin-Perceptron
on multiple samples S from remainder.

- Set w(y) o ly)-E[weight(y) | y € S]

And furthermore

- An (g,y)-good kernel [margin > yon at least
1-¢ fraction of P]is an (¢',Y)-good sim fn
under this definition.

- But our current proofs suffer a big
penal‘ry: g=¢g+ gex’rm' V = y48€x’rra°

Should be possible to improve bounds.

Maybe one can find better (more intuitive)
defs that still capture large margin kernels.

Examples of settings satisfying
defs but not leqal kernels

» Suppose positives have K(x,y) > 0.8, negatives have

K(x,y) > 0.8, but for a pos and a neg, K(x,y) are

uniform random in [-1,1].

* For a kernel, if a & b are very similar, and a & c are

very dissimilar, then b & c have to be pretty
dissimilar too. [triangle inequality]

- Natural scenario:

- Say two people are similar if either they work together
or they live tfogether.

Can we use this angle to help think
about clustering?
Let's define objective like this:
* Given data set S of nobjects.

* Each xOS has some (unknown) “ground truth” label
¢(x)in{1,..k}.

* Goal: produce hypothesis h of low error up to
isomorphism of label names:

Err(h) = minPr,.<[a(h(x)) # €(x)]

Like transductive learning from unlabeled data only.
(could define inductive version too)

What conditions on a similarity function
would be enough to allow one to cluster well?

Let's define objective like this:
* Given data set S of nobjects.

* Each xOS has some (unknown) “ground truth” label
¢(x)in{1,..k}.

* Goal: produce hypothesis h of low error up to
isomorphism of label names:

Err(h) = minPr,.<[a(h(x)) # €(x)]

Like transductive learning from unlabeled data only.
(could define inductive version too)

Here is an extremely restrictive

condition that trivially works:

Say K is a good similarity function for a
clustering problem if:

+ K(x,y)>0 fora
+ K(x,y) <0 fora

X,y such that ¢(x) = {(y).
X,y such that ¢(x) # €(y).

If we have such a K, then clustering is pretty

trivial.

Now, let's try to make this condition a little
bit less restrictive....

Proposal #2:

Say K is a good similarity function for
a clustering problem if exists ¢ such

that:
»+ K(x,y) > c fora
+ K(x,y)<c fora

X,y such that ¢(x) = {(y).
X,y such that ¢(x) # €(y).

Problem: the same K can be good for two
very different clusterings of the same

datal

@
@

<

Proposal #2:

Say K is a good similarity function for
a clustering problem if exists ¢ such

that:
»+ K(x,y) > c fora
+ K(x,y)<c fora

X,y such that ¢(x) = {(y).
X,y such that ¢(x) # €(y).

Problem: the same K can be good for two
very different clusterings of the same

datal

Big problem: unlike with learning, can't
test your hypothesesl!

Let's change our objective a bit...

to be to get a small (polynomial) number of
clusterings such that at least one has low

error.

- Like list-decoding
Now previous case is fine: exists ¢ such that

»+ K(x,y) > c fora
+ K(x,y)<c fora

X,y such that ¢(x) = {(y).
X,y such that ¢(x) # €(y).

Sort pairs by decreasing value of K(x,y). Add in
edges one at a time as in Kruskal. Output all (at
most n) different clusterings produced.

How about our 15* defn for learning?

+ Ki(x,y)—[-1,1] is an (g,y)-good similarity
function for P if at least a 1-€ prob mass
of examples x satisfy:

m

LK) Ey)=0)] > E, o[K(xy) |y)2(x)}+y

- Extend to multi-class by requiring this to
be true separately for all labels j # €(x).

* ("P" = unif distr over S for transductive)
Can we use this to cluster?

How about our 15* defn for learning?

+ Ki(x,y)—[-1,1] is an (g,y)-good similarity
function for P if at least a 1-€ prob mass
of examples x satisfy:

E,-o[K(Xy) | y)=€0)] > E,-o[K(xy) |y)2E(x)J+y

- If # clusters k is small, each has Q(1/k)
prob mass, y large, then can do:
- Pick O(k/y? log k/&) random points.
- Try all KOK/¥*.) possible labelings of them.
- Use to cluster remaining points.
- Output all different clusterings produced.

How about our 15* defn for learning?

+ Ki(x,y)—[-1,1] is an (g,y)-good similarity
function for P if at least a 1-€ prob mass
of examples x satisfy:

E,-o[K(Xy) | y)=€0)] > E,-o[K(xy) |y)2E(x)J+y

* Ought to exist a more efficient algorithm.

* Maybe given x,y, determine if in same
cluster by extent to which they agree on
similarity to other examples z.

- Other natural defns/sufficient conditions?

How about our 15* defn for learning?

+ Ki(x,y)—[-1,1] is an (g,y)-good similarity

function for P if at least a 1-€ prob mass
of examples x satisfy:

E

LK) Ey)=0)] > E, o[K(xy) |y)2(x)}+y

 Other natural defns/sufficient conditions?
* E.g., usual notion of "good kernel”: draw

subsample S’ and try all possible large-
margin partitions of S'... again exp’l in K,1/y.

Open Problems

* Other/better definitions of "good
similarity function” for learning. Ideally

prove direct implications to standard algs
like SVM etc.

(But don't want a def like: K is a good
similarity function for P if Algorithm X
works...")

* Other/better definitions of "good
similarity function” for clustering.

