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Vempala [BBV04] [BB06] [BBVnn])

Will get to what 
they are

A talk in 3 partsA talk in 3 parts……
• Part 1: A quick, biased intro to machine 

learning and where we are today.

• Part 2: A new theoretical perspective on 
kernel functions and what makes them 
useful for learning.

• Part 3: Applications to understanding 
clustering.

Part 1: A quick intro to 
machine learning

Machine learning can be used to...Machine learning can be used to...
• recognize speech, handwriting, faces,
• identify patterns in data,
• play games,
• categorize documents, ...
Machine learning theory:
• Understand learning as a computational process.  
• Prove guarantees for algorithms.  
• Understand what types of guarantees we might 

hope to achieve.

A typical settingA typical setting
• Imagine you want a computer program to 

help you decide which email messages are 
spam and which are important.

• Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to 
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 
h(x) for future data. 

The concept learning settingThe concept learning setting
E.g., 

Given data, some reasonable rules might be:
•Predict SPAM if unknown AND (sex OR sales)

•Predict SPAM if sales + sex – known > 0.

•...
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Big questionsBig questions
(A)How might we automatically generate 

rules that do well on observed data?
[algorithm design]

(B)What kind of confidence do we have 
that they will do well in the future?

[confidence bound / sample complexity]

for a given learning alg, how 
much data do we need...

Natural framework (PAC)Natural framework (PAC)
• We are given sample S = {(x,l)}.

– Assume x’s chosen at random from some 
probability distribution D over instance space.

– View labels l as being produced by some 
(unknown) target function f. 

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h.

• Goal is for h to do well on new examples 
also from D.

I.e., Prx∼D[h(x)≠f(x)] < ε.

Basic confidence/sampleBasic confidence/sample--complexity argumentcomplexity argument
• Suppose I have some set of rules H (the 

hypothesis class) that seem worth considering. 
E.g., OR-functions over n binary features.

• Consider a bad h (error > ε). Chance it is consistent 
with S is at most (1-ε)|S|.

So, Pr[any bad h∈H is consistent] < |H|(1-ε)|S| ,
< 0.01 for |S| > (1/ε)[ln(|H|) + ln(100)] .

– 2n OR-functions, so in this case ln(|H|) < n.
– So, roughly, if |S| > 10n, whp any OR-function consistent 

with S will have true error < 10% over D. So, we can be 
confident in output of algorithm that finds consistent h.

Nice interpretation in terms of OccamNice interpretation in terms of Occam’’s razors razor

William of Occam (~1320 AD):

“entities should not be multiplied 
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer 
simpler explanations”.

Why?  Is this a good policy?

OccamOccam’’s razor (s razor (contdcontd))
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.
• At most 2b explanations can be < b bits long.
• So, if |S| > 10b, then can be confident in 

explanations of < b bits… because there are 
not too many of them, so it’s unlikely a bad 
simple explanation will fool you just by 
chance.

|S| > (1/ε)[ln(|H|) + ln(100)]

ExtensionsExtensions
• What about classes like “all linear separators”?

– Replace log(|H|) with “effective number of degrees of 
freedom”. (VC dimension)

• What if dimension (# features) is very large?
– Can instead give bounds based on margin of separation.

• What if have access to cheap unlabeled data?
– Can use to adjust your description language.  Reduce 

amount of labeled data needed.
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One last thingOne last thing……
• We have a lot of great algorithms for learning 

linear separators (perceptron, SVM, …).  But, a lot 
of time, data is not linearly separable.
– “Old” answer: use a multi-layer neural network.
– “New” answer: use a kernel function!

• Many algorithms only interact with the data via 
dot-products.
– So, let’s just re-define dot-product.
– E.g., K(x,y) = (1 + x⋅y)d.

• K(x,y) = φ(x) ⋅ φ(y), where φ() is implicit mapping into 
an nd-dimensional space.

– Algorithm acts as if data is in “φ-space”. Allows it to 
produce non-linear curve in original space.  

