
New Directions in Learning 

Theory 

Avrim Blum 

[ACM-SIAM Symposium on Discrete Algorithms 2015] 

Carnegie Mellon University 



Machine Learning 

Machine Learning is concerned with: 
– Making useful, accurate generalizations or predictions 

from data. 

– Improving performance at a range of tasks from 
experience, observations, and feedback. 

Typical ML problems: 

Given database of images, classified as              
male or female, learn a rule to classify new images. 
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Machine Learning 

Machine Learning is concerned with: 
– Making useful, accurate generalizations or predictions 

from data. 

– Improving performance at a range of tasks from 
experience, observations, and feedback. 

Typical ML problems: 

Given database of protein seqs, labeled by function, 
learn rule to predict functions of new proteins. 
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Machine Learning 

Machine Learning is concerned with: 
– Making useful, accurate generalizations or predictions 

from data. 

– Improving performance at a range of tasks from 
experience, observations, and feedback. 

Typical ML problems: 

Given lots of news articles, learn about entities in 
the world. 



Machine Learning 

Machine Learning is concerned with: 
– Making useful, accurate generalizations or predictions 

from data. 

– Improving performance at a range of tasks from 
experience, observations, and feedback. 

Typical ML problems: 

Develop truly useful electronic assistant through 
personalization plus experience from others. 



Machine Learning Theory 

Some tasks we’d like to use ML to solve are a 
good fit to classic learning theory models, 

others less so. 

Today’s talk: 3 directions: 

1. Distributed machine learning 

2. Multi-task, lightly-supervised learning. 

3. Lifelong learning and Autoencoding. 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

Click data 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

Customer data 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

Scientific data 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

Each has only a 
piece of the overall 

data pie 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

In order to learn over 
the whole thing, holders 
will need to communicate. 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

Classic ML question: 
how much data is 

needed to learn a given 
type of function well? 



Distributed Learning 

Many ML problems today involve massive 
amounts of data distributed across multiple 
locations. 

These settings bring 
up a new question: how 
much communication? 



Distributed Learning 

Two natural high-level scenarios: 
1. Each location has data from same distribution. 

– So each could in principle learn on its own. 

– But want to use limited communication to speed up – 
ideally to centralized learning rate. 

– Very nice work of [Dekel, Giliad-Bachrach, Shamir, Xiao],… 



Distributed Learning 

Two natural high-level scenarios: 
2. Data is arbitrarily partitioned. 

– E.g., one location with positives, one with negatives. 

– Learning without communication is impossible. 

– This will be our focus here. 

– Based on [Balcan-B-Fine-Mansour].  See also [Daume-
Phillips-Saha-Venkatasubramanian].  
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A model 

• Goal is to learn unknown function f 2 C given 
labeled data from some prob. distribution D. 

• However, D is arbitrarily partitioned among k 
entities (players) 1,2,…,k. [k=2 is interesting] 
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A model 

• Goal is to learn unknown function f 2 C given 
labeled data from some prob. distribution D. 

• However, D is arbitrarily partitioned among k 
entities (players) 1,2,…,k. [k=2 is interesting] 

• Players can sample (x,f(x)) from their own Di. 

1                    2              …                          k 

D1              D2              …              Dk 

D = (D1 + D2 + … + Dk)/k 



A model 

• Goal is to learn unknown function f 2 C given 
labeled data from some prob. distribution D. 

• However, D is arbitrarily partitioned among k 
entities (players) 1,2,…,k. [k=2 is interesting] 

• Players can sample (x,f(x)) from their own Di. 

1                    2              …                          k 

D1              D2              …              Dk 

 Goal: learn good rule over 
combined D, using as little 
communication as possible. 



A Simple Baseline 

We know we can learn any class of VC-dim d to error 
² from 𝑚 = 𝑂(𝑑/𝜖 log 1/𝜖) examples. 
 

– Each player sends 1/k fraction to player 1.   

– Player 1 finds rule h that whp has error · ² with 
respect to D.   Sends h to others. 

– Total: 1 round, 𝑂(𝑑/𝜖 log 1/𝜖) examples sent. 

D1              D2              …              Dk 

Can we do better in general? Yes. 

𝑂(𝑑 log 1/𝜖) examples with 
Distributed Boosting 

 



Distributed Boosting 

Idea:  

• Run baseline #1 for ² = ¼. [everyone sends a small 
amount of data to player 1, enough to learn to error ¼] 

• Get initial rule h1, send to others. 

