
New Directions in Learning

Theory

Avrim Blum

[ACM-SIAM Symposium on Discrete Algorithms 2015]

Carnegie Mellon University

Machine Learning

Machine Learning is concerned with:
– Making useful, accurate generalizations or predictions

from data.

– Improving performance at a range of tasks from
experience, observations, and feedback.

Typical ML problems:

Given database of images, classified as
male or female, learn a rule to classify new images.

http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8
http://images.google.com/imgres?imgurl=http://www.classicsavers.com/casablanca.jpg&imgrefurl=http://www.classicsavers.com/Casablanca.html&h=600&w=800&sz=72&tbnid=wSXOd5UUibIJ:&tbnh=106&tbnw=141&start=3&prev=/images?q=casablanca&hl=en&lr=&ie=UTF-8

Machine Learning

Machine Learning is concerned with:
– Making useful, accurate generalizations or predictions

from data.

– Improving performance at a range of tasks from
experience, observations, and feedback.

Typical ML problems:

Given database of protein seqs, labeled by function,
learn rule to predict functions of new proteins.

http://images.google.com/imgres?imgurl=http://www.ebgm.jussieu.fr/~debrevern/PBs/images/protein_04.jpg&imgrefurl=http://www.ebgm.jussieu.fr/~debrevern/PBs/coding.html&h=496&w=709&sz=50&hl=en&start=8&tbnid=RCESdcwRtVouHM:&tbnh=98&tbnw=140&prev=/images?q=protein&gbv=2&hl=en

Machine Learning

Machine Learning is concerned with:
– Making useful, accurate generalizations or predictions

from data.

– Improving performance at a range of tasks from
experience, observations, and feedback.

Typical ML problems:

Given lots of news articles, learn about entities in
the world.

Machine Learning

Machine Learning is concerned with:
– Making useful, accurate generalizations or predictions

from data.

– Improving performance at a range of tasks from
experience, observations, and feedback.

Typical ML problems:

Develop truly useful electronic assistant through
personalization plus experience from others.

Machine Learning Theory

Some tasks we’d like to use ML to solve are a
good fit to classic learning theory models,

others less so.

Today’s talk: 3 directions:

1. Distributed machine learning

2. Multi-task, lightly-supervised learning.

3. Lifelong learning and Autoencoding.

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

Click data

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

Customer data

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

Scientific data

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

Each has only a
piece of the overall

data pie

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

In order to learn over
the whole thing, holders
will need to communicate.

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

Classic ML question:
how much data is

needed to learn a given
type of function well?

Distributed Learning

Many ML problems today involve massive
amounts of data distributed across multiple
locations.

These settings bring
up a new question: how
much communication?

Distributed Learning

Two natural high-level scenarios:
1. Each location has data from same distribution.

– So each could in principle learn on its own.

– But want to use limited communication to speed up –
ideally to centralized learning rate.

– Very nice work of [Dekel, Giliad-Bachrach, Shamir, Xiao],…

Distributed Learning

Two natural high-level scenarios:
2. Data is arbitrarily partitioned.

– E.g., one location with positives, one with negatives.

– Learning without communication is impossible.

– This will be our focus here.

– Based on [Balcan-B-Fine-Mansour]. See also [Daume-
Phillips-Saha-Venkatasubramanian].

+
+ +

+

+
+ +

+

- -

-
-

- -

-
-

A model

• Goal is to learn unknown function f 2 C given
labeled data from some prob. distribution D.

• However, D is arbitrarily partitioned among k
entities (players) 1,2,…,k. [k=2 is interesting]

+
+ +

+
- -

-
-

A model

• Goal is to learn unknown function f 2 C given
labeled data from some prob. distribution D.

• However, D is arbitrarily partitioned among k
entities (players) 1,2,…,k. [k=2 is interesting]

• Players can sample (x,f(x)) from their own Di.

1 2 … k

D1 D2 … Dk

D = (D1 + D2 + … + Dk)/k

A model

• Goal is to learn unknown function f 2 C given
labeled data from some prob. distribution D.

• However, D is arbitrarily partitioned among k
entities (players) 1,2,…,k. [k=2 is interesting]

• Players can sample (x,f(x)) from their own Di.

1 2 … k

D1 D2 … Dk

 Goal: learn good rule over
combined D, using as little
communication as possible.