– Don’t have to pay for high dimension if data is linearly 
separable there by a large margin.
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• E.g., for the case of n=2, d=2, the kernel 
K(x,y) = (1 + x⋅y)d corresponds to the mapping:
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One last thingOne last thing……

Part 2: About those kernel 
functions...

Kernel fns have become very popularKernel fns have become very popular
• Useful in practice for dealing with many 

different kinds of data.
– Images            , strings, ...

• Nice theory in terms of margins about what 
makes a given kernel good for a given 
learning problem.
– If data is separable by large 

margin γ in φ-space, then need 
sample size only µ(1/γ2) to get 
confidence in generalization.

Assume |φ(x)|� 1.
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…but there’s something a little funny:
• On the one hand, operationally a kernel is 

just a similarity function: K(x,y) ∈ [-1,1],
with some extra reqts.

• And in practice, people think of a good 
kernel as a good measure of similarity.

• But Theory talks about margins in implicit 
high-dimensional φ-space.  K(x,y) = φ(x)⋅φ(y).

x
y

Kernel fns have become very popularKernel fns have become very popular I want to use ML to classify protein 
structures and I’m trying to decide 
on a similarity fn to use. Any help?

It should be pos. semidefinite, and 
should result in your data having a large 
margin separator in implicit high-diml
space you probably can’t even calculate.
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Umm… thanks, I guess.

It should be pos. semidefinite, and 
should result in your data having a large 
margin separator in implicit high-diml
space you probably can’t even calculate.

Kernel fns have become very popularKernel fns have become very popular

…but there’s something a little funny:
• On the one hand, operationally a kernel is 

just a similarity function: K(x,y) ∈ [-1,1],
with some extra reqts.

• But Theory talks about margins in implicit 
high-dimensional φ-space.  K(x,y) = φ(x)⋅φ(y).
– Not great for intuition (do I expect this kernel 

or that one to work better for my kind of data)
– Has a something-for-nothing feel to it. “All the 

power of the high-dim’l implicit space without 
having to pay for it”.  More prosaic explanation?

x
y

Goal: notion of Goal: notion of ““good similarity functiongood similarity function””
for a learning problem thatfor a learning problem that……

1.1. Talks in terms of more intuitive properties Talks in terms of more intuitive properties (no (no 
implicit highimplicit high--dimldiml spaces, no requirement of spaces, no requirement of 
positivepositive--semidefinitenesssemidefiniteness, etc), etc)

2.2. If If KK satisfies these properties for our given satisfies these properties for our given 
problem, then has implications to learning         problem, then has implications to learning         

3.3. Is broad: includes usual notion of Is broad: includes usual notion of ““good kernelgood kernel””
(one that induces a large margin separator in (one that induces a large margin separator in φφ--
space).space).

DefnDefn satisfying (1) and (2):satisfying (1) and (2):
• Say have a learning problem P (distribution D

over examples labeled by unknown target f).
• Sim fn K:(x,y)ջ[-1,1] is (ε,γ)-good for P if at 

least a 1-ε fraction of examples x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

• E.g., suppose positives have K(x,y) ≥ 0.2, negatives 
have K(x,y) ≥ 0.2, but for a pos and a neg, K(x,y) 
are uniform random in [-1,1].

• Note: whp such a K is not a “legal” kernel.

DefnDefn satisfying (1) and (2):satisfying (1) and (2):
• Say have a learning problem P (distribution D

over examples labeled by unknown target f).
• Sim fn K:(x,y)ջ[-1,1] is (ε,γ)-good for P if at 

least a 1-ε fraction of examples x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

How can we use it?

How to use itHow to use it
At least a 1-ε prob mass of x satisfy:

Ey~D[K(x,y)|l(y)=l(x)] ≥ Ey~D[K(x,y)|l(y)≠l(x)]+γ

• Draw S+ of O((1/γ2)ln 1/δ2) positive examples.
• Draw S- of O((1/γ2)ln 1/δ2) negative examples.
• Classify x based on which gives better score.

