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Abstract

In this paper we provide theoretical and experimental re-
sults on a random-surfer model for construction of a random
graph. In this model, a new node connects to the existing
graph by choosing a start node at random and then perform-
ing a short random walk. We show that in certain formula-
tions, this results in the same distribution as the preferential-
attachment random-graph model, and in others we give a di-
rect analysis of power-law distribution of degrees or “virtual
degrees” of the resulting graphs. We also present experimen-
tal results for a number of settings of parameters that we are
not able to analyze mathematically.

1 Introduction

There has been substantial work in recent years on the
preferential attachment random graph model. In this model,
a graph is constructed in the following manner. Nodes arrive
one at a time, and each new node makesk connections
to the existing graph. However, unlike classic random
graph models, these connections are not made uniformly
at random, but rather with probability proportional to the
degree of existing nodes in the graph. This process is known
to produce graphs with a power law degree distribution [2]
and that have high conductance [15], and has been proposed
as a model for graphs such as the graph of links between
pages on the World Wide Web.

A natural question that arises when considering the
preferential attachment model iswhy: why should a new
node connect to existing nodes with probability proportional
to their degree? Is it because we imagine that high degree
nodes are “better” (and the degree of a node is an indicator
of its quality) or is it for some other reason?

The starting point for this paper is the observation that
a simple “random surfer” model provides a natural explana-
tion for preferential attachment. In particular, imagine that
each new node (a person setting up their web page) puts ink
links into the existing graph by picking a random start node
and then randomly surfing the web until it findsk interesting
pages to connect to. Imagine also that each page is equally
likely to be interesting to the surfer and each link is bidirec-
tional (so we have an undirected graph). Then, if the prob-
ability p of a page being “interesting” is sufficiently small,
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these connections will be made (approximately) according to
the stationary distribution of the walk, which is exactly the
preferential attachment distribution. Furthermore, since such
graphs have high conductance [15], one should not need an
extremely low value ofp for this to hold. Thus, preferential-
attachment may arise even if all nodes are in a sense “equally
good”, and differences between degrees may not necessarily
be an indicator of differences in inherent quality.

Based on this as motivation, in this paper we propose
and analyze several “random surfer” models for graph con-
struction. We also give a number of experimental results,
both for models we know how to analyze and for several that
we do not. Interestingly, the models we are best able to ana-
lyze in this setting are alldirectedgraph models, rather than
undirected models as the one described above. In addition,
some of these models can be thought of as making a bridge
between the preferential attachment model and the copying
model of [13].

2 Random Surfer Models

In this section, we describe several random surfer models
that we will examine in the rest of the paper. In each model,
nodes arrive one at a time, makingk connections to the
existing graph. In some models these connections will be
viewed as directed edges, and in some as undirected edges.
All our models begin with a single start nodev0 havingk
self-loops. In general, we usevt to denote the vertex added
in thetth step, andn as the total number of vertices.

To motivate our first model, note that if the connections
to the existing graph are made uniformly at random, then
we have an online version of the standard Erdos-Renyi
graph model, and with high probability the maximum degree
will be O(log n). On the other hand, suppose we make
each connection by first picking a random start node in the
existing graph, and then taking a random walk ofexactly one
step. Then, in the directed case, this will just produce a star
(all edges will point to the rootv0), and in the undirected
case, it is not hard to show that there is a good chance this
produces something star-like of maximum degreeΩ(n).1

1In particular, if the graph is currently a star oft nodes, then there is
a (t − 1)/t chance the random start node is one of the spokes, so the 1-
step walk moves to the center and the next edge maintains the star. More
generally, with high probability, the number of non-leaf vertices remains
small and the expected degree of the initial node isΩ(n) See Section 3.3.



However, if we flip a coin and with probabilityp ∈ (0, 1)
connect to the random start and with probability1− p take a
1-step walk, then we get something much more natural.

MODEL 1. (1-STEP WALK WITH SELF-LOOP) In this
model, we are given parametersk andp. At timet, vertexvt

makesk connections to the existing graph by repeating the
following processk times:

1. Pick an existing nodev uniformly at random from
{v0, . . . , vt−1}.

2. With probabilityp stay atv; with probability1− p take
a 1-step walk to a random neighbor ofv.

3. Add an edge fromvt to the current node.

In the directed version, the edges added are directed fromvt

into the existing graph. In the undirected version, edges are
undirected.