A Simple Baseline

We know we can learn any class of VC-dim d to error
² from 𝑚 = 𝑂(𝑑/𝜖 log 1/𝜖) examples.

– Each player sends 1/k fraction to player 1.

– Player 1 finds rule h that whp has error · ² with
respect to D. Sends h to others.

– Total: 1 round, 𝑂(𝑑/𝜖 log 1/𝜖) examples sent.

D1 D2 … Dk

Can we do better in general? Yes.

𝑂(𝑑 log 1/𝜖) examples with
Distributed Boosting

Distributed Boosting

Idea:

• Run baseline #1 for ² = ¼. [everyone sends a small
amount of data to player 1, enough to learn to error ¼]

• Get initial rule h1, send to others.

D1 D2 … Dk

Distributed Boosting

Idea:

• Players then reweight their Di to focus on
regions h1 did poorly.

• Repeat

D1 D2 … Dk

+
+ +

+

+
+ +

+

- -

-
-

- -

-
-

+
+

-
-
- -

• Distributed implementation of Adaboost Algorithm.
• Some additional low-order communication needed

too (players send current performance level to #1, so can
request more data from players where h doing badly).

• Key point: each round uses only O(d) samples and
lowers error multiplicatively.

• Total 𝑂(𝑑 log 1/𝜖) examples + 𝑂(𝑘 log 𝑑) extra bits.

Can we do better for specific classes of
functions?

D1 D2 … Dk

Yes.

Here are two classes with interesting open problems.

Parity functions

Examples x 2 {0,1}d. f(x) = x¢vf mod 2, for
unknown vf.

• Interesting for k=2.

• Classic communication LB for determining if
two subspaces intersect.

• Implies (d2) bits LB to output good v.

• What if allow rules that “look different”?

 D1 D2 … Dk D1 D2

Parity functions

Examples x 2 {0,1}d. f(x) = x¢vf mod 2, for
unknown vf.

• Parity has interesting property that:
(a) Can be “properly” PAC-learned. [Given dataset S

of size O(d/² log 1/²), just solve the linear system]

(b) Can be “non-properly” learned in reliable-useful
model of Rivest-Sloan’88.

 [if x in subspace spanned
by S, predict accordingly, else say “??”]

S vector vh

S

x
f(x)

??

D1 D2

Parity functions

Examples x 2 {0,1}d. f(x) = x¢vf mod 2, for
unknown vf.

• Algorithm:
– Each player i properly PAC-learns over Di to get

parity function gi. Also improperly R-U learns to
get rule hi. Sends gi to other player.

– Uses rule: “if hi predicts, use it; else use g3-i.”

g1

h1

g2

h2

Can one extend to k=3 players?

Linear Separators

Can one do better?

+
+ +

+

- -

-
-

Linear separators thru origin. (can assume pts on sphere)

• Say we have a near-uniform prob. distrib. D over Sd.

• VC-bound, margin bound, Perceptron mistake-bound all give
O(d) examples needed to learn, so O(d) examples of
communication using baseline (for constant k, ²).

Linear Separators

Idea: Use margin-version of Perceptron alg [update
until f(x)(w ¢ x) ¸ 1 for all x] and run round-robin.

+
+ +

+

- -

-
-

Linear Separators

Idea: Use margin-version of Perceptron alg [update
until f(x)(w ¢ x) ¸ 1 for all x] and run round-robin.

• So long as examples xi of player i and xj of player j
are reasonably orthogonal, updates of player j don’t
mess with data of player i.

– Few updates) no damage.

– Many updates) lots of progress!

Linear Separators

Idea: Use margin-version of Perceptron alg [update
until f(x)(w ¢ x) ¸ 1 for all x] and run round-robin.

• If overall distrib. D is near uniform [density bounded

by c¢unif], then total communication (for constant k,
²) is O((d log d)1/2) vectors rather than O(d).

Get similar savings for general distributions?

Under just the assumption that exists a linear
separator of margin 𝛾, can you beat 𝑂 1/𝛾2

vectors of angular precision 𝛾?

Clustering and Core-sets

Another very natural task to perform on distributed
data is clustering.

• Data is arbitrarily partitioned among players.
(not necessarily related to the clusters)

• Want to solve 𝑘-median or 𝑘-means problem over
overall data. (now using 𝑘 for # clusters)

Clustering and Core-sets

• Key to algorithm is a distributed procedure for
constructing a small core-set.