– Hoeffding: for any given “good x”, prob of error 
over draw of S+,S− at most δ2.

– So, at most δ chance our draw is bad on more 
than δ fraction of “good x”.  

• With prob ≥ 1-δ, error rate � ε + δ.
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But not broad enoughBut not broad enough

• K(x,y)=x⋅y has good separator but 
doesn’t satisfy defn. (half of positives 
are more similar to negs that to typical pos)

+ +

_

But not broad enoughBut not broad enough

• Idea: would work if we didn’t pick y’s from top-left.  
• Broaden to say: OK if ∃ large region R s.t. most x 

are on average more similar to y∈R of same label 
than to y∈R of other label. (even if don’t know R in 
advance)

+ +

_

Broader Broader defndefn……
• Say K:(x,y)ջ[-1,1] is an (ε,γ)-good similarity 

function for P if exists a weighting function 
w(y)∈[0,1] s.t. at least 1-ε frac. of x satisfy:

• Can still use for learning:
– Draw S+ = {y1,…,yn}, S- = {z1,…,zn}. n=µ(1/γ2)
– Use to “triangulate” data:

F(x) = [K(x,y1), …,K(x,yn), K(x,z1),…,K(x,zn)].
– Whp, exists good separator in this space:  

w = [w(yw = [w(y11),),……,w(y,w(ynn),),--w(zw(z11),),……,,--w(zw(znn)])]

Ey~D[w(y)K(x,y)|l(y)=l(x)]≥Ey~D[w(y)K(x,y)|l(y)≠l(x)]+γ

Broader Broader defndefn……
• Say K:(x,y)ջ[-1,1] is an (ε,γ)-good similarity 

function for P if exists a weighting function 
w(y)∈[0,1] s.t. at least 1-ε frac. of x satisfy:

– Whp, exists good separator in this space:  
w = [w(yw = [w(y11),),……,w(y,w(ynn),),--w(zw(z11),),……,,--w(zw(znn)])]

Ey~D[w(y)K(x,y)|l(y)=l(x)]≥Ey~D[w(y)K(x,y)|l(y)≠l(x)]+γ

*Technically bounds are better if adjust definition to 
penalize examples more that fail the inequality badly…

–– So, take new set of examples, project to So, take new set of examples, project to 
this space, and run your favorite linear this space, and run your favorite linear 
separator learning algorithm.*separator learning algorithm.*

And furthermoreAnd furthermore
– An (ε,γ)-good kernel [at least 1-ε fraction 

of x have margin ≥ γ] is an (ε’,γ’)-good sim
fn under this definition.

– But our current proofs suffer a penalty:   
ε’ = ε + εextra, γ’ = γ3εextra.

Nati Srebro has improved 
to γ2, which is tight, + 

extended to hinge-loss.

ImplicationsImplications
• Statements about what makes a similarity fn 

useful for learning that don’t require 
reference to implicit spaces. 

• Includes usual notion of “good kernels”
modulo the loss in some parameters.
– Theory also holds for similarity fns that aren’t 

necessarily positive-semidefinite (or even 
symmetric).

• May help with intuition when designing 
similarity fns for a given application. 
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Part 3Part 3

Can we use this angle to help Can we use this angle to help 
think about clustering?think about clustering?

Consider the following setting:
• Given data set S of n objects.

• There is some (unknown) “ground truth” clustering. 
Each x has true label l(x) in {1,…,t}.

• Goal: produce hypothesis h of low error up to 
isomorphism of label names.

Like learning from unlabeled data only.

Can we use this angle to help think Can we use this angle to help think 
about clustering?about clustering?

[documents,
web pages]

[topic]

Consider the following setting:
• Given data set S of n objects.

• There is some (unknown) “ground truth” clustering. 
Each x has true label l(x) in {1,…,t}.

• Goal: produce hypothesis h of low error up to 
isomorphism of label names.

Like learning from unlabeled data only.