D1              D2              …              Dk 



Distributed Boosting 

Idea:  

• Players then reweight their Di to focus on 
regions h1 did poorly. 

• Repeat 

 

D1              D2              …              Dk 
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• Distributed implementation of Adaboost Algorithm. 
• Some additional low-order communication needed 

too (players send current performance level to #1, so can 
request more data from players where h doing badly). 

• Key point: each round uses only O(d) samples and 
lowers error multiplicatively. 

• Total 𝑂(𝑑 log 1/𝜖) examples + 𝑂(𝑘 log 𝑑) extra bits. 



Can we do better for specific classes of 
functions? 

D1              D2              …              Dk 

Yes. 

Here are two classes with interesting open problems. 



Parity functions 

Examples x 2 {0,1}d.  f(x) = x¢vf mod 2, for 
unknown vf. 

• Interesting for k=2. 

• Classic communication LB for determining if 
two subspaces intersect.  

• Implies (d2) bits LB to output good v. 

• What if allow rules that “look different”? 

 

 D1              D2              …              Dk D1                                                D2 



Parity functions 

Examples x 2 {0,1}d.  f(x) = x¢vf mod 2, for 
unknown vf. 

• Parity has interesting property that: 
(a)  Can be “properly” PAC-learned. [Given dataset S 

of size O(d/² log 1/²), just solve the linear system] 

 
 

(b) Can be “non-properly” learned in reliable-useful 
model of Rivest-Sloan’88.  

 

                                            [if x in subspace spanned 
by S, predict accordingly, else say “??”] 

S vector vh 

S 

x 
f(x) 

?? 



D1                                                D2 

Parity functions 

Examples x 2 {0,1}d.  f(x) = x¢vf mod 2, for 
unknown vf. 

• Algorithm: 
– Each player i properly PAC-learns over Di to get 

parity function gi.  Also improperly R-U learns to 
get rule hi.   Sends gi to other player. 

– Uses rule: “if hi predicts, use it; else use g3-i.” 

g1  
 

h1 

g2  
 

h2 

 
Can one extend to k=3 players?   

     



Linear Separators 

Can one do better? 

+ 
+ + 

+ 

- - 

- 
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Linear separators thru origin.  (can assume pts on sphere) 

• Say we have a near-uniform prob. distrib. D over Sd. 

• VC-bound, margin bound, Perceptron mistake-bound all give 
O(d) examples needed to learn, so O(d) examples of 
communication using baseline (for constant k, ²). 



Linear Separators 

Idea: Use margin-version of Perceptron alg [update 
until f(x)(w ¢ x) ¸ 1 for all x] and run round-robin. 
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Linear Separators 

Idea: Use margin-version of Perceptron alg [update 
until f(x)(w ¢ x) ¸ 1 for all x] and run round-robin. 

• So long as examples xi of player i and xj of player j 
are reasonably orthogonal, updates of player j don’t 
mess with data of player i. 

– Few updates ) no damage. 

– Many updates ) lots of progress! 



Linear Separators 

Idea: Use margin-version of Perceptron alg [update 
until f(x)(w ¢ x) ¸ 1 for all x] and run round-robin. 

• If overall distrib. D is near uniform [density bounded 

by c¢unif], then total communication (for constant k, 
²) is O((d log d)1/2)  vectors rather than O(d). 

 
Get similar savings for general distributions? 

 

Under just the assumption that exists a linear 
separator of margin 𝛾, can you beat 𝑂 1/𝛾2  

vectors of angular precision 𝛾? 
 



Clustering and Core-sets 

Another very natural task to perform on distributed 
data is clustering. 

• Data is arbitrarily partitioned among players.      
(not necessarily related to the clusters)  

• Want to solve 𝑘-median or 𝑘-means problem over 
overall data. (now using 𝑘 for # clusters) 



Clustering and Core-sets 

• Key to algorithm is a distributed procedure for 
constructing a small core-set. 

[Balcan-Ehrlich-Liang] building on [Feldman-Langberg] 

– Weighted set of points S s.t. cost of any proposed 𝑘 
centers on S is within 1 ± 𝜖 of cost on entire dataset P.  



Clustering and Core-sets 

• Each player 𝑖 computes 𝑂(1) k-me[di]an approx 𝐵𝑖 
for its own points 𝑃𝑖, sends 𝑐𝑜𝑠𝑡(𝑃𝑖 , 𝐵𝑖) to others.  