[Balcan-Ehrlich-Liang] building on [Feldman-Langberg]

– Weighted set of points S s.t. cost of any proposed 𝑘
centers on S is within 1 ± 𝜖 of cost on entire dataset P.

Clustering and Core-sets

• Each player 𝑖 computes 𝑂(1) k-me[di]an approx 𝐵𝑖
for its own points 𝑃𝑖, sends 𝑐𝑜𝑠𝑡(𝑃𝑖 , 𝐵𝑖) to others.

[Balcan-Ehrlich-Liang] building on [Feldman-Langberg]

• Each player 𝑖 samples using Pr 𝑝 ∝ 𝑐𝑜𝑠𝑡(𝑝, 𝐵𝑖) for #
times proportional to overall cost.

• Show an appropriate weighting of samples and 𝐵𝑖 is
a core-set of the overall dataset.

Overall size 𝑂
𝑘𝑑

𝜖2 for 𝑘-median, 𝑂
𝑘𝑑

𝜖4 for 𝑘-means

Use some interactive strategy like in
distributed boosting to reduce dependence

on 𝜖?

Direction 2: multi-task, lightly

supervised learning

Growing number of scenarios where
we’d like to learn

many related tasks

from few labeled examples of each

by leveraging how the tasks are
related

E.g., NELL system [Mitchell; Carlson et al] learns multiple
related categories by processing news articles on the web

Cities

New York

Atlanta

Boston

…

Countries

France

United States

Romania

Israel

…

Cars

Miata

Prius

Corolla

…

Famous
people

Barack Obama

Bill Clinton

LeBron James

…

Famous
athletes

Companies Products

Basketball
players

http://rtw.ml.cmu.edu

One thing to work with

Given knowledge of relation among concepts,
i.e., an ontology.

E.g.,

Athlete

Person City

Country

Can’t be both

A ⊆ P

Suggests the following idea used in the NELL
system

Run separate algorithms for each category:
• Starting from small labeled sample, use patterns

found on web to generalize.

• Use presence of other learning algorithms &
ontology to prevent over-generalization.

…<X> symphony orchestra…

…I was born in <X>…

Can we give a theoretical analysis?

[Balcan-B-Mansour ICML13]

Setup

• L categories.

• Ontology 𝑅 ⊆ 0,1 𝐿 specifies which L-tuples
of labelings are legal. (Given to us)

Athlete

Person City

Country

• Focus on those described by a graph of NAND and
SUBSET relations.

Setup

Use a multi-view framework for examples:
• Example 𝑥 is L-tuple (𝑥1, 𝑥2, … , 𝑥𝐿).

• 𝑐𝑖
∗ is target classifier for category 𝑖.

Athlete

Person City

Country

Think of space 𝑋𝑖 as plausibly-useful phrases for
determining membership in category 𝑖.

• Correct labeling is (𝑐1
∗ 𝑥1 , 𝑐2

∗ 𝑥2 , … , 𝑐𝐿
∗ 𝑥𝐿).

[𝑥𝑖 is a vector and is the
view for category 𝑖]

Setup

Use a multi-view framework for examples:
• Example 𝑥 is L-tuple (𝑥1, 𝑥2, … , 𝑥𝐿).

• 𝑐𝑖
∗ is target classifier for category 𝑖.

Think of space 𝑋𝑖 as plausibly-useful phrases for
determining membership in category 𝑖.

• Correct labeling is (𝑐1
∗ 𝑥1 , 𝑐2

∗ 𝑥2 , … , 𝑐𝐿
∗ 𝑥𝐿).

• Assume realizable setting. Algorithm’s goal:
 Find ℎ1, ℎ2, … , ℎ𝐿 s.t. Pr

𝑥∼𝐷
(∃𝑖 ∶ ℎ𝑖 𝑥𝑖 ≠ 𝑐𝑖

∗ 𝑥𝑖) is low.

[𝑥𝑖 is a vector and is the
view for category 𝑖]

Unlabeled error rate

Given ℎ = (ℎ1, ℎ2, … , ℎ𝐿), define:

𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = Pr
𝑥∼𝐷

ℎ1 𝑥1 , ℎ2 𝑥2 , … , ℎ𝐿 𝑥𝐿 ∈ 𝑅

Clearly, 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ ≤ 𝑒𝑟𝑟(ℎ).

If we could argue some form of the other
direction, then in principle could optimize
over just unlabeled data to get low error.