Our next model is a walk of the form given in the
Introduction: instead of taking one step, we keep walking
until we find a node of interest and then connect there. In
order to make the model easier to think about, for the case
k > 1 we imagine after each connection we re-start at a new
random start node when performing the next walk.

MODEL 2. (RANDOM WALK WITH COIN FLIPS) In this
model, we are again given parametersk and p. At time
t, vertexvt makesk connections to the existing graph by
repeating the following processk times:

1. Pick an existing nodev uniformly at random from
{v0, . . . , vt−1}.

2. Flip a coin of biasp

3. If the coin comes up heads add an edge fromvt to the
current node and stop.

4. If the coin comes up tails, move to a random neighbor
of the current node and go back to (2).

In the directed version, the edges added are directed fromvt

into the existing graph. In the undirected version, edges are
undirected.

3 Theoretical results

3.1 Directed Walk with Self-Loop. Our first (simple)
result is that the directed version of Model 1 withp = 1/2 is
exactly the preferential attachment model.

THEOREM 3.1. The directed version of Model 1, withp =
1/2, has the same distribution as preferential attachment.

Proof. First, notice that the graph is necessarily a DAG, with
all edges pointing backwards in time, and each vertex has an
out-degree ofk. Now, consider some vertexu in the existing
graph with in-degreedu. An edge from the new vertexvt will
connect tou if either the process choosesu as the start node
of its walk and does not take a step, or else it chooses one
of u’s in-neighborsu′ as the start node anddoestake a step,
selecting the edge fromu′ to u. The first case has probability
p/t, and the second case has probability(1−p)du/(kt). For
p = 1/2, the sum of these two quantities is(k + du)/(2kt)
which is exactly proportional to the total degreek + du of u.

One implication of Theorem 3.1 is that forp > 1/2, the
model is a mixture of preferential-attachment and uniform-
random connections. That is, the casep > 1/2 can be
viewed as: with probability2p − 1 choose a neighbor uni-
formly at random, and with the remaining probability choose
a neighbor with probability proportional to degree. This pro-
cess is known to produce power-law degree distributions.
For generalp ∈ (0, 1), we now give an argument for power-
law degree distributions from first principles.

Let di(t) be the number of nodes with in-degreei at step
t, andDi(t) be the expectation ofdi(t). We now analyze
Di(t) via the following equation.

Di(t + 1) = Di(t) +(3.1)
pk

t
· {Di−1(t)−Di(t)}+(3.2)

(1− p)k
t

· {(i− 1)Di−1(t)− iDi(t)} · 1
k

.(3.3)

Observe that the number of nodes with in-degreei
increases if the new node connects to an existing node of
degreei − 1 and decreases if the new node connects to one
of degreei. The term in (3.2) is due to the fact that with
probabilityp the new node is connected to an existing node
picked uniformly at random. The term in (3.3) corresponds
to the case when with probability1 − p, the new node
connects to a random out-going neighbor of a randomly
picked node. The factork appears in both (3.2) and (3.3)
because each new node makesk connections to the existing
nodes. The factor1/k appears only in (3.3) because in the
case where a random out-going neighbor is chosen, there are
k possible choices. We require for large enought, a new
node does not make more than one connection to an existing
node.

THEOREM 3.2. There exists a constantC > 0 such that as
t tends to infinity,Di(t) ∼ Ci−

2−p
1−p t.

Proof. Using the above equations, the proof follows directly
from the techniques of Kumar et al. [13], Cooper and Frieze



[10], and Mitzenmacher [16], which allow one to determine
the asymptotic behavior ofDi(t).

In particular, for eachi, we make the substitution
Di(t) = cit in (3.1) - (3.3) to obtain the following equation.

(3.4) ci = pk · {ci−1 − ci}+ (1− p) · {(i− 1)ci−1 − ici}

Rearranging (3.4), we have

ci

ci−1
= 1− 2− p

1 + pk + (1− p)i
∼ 1− 2− p

1− p
· 1

i
,

for large values ofi. Using the fact thatΠn
i=1(1+λ/i) =

Θ(nλ), we have

ci = Θ(Πi
j=1(1−

2− p

1− p
· 1
j
)) ∼ Ci−

2−p
1−p ,

for someC > 0.

Moreover, using Theorem 4 of [10], one can also show
that di(t) is concentrated around its mean, as stated in the
following theorem.