[Balcan-Ehrlich-Liang] building on [Feldman-Langberg] 

• Each player 𝑖 samples using Pr 𝑝 ∝ 𝑐𝑜𝑠𝑡(𝑝, 𝐵𝑖) for # 
times proportional to overall cost. 

• Show an appropriate weighting of samples and 𝐵𝑖 is 
a core-set of the overall dataset. 

Overall size 𝑂 
𝑘𝑑

𝜖2  for 𝑘-median, 𝑂 
𝑘𝑑

𝜖4  for 𝑘-means  

Use some interactive strategy like in 
distributed boosting to reduce dependence  

on 𝜖?  



Direction 2: multi-task, lightly 

supervised learning 



Growing number of scenarios where 
we’d like to learn 

many related tasks 

from few labeled examples of each  

by leveraging how the tasks are 
related 



E.g., NELL system [Mitchell; Carlson et al] learns multiple 
related categories by processing news articles on the web 

Cities 

New York 

Atlanta 

Boston 

… 

Countries 

France 

United States 

Romania 

Israel 

… 

Cars 

Miata 

Prius 

Corolla 

… 

Famous 
people 

Barack Obama 

Bill Clinton 

LeBron James 

… 

Famous 
athletes 

Companies Products 

Basketball 
players 

http://rtw.ml.cmu.edu  



One thing to work with 

Given knowledge of relation among concepts, 
i.e., an ontology. 

E.g., 

Athlete 

Person City 

Country 

Can’t be both 

A ⊆ P 



Suggests the following idea used in the NELL 
system  

Run separate algorithms for each category: 
• Starting from small labeled sample, use patterns 

found on web to generalize. 

• Use presence of other learning algorithms & 
ontology to prevent over-generalization. 

…<X> symphony orchestra… 

…I was born in <X>… 



Can we give a theoretical analysis? 

[Balcan-B-Mansour ICML13] 



Setup 

• L categories.  

• Ontology 𝑅 ⊆ 0,1 𝐿 specifies which L-tuples 
of labelings are legal.  (Given to us) 

Athlete 

Person City 

Country 

• Focus on those described by a graph of NAND and 
SUBSET relations. 



Setup 

Use a multi-view framework for examples: 
• Example 𝑥 is L-tuple (𝑥1, 𝑥2, … , 𝑥𝐿). 

•  𝑐𝑖
∗ is target classifier for category 𝑖. 

Athlete 

Person City 

Country 

Think of space 𝑋𝑖 as plausibly-useful phrases for 
determining membership in category 𝑖. 

• Correct labeling is (𝑐1
∗ 𝑥1 , 𝑐2

∗ 𝑥2 , … , 𝑐𝐿
∗ 𝑥𝐿 ).  

[𝑥𝑖 is a vector and is the 
view for category 𝑖]  



Setup 

Use a multi-view framework for examples: 
• Example 𝑥 is L-tuple (𝑥1, 𝑥2, … , 𝑥𝐿). 

•  𝑐𝑖
∗ is target classifier for category 𝑖. 

Think of space 𝑋𝑖 as plausibly-useful phrases for 
determining membership in category 𝑖. 

• Correct labeling is (𝑐1
∗ 𝑥1 , 𝑐2

∗ 𝑥2 , … , 𝑐𝐿
∗ 𝑥𝐿 ).  

• Assume realizable setting. Algorithm’s goal: 
    Find ℎ1, ℎ2, … , ℎ𝐿 s.t.  Pr

𝑥∼𝐷
(∃𝑖 ∶ ℎ𝑖 𝑥𝑖 ≠ 𝑐𝑖

∗ 𝑥𝑖 ) is low. 

[𝑥𝑖 is a vector and is the 
view for category 𝑖]  



Unlabeled error rate 

Given ℎ = (ℎ1, ℎ2, … , ℎ𝐿), define: 

𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = Pr
𝑥∼𝐷

ℎ1 𝑥1 , ℎ2 𝑥2 , … , ℎ𝐿 𝑥𝐿 ∈ 𝑅  

Clearly, 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ ≤ 𝑒𝑟𝑟(ℎ). 

If we could argue some form of the other 
direction, then in principle could optimize 
over just unlabeled data to get low error. 

Prediction  violates 
ontology 

Prediction differs 
from target ⇒ 



Some complications 

Any rule ℎ = (ℎ1, ℎ2, … , ℎ𝐿) of this form has 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = 0. 