Prediction violates
ontology

Prediction differs
from target ⇒

Some complications

Any rule ℎ = (ℎ1, ℎ2, … , ℎ𝐿) of this form has 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = 0.

…
𝑋1 𝑋2 𝑋𝐿

𝑐1
∗ = 1 𝑐𝐿

∗ = 1

ℎ2 = 1

Or of this form:

…
𝑋1 𝑋2 𝑋𝐿

(one ℎ𝑖 always positive, the rest always negative)

Let’s consider ontology of complete NAND graph.

But here is something you can say

If we assume Pr
D

𝑐𝑖
∗ 𝑥𝑖 = 1 ∈ [𝛼, 1 − 𝛼].

…
𝑋1 𝑋2 𝑋𝐿

𝑐1
∗ = 1 𝑐𝐿

∗ = 1

ℎ2 = 1

And we maximize aggressiveness

 Pr
𝐷
(ℎ𝑖 𝑥𝑖 = 1)

𝑖

subject to low 𝑒𝑟𝑟𝑢𝑛𝑙(ℎ) and 𝑃𝑟 ℎ𝑖 𝑥𝑖 = 1 ∈ [𝛼, 1 − 𝛼] for all 𝑖,

can show achieves low 𝑒𝑟𝑟(ℎ) under a fairly interesting
set of conditions.

More specifically

1. Assume each category has at least 1 NAND
incident edge.

2. For each edge, all 3 non-disallowed options appear
with prob ≥ 𝛼′. [e.g., person-noncity, nonperson-city,
nonperson-noncity]

3. For any categories 𝑖, 𝑗, rules ℎ𝑖 , ℎ𝑗, labels 𝑙𝑖 , 𝑙𝑖
′, 𝑙𝑗 , 𝑙𝑗

′,

Pr ℎ𝑖 𝑥𝑖 = 𝑙𝑖
′ 𝑐𝑖

∗ 𝑥𝑖 = 𝑙𝑖 , ℎ𝑗 𝑥𝑗 = 𝑙𝑗
′, 𝑐𝑗

∗ 𝑥𝑗 = 𝑙𝑗

≥ 𝜆 ⋅ Pr ℎ𝑖 𝑥𝑖 = 𝑙𝑖
′ 𝑐𝑖

∗ 𝑥𝑖 = 𝑙𝑖)
for some 𝜆 > 0.

Then to achieve 𝑒𝑟𝑟 ℎ ≤ 𝜖, it suffices to choose most
aggressive ℎ subject to

 Pr (ℎ𝑖 𝑥𝑖 = 1) ∈ [𝛼, 1 − 𝛼] and 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ ≤
𝛼𝛼′𝜆2𝜖

4𝐿
.

More specifically

“aggressive” = maximizing Pr
𝐷
(ℎ𝑖 𝑥𝑖 = 1)

𝑖

Application to stylized version of NELL-type
algorithm

Can we use this to analyze iterative greedy “region-
growing” algorithms like in NELL?

Application to stylized version of NELL-type
algorithm

• Assume have algs 𝐴1, 𝐴2, … , 𝐴𝐿 for each category.

• From a few labeled pts get ℎ𝑖
0 ⊆ 𝑐𝑖

∗ s.t. Pr ℎ𝑖
∗ ≥ 𝛼.

…

• Given ℎ𝑖 ⊆ 𝑐𝑖
∗, alg 𝐴𝑖 can produce 𝑘 proposals for

adding ≥ 𝛼 probability mass to ℎ𝑖.

• Each is either good or at least 𝛼-bad.

Analysis ⇒ can use unlabeled data + ontology to
identify good extension.

Open questions/directions: ontology-based
learning

– Weaken assumptions needed on stylized iterative alg
(e.g., allow extensions that are only “slightly bad”).

– Allow ontology to be imperfect, allow more dependence -
perhaps getting smooth tradeoff with labeled data
requirements.

– Extend to learning of relations, more complex info about
objects (in addition to category memberships).

Part 3: Lifelong Learning and Autoencoding
[Balcan-B-Vempala]

 What if you have a series of learning problems that
share some commonalities?
 Want to learn these commonalities as you progress through life

in order to learn faster/better.

 What if you have a series of images and want to
adaptively learn a good representation / autoencoder
for these images?

 For today, just give one clean result.

Sparse Boolean Autoencoding

Say you have a set 𝑆 of images represented as 𝑛-bit vectors.