THEOREM 3.3. For anyρ > 0,

Pr(|di(t)−Di(t)| ≥ ρ) ≤ exp(− ρ2

8kt
).

3.2 Directed Walk with Coin Flipping. We now consider
the directed case of Model 2, for the casek = 1. That is, we
connect a new node to the existing graph by picking a start
nodeu uniformly at random, and then performing a random
walk, where at each step we halt the walk with probability
p. Sincek = 1, we can view the random graph constructed
as a tree, in which the initial node is the root and every other
node has an edge directed to its parent.

To analyze this walk, we define a notion of thevirtual
degreeof a node that is related to the node’s actual degree,
but also contains terms for the local neighborhood of the
node as well. We then prove that for this definition, at each
step the expected increase in virtual degree of any given
node is proportional to the virtual degree itself. (The virtual
degree itself is a fractional quantity, and at each step will
change by at most some constant.) Using this, we can show
that the expected virtual degrees follow a power-law, and we
can also give some bounds on their concentration about their
means. Moreover, we can give a crude lower bound on the
expectedreal degree of a given node, which is comparable
to its expected virtual degree.

However, our concentration bounds are not sharp
enough to give a true proof that the virtual degrees, or the
real degrees, follow the power law.

DEFINITION 1. Supposeu is a node in the tree. Fori ≥ 0,
denoteLi(u) to be the set of leveli descendants ofu and
li(u) = |Li(u)|. For instance,L0(u) is the set of children,
L1(u) is the set of grandchildren, and so on. Letβ =
{βi}i≥0 be a sequence of real numbers such thatβ0 = 1.
The virtual degree ofu with respect toβ is

ν(u) = 1 +
∑

k≥0

βklk(u).

In the definition of virtual degreeν(u), the leading term
1 corresponds to the parent ofu. We requireβ0 = 1, for
each child ofu should contribute 1 towards the degree of
v. We would like the virtual degree to reflect the actual
degree of a node, and hence ideally, fori ≥ 1, we would
like βi to be small. On the other hand, we also want that
the expected increase in the virtual degreeν(u) of nodeu in
each step to be proportional to its current virtual degree. The
following theorem states we can satisfy these requirements
simultaneously.

THEOREM 3.4. Suppose we consider the directed walk with
coin flipping probabilityp ∈ (0, 1). Then, there exists
β = {βk}k≥0, dependent onp, with β0 = 1 such that for
each nodeu, the expected increase inν(u) from stept to
stept + 1 is p/t · ν(u). Moreover, fork ≥ 0, |βk| ≤ 1, and
ask tends to infinity,βk tends to zero exponentially, i.e. there
is someC > 0 and0 < ρ < 1 such that|βk| ≤ Cρk.

Proof. We fix the coin flipping probabilityp and find some
sequenceβ that satisfies the requirements.

For convenience, we denoteq = 1 − p andL−1(u) =
{u}. Then, fori ≥ 0, if a new connection is made to a node
in Li−1(u), then the increase inν(u) is βi.

Fix i ≥ 0. We first calculate the probability that a new
connection is made to a node inLi−1(u). Recall that we
first pick a node uniformly at random to start the directed
random walk. If we end up making a new connection to a
node inLi−1(u), we must have begun the random walk at
some node inLi−1+j(u), for somej ≥ 0.

We fix somej ≥ 0 and calculate the probability that
the random walk starts at some node inLi−1+j(u) and ends
up at some node inLi−1(u). Note that there areli−1+j(u)
nodes to start and there arej hops to be made. Hence, the
probability isli−1+j(u)/t · qj · p.

It follow that the probability that a new connection is
made to some node inLi−1(u) is p

t

∑
j≥0 qj li−1+j(u).

Hence, the expected increase inν(u) from stept to step
t + 1 is



∑

i≥0

βi · p

t

∑

j≥0

qj li−1+j(u)

=
p

t

∑

i≥0

∑

k≥i−1

βi qk−i+1 lk(u)

=
p

t

∑

k≥−1

∑

0≤i≤k+1

βi qk−i+1 lk(u)

Recall we wish that the above quantity to be equal to

p

t
ν(u) =

p

t
· {1 +

∑

k≥0

βk lk(u)}.

Hence, it suffices to find a sequenceβ such that the
corresponding coefficients oflk(u) are equal.