… 
𝑋1 𝑋2 𝑋𝐿 

𝑐1
∗ = 1 𝑐𝐿

∗ = 1 

ℎ2 = 1 

Or of this form: 

… 
𝑋1 𝑋2 𝑋𝐿 

(one ℎ𝑖 always positive, the rest always negative) 

Let’s consider ontology of complete NAND graph.  



But here is something you can say 

If we assume Pr
D

𝑐𝑖
∗ 𝑥𝑖 = 1 ∈ [𝛼, 1 − 𝛼]. 

… 
𝑋1 𝑋2 𝑋𝐿 

𝑐1
∗ = 1 𝑐𝐿

∗ = 1 

ℎ2 = 1 

And we maximize aggressiveness 

 Pr
𝐷
(ℎ𝑖 𝑥𝑖 = 1)

𝑖

 

subject to low 𝑒𝑟𝑟𝑢𝑛𝑙(ℎ) and 𝑃𝑟 ℎ𝑖 𝑥𝑖 = 1 ∈ [𝛼, 1 − 𝛼] for all 𝑖,  

can show achieves low 𝑒𝑟𝑟(ℎ) under a fairly interesting 
set of conditions. 



More specifically 

1. Assume  each category has at least 1 NAND 
incident edge.  

2. For each edge, all 3 non-disallowed options appear 
with prob ≥ 𝛼′.                              [e.g., person-noncity, nonperson-city, 
nonperson-noncity] 

3. For any categories 𝑖, 𝑗, rules ℎ𝑖 , ℎ𝑗, labels 𝑙𝑖 , 𝑙𝑖
′, 𝑙𝑗 , 𝑙𝑗

′, 

Pr ℎ𝑖 𝑥𝑖 = 𝑙𝑖
′ 𝑐𝑖

∗ 𝑥𝑖 = 𝑙𝑖 , ℎ𝑗 𝑥𝑗 = 𝑙𝑗
′, 𝑐𝑗

∗ 𝑥𝑗 = 𝑙𝑗   

≥ 𝜆 ⋅ Pr ℎ𝑖 𝑥𝑖 = 𝑙𝑖
′ 𝑐𝑖

∗ 𝑥𝑖 = 𝑙𝑖)  
for some 𝜆 > 0. 



Then to achieve 𝑒𝑟𝑟 ℎ ≤ 𝜖, it suffices to choose most 
aggressive ℎ subject to 

   Pr (ℎ𝑖 𝑥𝑖 = 1) ∈ [𝛼, 1 − 𝛼]   and   𝑒𝑟𝑟𝑢𝑛𝑙 ℎ ≤
𝛼𝛼′𝜆2𝜖

4𝐿
.  

More specifically 

“aggressive”  = maximizing  Pr
𝐷
(ℎ𝑖 𝑥𝑖 = 1)

𝑖

 



Application to stylized version of NELL-type 
algorithm 

Can we use this to analyze iterative greedy “region-
growing” algorithms like in NELL? 



Application to stylized version of NELL-type 
algorithm 

• Assume have algs 𝐴1, 𝐴2, … , 𝐴𝐿 for each category. 

• From a few labeled pts get ℎ𝑖
0 ⊆ 𝑐𝑖

∗ s.t. Pr ℎ𝑖
∗ ≥ 𝛼. 

… 

• Given ℎ𝑖 ⊆ 𝑐𝑖
∗, alg 𝐴𝑖 can produce 𝑘 proposals for 

adding ≥ 𝛼 probability mass to ℎ𝑖. 

• Each is either good or at least 𝛼-bad. 

Analysis ⇒ can use unlabeled data + ontology to 
identify good extension. 



Open questions/directions: ontology-based 
learning 

– Weaken assumptions needed on stylized iterative alg 
(e.g., allow extensions that are only “slightly bad”). 

– Allow ontology to be imperfect, allow more dependence -  
perhaps getting smooth tradeoff with labeled data 
requirements. 

– Extend to learning of relations, more complex info about 
objects (in addition to category memberships). 



Part 3: Lifelong Learning and Autoencoding 
[Balcan-B-Vempala]  

 What if you have a series of learning problems that 
share some commonalities?   
 Want to learn these commonalities as you progress through life 

in order to learn faster/better. 

 What if you have a series of images and want to 
adaptively learn a good representation / autoencoder 
for these images? 

 For today, just give one clean result. 



Sparse Boolean Autoencoding 

Say you have a set 𝑆 of images represented as 𝑛-bit vectors. 