 Goal is to find 𝑀 meta-features 𝑚1, 𝑚2, … (also 𝑛-bit
vectors) s.t. each given image can be reconstructed by
superimposing (taking bitwise-OR) some 𝑘 of them.

o o o

– In fact, each 𝑥 ∈ 𝑆 is reconstructed by taking
bitwise-OR of all 𝑚𝑗 ≼ 𝑥, and 𝑚𝑗 ≼ 𝑥 ≤ 𝑘.

You want to find a “better”, sparse representation.

𝑚𝑗 𝑖 ≤ 𝑥[𝑖] for all 𝑖.

Sparse Boolean Autoencoding

Equivalently, want a 2-layer AND-OR network, with 𝑀 nodes
in the middle level, s.t. each 𝑥 ∈ 𝑆 is represented 𝑘-sparsely.

0 1 1 0 0 1 1 1 1 0 0 1 0 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 1 1 1 1 0 0 1 0 1

𝑥 →

Trivial with 𝑀 = |𝑆| (let’s assume all 𝑥 ∈ 𝑆 in middle slice) or
𝑘 = 𝑛. Interesting is 𝑘 ≪ 𝑛, 𝑀 ≪ 𝑆 .

𝑀 AND
gates:

𝑛 OR
gates:

Sparse Boolean Autoencoding

Equivalently, want a 2-layer AND-OR network, with 𝑀 nodes
in the middle level, s.t. each 𝑥 ∈ 𝑆 is represented 𝑘-sparsely.

 Unfortunately even the case 𝑘 = 𝑀 is NP-hard.
“Set-basis problem”.

 We’ll make a “𝑐-anchor set” assumption:
 Assume exists 𝑀 meta-features 𝑚1, 𝑚2, … ,𝑚𝑀 s.t. each 𝑥 ∈ 𝑆 has a

subset 𝑅𝑥, 𝑅𝑥 = 𝑘, s.t. x is the bitwise-OR of the 𝑚𝑗 ∈ 𝑅𝑥.

 For each 𝑚𝑗 , exists 𝑦𝑗 ≼ 𝑚𝑗 of Hamming weight at most 𝑐, s.t. for
all 𝑥 ∈ 𝑆, if 𝑦𝑗 ≼ 𝑥 then 𝑚𝑗 ∈ 𝑅𝑥.

 Here, 𝑦𝑗 is an “anchor set” for 𝑚𝑗: it identifies 𝑚𝑗 at
least for the images in 𝑆. An 𝑥 that contains all bits in
𝑦𝑗 has 𝑚𝑗 in its relevant set.

Sparse Boolean Autoencoding

Now, under this condition, can get an efficient log-factor
approximation.

 In time poly(𝑛𝑐) can find a set of 𝑂(𝑀 log(𝑛 𝑆)) meta-
features that satisfy the 𝑐-anchor-set assumption at
sparsity-level 𝑂(𝑘 log(𝑛 𝑆)).

 Idea: first create candidate meta-features 𝑚 𝑦 for each 𝑦
of Hamming weight ≤ 𝑐.

 Then set up LP to select. Variables 0 ≤ 𝑍𝑦 ≤ 1 for each 𝑦
and constraints:
 For all 𝑥, 𝑖: 𝑍𝑦𝑦:𝑒𝑖≼𝑚 𝑦≼𝑥 ≥ 1 (each 𝑥 is fractionally covered)

 For all 𝑥: 𝑍𝑦𝑦:𝑚 𝑦≼𝑥 ≤ 𝑘 (but not by more than 𝑘)

 And then round.

Extensions/Other Results

 Online Boolean autoencoding.
 Examples are arriving online. Goal is to minimize number of

“mistakes” where current set of meta-features is not sufficient
to represent the new example.

 Learning related LTFs.
 Want to learn a series of related LTFs.

 Learn a good representation as we go.

 Issue: haven’t learned previous targets perfectly, so can make
it harder to extract commonalities.

 Lots of nice open problems
 E.g., for autoencoding, can assumptions be weakened?

Approximation / mistake bounds be improved?

Conclusions

A lot of interesting new directions in practical ML
that are in need to theoretical models and
understanding, as well as fast algorithms.

This was a selection from my own perspective.

ML is an exciting field for theory, and there are
places for all types of work (modeling, fast

algorithms, structural results, connections,…)