For k = −1, we requireβ0 = 1; for k = 0, we have
β0q + β1 = β0, which implies thatβ1 = p. In general, for
k ≥ 0, we have

βk =
∑

0≤i≤k+1

βi qk−i+1.

Now, supposek ≥ 0. Then, we have

βk+1 =
∑

0≤i≤k+1

βi qk−i+1

= βk+2 + q
∑

0≤i≤k+1

βi qk−i+1

= βk+2 + qβk.

Hence, the sequenceβ can be determined by the recurrence
β0 = 1, β1 = p and fork ≥ 0, βk+2 − βk+1 + qβk = 0.

We show inductively that|βk| ≤ 1. We first observe that
this is true fork = 0, 1, 2. Assume that the result is true for
integers up tok + 1. In the first case, supposeβk andβk+1

have the same sign. Then,|βk+2| = ||βk+1|−q|βk|| ≤ 1, by
the induction hypothesis. In the second case, supposeβk and
βk+1 have different signs. Hence,|βk+2| = |βk+1 − qβk| ≤
|βk+1 − βk| = q|βk−1| ≤ 1, by the induction hypothesis.

For p = 3/4, we haveβk = k+2
2k+1 . Otherwise, for

other values ofp in (0, 1), let λ1 = (1 − √
1− 4q)/2 and

λ2 = (1 +
√

1− 4q)/2 andβk = Aλk
1 + Bλk

2 , for some
constantsA and B. Observe that since0 < p < 1, the
magnitudes ofλ1 andλ2 are both strictly less than 1. Hence,
in any case, ask tends to infinity,βk tends to 0 exponentially.

For the rest of the discussion, we consider the virtual
degree defined with respect to some sequenceβ that satisfies
Theorem 3.4. We next explore how the virtual degree of a
particular node changes with time. Defineνt(u) to be the
virtual degree of nodeu at stept andtu to be the time when
nodeu first appears. Then, it follows thatνtu(u) = 1, since
each new node is a leaf when it first appears.

THEOREM 3.5. For any nodeu and stept ≥ tu, the
expectationE[νt(u)] = Θ((t/tu)p).

Proof. For anyt > tu, we have from Theorem 3.4 that

E[νt(u)] = (1 + p/(t− 1)) E[vt−1(u)].

Hence,

E[νt(u)] = Πt−1
i=tu

(1 + p/i) = Θ((t/tu)p).

We next give an intuition, similar in spirit to [3], of how
Theorem 3.5 suggests that the virtual degrees of the random
graph should follow the power law. Suppose the random
process is run forn steps to form a random graph withn
nodes. Then, from Theorem 3.5, the expected virtual degree
of the ith node joining the graph isΘ((n/i)p). If we let
κ ≈ Θ((n/i)p), we would havei ≈ Θ(nκ−1/p). Observing
that nodes joining later should probably have smaller virtual
degrees, one might expect that the proportion of nodes
having virtual degrees smaller thanκ to be1 − Θ(κ−1/p).
Differentiating this quantity with respect toκ, we conjecture
that the proportion of nodes having degreeκ should be
κ−(1/p+1).

Unfortunately, we do not have a strong enough concen-
tration bound that would allow us to make the above intu-
ition rigorous. However, using martingale techniques, we
can show that the virtual degree cannot betoo much larger
than its mean for the case when the coin flipping probability
p > 1/2.

THEOREM 3.6. There exists a constantC > 0 such that for
coin flipping probabilityp > 1/2 and anyρ ≥ 1,

Pr[νt(u) ≥ CρE[νt(u)]] ≤ exp{−ρ2/tu}.
Proof. Consider a nodeu and recall thattu is the time when
it first appears. Defineai = 1 + p/i. Recall from the proof
of Theorem 3.5 thatE[νt(u)] = Πt−1

i=tu
ai = Θ((t/tu)p).

Define Yi = νi(u)/E[νi(u)], for i ≥ tu. Then, it
follows that{Yi} is a martingale. DefineDi := Yi − Yi−1.

Recall that the sequence{βk} tends to zero. Hence,
it follows that |νi(u) − νi−1(u)| = Θ(1), and we have
|Di| = |Yi− Yi−1| = 1/E[νi(u)] · |νi(u)− ai−1νi−1(u)| =
1/E[νi(u)] · |Θ(1) − p

i−1 · νi−1(u)| = Θ(1/E[νi(u)]),
since νi−1(u) = O(i − 1). Hence, we can letKi =
Θ(1/E[νi(u)]), and so|Di| ≤ Ki. By the Azuma-Hoeffding
martingale inequality, we have for anyx > 0,

Pr[Yt − Ytu ≥ x] ≤ exp{−x2/2
t∑

i=tu+1

K2
i }.