[documents,
web pages]

[topic]

What conditions on a similarity function What conditions on a similarity function 
would be enough to allow one to would be enough to allow one to clustercluster well?well?

Contrast with more standard 
approach to clustering analysis:

• Given as input a graph or embedding of 
points into Rd.  View as “ground truth”. 

• Analyze abilities of algorithms to 
achieve different optimization criteria.

• Argue about which criterion produces 
better-looking results.

• Here, we flip this around.

What conditions on a similarity function What conditions on a similarity function 
would be enough to allow one to would be enough to allow one to clustercluster well?well?

Here is a condition that trivially works:Here is a condition that trivially works:

Suppose K has property that:
•• K(x,yK(x,y) > 0 for all ) > 0 for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < 0 for all ) < 0 for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).

If we have such a K, then clustering is easy.
Now, let’s try to make this condition a little 

weaker….

What conditions on a similarity function What conditions on a similarity function 
would be enough to allow one to would be enough to allow one to clustercluster well?well?

Suppose K has property that exists c:
•• K(x,yK(x,y) > c for all ) > c for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < c for all ) < c for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).
Problem: the same K can satisfy for two very 

different clusterings of the same data!

What conditions on a similarity function What conditions on a similarity function 
would be enough to allow one to would be enough to allow one to clustercluster well?well?

Unlike learning, 
you can’t even test 
your hypotheses!
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LetLet’’s change our goals a bits change our goals a bit……
OK to output a small number of clusterings

such that at least one has low error.
– Like list-decoding

Now previous case is fine: exists c such that
•• K(x,yK(x,y) > c for all ) > c for all x,yx,y such that such that ll(x(x) = ) = ll(y(y).).
•• K(x,yK(x,y) < c for all ) < c for all x,yx,y such that such that ll(x(x) ) ≠≠ ll(y(y).).
At most n clusterings consistent.  Can produce 

using Kruskal-like algorithm.

Condition is still a lot to ask though.
Can we weaken it?

What if K is good for learning?What if K is good for learning?

• Like in earlier part of talk….
• If # clusters t is small, γ large, can do:

– Pick O(t/γ2 log t/δ) random points.
– Guess how they cluster.
– Run learning alg to cluster remaining points.
– Output all tO(t/γ2…) different clusterings produced

• OK, maybe that’s going overboard.  
• Can we do better?

What if you want to do better?What if you want to do better?

• Then, can construct a tree (hierarchical 
clustering) such that the correct clustering 
is some pruning of this tree. 

• Suppose our similarity function satisfies 
the stronger condition:

• Ground truth is “stable” in that
For all clusters C, C’, for all A⊂C, 

A’⊂C’: A and A’ are not both 
more attracted to each other 

than to their own clusters.

K(x,y) is 
attraction 
between x 

and y

What if you want to do better?What if you want to do better?
• Suppose our similarity function satisfies 

the stronger condition:
• Ground truth is “stable” in that

For all clusters C, C’, for all A⊂C, 
A’⊂C’: A and A’ are not both 

more attracted to each other 
than to their own clusters.

K(x,y) is 
attraction 
between x 

and y

Main pointMain point
• Exploring the question: what are minimal 

conditions on a similarity function that 
allow it to be useful for clustering?

a. Allows algorithm to pick out right answer.
b. Small number of candidate clusterings.
c. Output a tree (hierarchical clustering) such 

that right answer is some pruning of it.
• Cases (b) or (c) can then allow for right 

answer to be identified with a little bit of 
additional feedback.

ConclusionsConclusions
• Theoretical approach to question: what are 

minimal conditions that allow a similarity to 
be useful for learning/clustering.

• For learning, formal way of analyzing kernels 
as similarity functions. 
– Doesn’t require reference to implicit spaces or 

PSD properties.
• For clustering, “reverses” the usual view.
• Lot more to be done, esp in terms of other 

properties and objectives for clustering.
– Perhaps objectives motivated by other forms of 

feedback.