 Goal is to find 𝑀 meta-features 𝑚1, 𝑚2, … (also 𝑛-bit 
vectors) s.t. each given image can be reconstructed by 
superimposing (taking bitwise-OR) some 𝑘 of them. 

o o o 

– In fact, each  𝑥 ∈ 𝑆 is reconstructed by taking 
bitwise-OR of all 𝑚𝑗 ≼ 𝑥, and 𝑚𝑗 ≼ 𝑥 ≤ 𝑘. 

You want to find a “better”, sparse representation. 

𝑚𝑗 𝑖 ≤ 𝑥[𝑖] for all 𝑖. 



Sparse Boolean Autoencoding 

Equivalently, want a 2-layer AND-OR network, with 𝑀 nodes 
in the middle level, s.t. each 𝑥 ∈ 𝑆 is represented 𝑘-sparsely. 

0 1 1 0 0 1 1 1 1 0 0 1 0 1 

1 1 0 0 0 0 0 0  0 0 0 0    0 0 0 0 0 0  

0 1 1 0 0 1 1 1 1 0 0 1 0 1 

𝑥 → 

Trivial with 𝑀 = |𝑆| (let’s assume all 𝑥 ∈ 𝑆 in middle slice) or 
𝑘 = 𝑛.  Interesting is 𝑘 ≪ 𝑛, 𝑀 ≪ 𝑆 . 

𝑀 AND 
gates: 

𝑛 OR 
gates: 



Sparse Boolean Autoencoding 

Equivalently, want a 2-layer AND-OR network, with 𝑀 nodes 
in the middle level, s.t. each 𝑥 ∈ 𝑆 is represented 𝑘-sparsely. 

 Unfortunately even the case 𝑘 = 𝑀 is NP-hard.            
“Set-basis problem”. 

 We’ll make a “𝑐-anchor set” assumption:  
 Assume exists 𝑀 meta-features 𝑚1, 𝑚2, … ,𝑚𝑀 s.t. each 𝑥 ∈ 𝑆 has a 

subset 𝑅𝑥, 𝑅𝑥 = 𝑘, s.t. x is the bitwise-OR of the 𝑚𝑗 ∈ 𝑅𝑥. 

 For each 𝑚𝑗 , exists 𝑦𝑗 ≼ 𝑚𝑗 of Hamming weight at most 𝑐, s.t. for 
all 𝑥 ∈ 𝑆, if 𝑦𝑗 ≼ 𝑥 then 𝑚𝑗 ∈ 𝑅𝑥. 

 Here, 𝑦𝑗 is an “anchor set” for 𝑚𝑗: it identifies 𝑚𝑗 at 
least for the images in 𝑆.  An 𝑥 that contains all bits in 
𝑦𝑗 has 𝑚𝑗 in its relevant set. 



Sparse Boolean Autoencoding 

Now, under this condition, can get an efficient log-factor 
approximation. 

 In time poly(𝑛𝑐) can find a set of 𝑂(𝑀 log(𝑛 𝑆 )) meta-
features that satisfy the 𝑐-anchor-set assumption at 
sparsity-level 𝑂(𝑘 log(𝑛 𝑆 )). 

 Idea: first create candidate meta-features 𝑚 𝑦 for each 𝑦 
of Hamming weight ≤ 𝑐.  

 Then set up LP to select.  Variables 0 ≤ 𝑍𝑦 ≤ 1 for each 𝑦 
and constraints: 
 For all 𝑥, 𝑖:    𝑍𝑦𝑦:𝑒𝑖≼𝑚 𝑦≼𝑥 ≥ 1   (each 𝑥 is fractionally covered) 

 For all 𝑥:  𝑍𝑦𝑦:𝑚 𝑦≼𝑥 ≤ 𝑘    (but not by more than 𝑘) 

 And then round. 
 



Extensions/Other Results 

 Online Boolean autoencoding. 
 Examples are arriving online.  Goal is to minimize number of 

“mistakes” where current set of meta-features is not sufficient 
to represent the new example. 

 Learning related LTFs. 
 Want to learn a series of related LTFs. 

 Learn a good representation as we go. 

 Issue: haven’t learned previous targets perfectly, so can make 
it harder to extract commonalities.  

 Lots of nice open problems 
 E.g., for autoencoding, can assumptions be weakened?  

Approximation / mistake bounds be improved? 



Conclusions 

A lot of interesting new directions in practical ML 
that are in need to theoretical models and 
understanding, as well as fast algorithms. 

This was a selection from my own perspective. 

ML is an exciting field for theory, and there are 
places for all types of work (modeling, fast 

algorithms, structural results, connections,…) 