Observe that forp > 1/2, we have



t∑

i=tu+1

K2
i ≤

t∑

i=tu+1

Θ(1/E[νi(u)]2)

=
t∑

i=tu+1

Θ((i/tu)−2p)

= Θ(tu(2p− 1) · (1− (t/tu)−(2p−1)))
= Θ(tu).

Hence, for some large enoughC ′ > 0, if we put x =
C ′
√

stu, we havePr[Yt − Ytu
≥ x] ≤ e−s. Observing that

Ytu = 1 and takingρ =
√

stu, we have

Pr[νt(u) ≥ CρE[νt(u)]] ≤ exp{−ρ2/tu},

whereC > 0 is a constant large enough to absorb the 1.

3.2.1 A Crude lower bound for the expectedreal degree.
Recall that for a given nodeu in the tree andi ≥ 0, Li(u)
is the set of leveli descendants ofu andli(u) = |Li(u)|. In
particular,l0(u) is the number of children nodeu has. We
can give a crude lower bound forl0(u) for any given nodeu.

THEOREM 3.7. For any nodeu and stept ≥ tu, the
expectationE[l0(u)] ≥ Ω((t/tu)p(1−p)).

Proof. Let the number of leveli descendants of nodeu at
time stept belti(u). It follows that

E[lt+1
0 (u)] = E[lt0(u)]

+
p

t
· {1 +

∑

j≥0

E[ltj(u)](1− p)j+1}

≥ E[lt0(u)] +
p(1− p)

t
E[lt0(u)]

Suppose that for some constantA > 0, for somet > 0,
andα, we haveE[lt0(u)] ≥ Atα. Observing that fort ≥ 1,
(t + 1)α − tα ≤ αtα−1, we have

E[lt+1
0 (u)] ≥ A{tα +

p(1− p)
t

· tα}
≥ A{(t + 1)α + (p(1− p)− α)tα−1}
≥ A(t + 1)α,

if we setα = p(1− p).
Note that fort = tu + 1, E[lt0(u)] = Θ(1). Hence, it

follows thatE[lt0(u)] ≥ Ω((t/tu)p(1−p)).

3.3 Undirected Walk without Self-loop. We now con-
sider the model mentioned when motivating Model 1 in
which a new connection is made to a random neighbor of
a randomly selected node. We show that there is a node,
namely the initial node, that in expectation has degree linear
in the size of the random tree produced. Thus, the self-loop
in Model 1 is crucial for producing natural graphs.

THEOREM 3.8. Under the undirected walk without self-
loop model, the expected number of leaves connected to the
initial node in the random tree produced isΩ(n) , wheren is
the number of nodes.

Proof. Let Ln be number of leaves connected to the initial
nodev0 at stepn andDn be the degree of the initial nodev0

at timen.
Suppose we are at stepn. With probability at least

Ln/n, a leaf ofv0 would be picked and after one jump, a
new connection would be made tov0, causing the number of
leaves connecting tov0 to increase by 1. On the other hand,
with probability 1

n · Ln

Dn
, the initial nodev0 is picked and

after one jump a new connection is made to an existing leaf,
causing the number of leaves connected tov0 to decrease by
1.

Hence,E[Ln+1 − Ln] ≥ Ln/n − 1/n · Ln/Dn ≥
1/n · E[Ln − 1], with the last inequality holding because
Ln ≤ Dn. Hence, if we letZn = Ln − 1, we have
E[Zn+1] ≥ (1 + 1/n)E[Zn]. Observe thatE[Z3] > 0.

Hence,E[Zn] ≥ Πn−1
i=3 (1 + 1/i)E[Z3] = Ω(n) and so

E[Ln] ≥ Ω(n).

4 Experimental results

All experiments were the average of 100 runs with a sizen =
100, 000 nodes andk = 1, i.e. the random graph produced
is a tree. In each case, we investigate how the average
proportionPd of nodes having degreed varies withd. Since
we wish to observe whether the degree distribution follows
a power law, we plotlog10 Pd againstlog10 d, for d up to
40. All four models exhibits power-law like phenomenon.
Figure 5 shows the degree distribution for the four models
and they behave similarly, although the maximum degree
seen is much larger for the directed models than for the
undirected ones.

4.1 Directed walk with self-loops. Figure 1 shows exper-
imentally that the power-law phenomenon exhibited by the
degree distribution becomes more apparent as the probabil-
ity p decreases and the degreed increases. Notice that for
p = 1, this is just the Erdos-Renyi random graph model,
which does not obey the power law. Moreover, the maxi-
mum degree seen forp = 1 is only about 20. Asp gets
smaller the graph can be fitted better with a straight line. On
the hand, the portion of the graph corresponding to large de-
grees can be fitted well with a straight line. Note that even
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Figure 1: Directed walk with self-loops: (Top-Left)p = 1, (Top-Right)p = 0.75, (Bottom-Left)p = 0.5, (Bottom-Right)
p = 0.25
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Figure 2: Directed walk with coin flips: (Left)p = 0.5 (Right)p = 0.25



for p = 0.75, power law phenomenon is exhibited for large
degreesd.

4.2 Directed walk with coin flips. We do not have a
proof, but Figure 2 is very similar to Figure 1, which
indicates that in this case the degrees may be following a
power law.

4.3 Undirected walk with self-loops. We do not know
how to analyze this model yet. As seen in Figure 3, there
are indications that power law phenomenon is exhibited by
large degrees. On the other hand, the distribution of degrees
may follow some other nice distribution that is not very far
from power law (e.g. log-normal distribution).

4.4 Undirected walk with coin flips. Like the previous
model, this model is not easy to analyze. But Figure 4
shows that the degree sequence does not look too different
from undirected walk with self-loops model. We know
theoretically that ifp is very small the degree sequence will
tend closer to a power law. Figure 4 indeed shows that for
p = 0.05, the graph can be better fitted with a straight line.

5 Conclusions and Open Questions

In this paper we present some initial analysis and experi-
mental results for several simple random-surfer models for
web-graph construction. The models are similar in spirit to
the copying model of [13], and in fact the directed case of
Model 1, fork = 1 is identical to both the copying model
and preferential-attachment. There are many open questions
including:

1. In the case of the directed walk with self-loops, we can
analyze theexpectedvirtual degrees and provide some
concentration bounds, but do not have a formal proof
that the virtual degrees necessarily follow a power-law.
Furthermore, even assuming this is the case, we do not
have a proof that this implies that the actual degrees
must be power-law, though our experimental results
show this to in fact be the case. Thus, can one give
a formal proof that the degrees indeed follow a power
law for this model?

2. For the case of theundirectedwalk with self-loops,
we know that asp goes to 0, this walk approaches the
preferential-attachment distribution. However, experi-
mentally, even forp = 1/2 the degrees follow some
heavy-tailed distribution. Can one give a formal analy-
sis of the degree distribution in this case?

3. Finally, another issue brought out by this work is that
differences between degrees of nodes in the (real) web
graph may not necessarily be due to a distinction in
quality, but rather just the result of a random walk
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Figure 3: Undirected walk with self-loops:p = 0.5
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Figure 4: Undirected walk with coin flips: (Top)p = 0.5,
(Bottom)p = 0.05



Degree Directed walk Directed Walk Undirected Walk Undirected Walk
with self-loops with coin-flips with self-loops with coin-flips

1 0.6670 0.6672 0.6136 0.5840
2 0.1669 0.1862 0.1903 0.2044
3 0.06662 0.06929 0.08128 0.09132
4 0.03333 0.03107 0.04137 0.04652
5 0.01900 0.01607 0.02355 0.02596
6 0.01195 0.009108 0.01444 0.01546
7 0.007902 0.005607 0.009301 0.009703
8 0.005547 0.003662 0.006298 0.006354
9 0.004048 0.002524 0.004447 0.004286
10 0.003046 0.001809 0.003242 0.002992
11 0.002332 0.001322 0.002376 0.002134
12 0.001832 0.001006 0.001802 0.001540
13 0.001452 0.0008016 0.001405 0.001131
14 0.001187 0.0006195 0.001088 0.0008657
15 0.0009853 0.0005008 0.0008539 0.0006553
16 0.0007938 0.0004128 0.0006968 0.0005115
17 0.0007005 0.0003486 0.0005608 0.0003950
18 0.0005839 0.0002924 0.0004531 0.0003122
19 0.0005009 0.0002455 0.0003842 0.0002471
20 0.0004400 0.0002118 0.0003121 0.0002031
21 0.0003731 0.0001846 0.0002707 0.0001653
22 0.0003280 0.0001637 0.0002300 0.0001355
23 0.0003001 0.0001426 0.0001990 0.0001082
24 0.0002559 0.0001213 0.0001652 0.0000956
25 0.0002188 0.0001054 0.0001454 0.0000750
26 0.0002020 0.0001018 0.0001289 0.0000639
27 0.0001860 0.0000872 0.0001103 0.0000520
28 0.0001643 0.0000778 0.0000954 0.0000511
29 0.0001545 0.0000720 0.0000851 0.0000395
30 0.0001382 0.0000642 0.0000708 0.0000354
31 0.0001221 0.0000604 0.0000594 0.0000313
32 0.0001116 0.0000528 0.0000564 0.0000240
33 0.0001039 0.0000529 0.0000511 0.0000219
34 0.0000972 0.0000475 0.0000415 0.0000184
35 0.0000904 0.0000425 0.0000407 0.0000162
36 0.0000789 0.0000396 0.0000353 0.0000131
37 0.0000735 0.0000395 0.0000323 0.0000136
38 0.0000649 0.0000362 0.0000264 0.0000118
39 0.0000602 0.0000325 0.0000277 0.0000103
40 0.0000543 0.0000282 0.0000272 0.0000086
Max degree seen 1623 20612 325 138
in 100 runs

Figure 5: Average proportion of nodes having different degrees under different models withn = 100, 000, p = 0.5 and 100
runs



process. Thus, if one is using degree as a measure of
quality, one may just be picking out nodes that have
been around the longest. Instead, some measure that
examines the degree of a noderelative to what one
would expect given the time the node has been in the
system might be more appropriate.

References

[1] W. Aiello, F.R.K. Chung, and L. LU. A random graph
model for massive graphs.Proc. of the 32nd Annual ACM
Symposium on the Theory of Computing, pages 171–180,
2000.

[2] Reka Albert and Albert-Laszlo Barabasi. Topology of evolv-
ing networks: Local events and universality.Physical Review
Letters, pages 5234–5237, 2000.

[3] Sagy Bar, Mira Gonen, and Avishai Wool. An incremental
super-linear internet topology model.5th annual Passive and
Active Measurement Workshop, 2004.

[4] A. Barabasi and R. Albert. Emergence of scaling in random
networks.Science, pages 509–512, 1999.

[5] Bollobas and O.Riordan. The diameter of a scale free random
network.

[6] Bollobas and O.Riordan.Handbook of Graphs and Networks.
Wiley VCH, Berln, 2002.

[7] Bollobas, O.Riordan, J.Spencer, and G.Tusanady. The degree
sequence of a scale free random graph process.Random
Structures and Algorithms, pages 279–290, 2001.

[8] F.R.K. Chung, L.LU, and V. Vu. Eigenvalues of random
power law graphs.Annals of Combinatorics, pages 21–33,
2003.

[9] F.R.K. Chung, L.LU, and V. Vu. The spectra of random
graphs with expected degrees.Proceedings of National
Academies of Science, pages 6313–6318, 2003.

[10] C. Cooper and A. M. Frieze. A general model of undirected
web graphs.Random Structures and Algorithms, pages 311–
335, 2003.

[11] P. Erdos and A. Renyi. On random graphs i.Publicationes,
Mathematicae, Debrecen, pages 290–297, 1959.

[12] M. Faloutos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology.SIGCOMM, pages
251–262, 1999.

[13] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal. Stochastic models for the web
graph. Proc. IEEE Symposium on Foundations of Computer
Science, 2000.

[14] M. Mihail and C. H. Papadimitriou. On the eigenvalue
powerlaw. Randomization and Approximation Techniques,
6th International Workshop, pages 254–262, 2002.

[15] M. Mihail, C. H. Papadimitriou, and A. Saberi. On certain
connectivity properties of the internet topology.Proc. IEEE
Symposium on Foundations of Computer Science, 2003.

[16] M. Mitzenmacher. A brief history of generative models for
lognormal and power law distributions.

[17] H.A. Simon. On a class of skew distribution functions.
Biometrika, pages 425–440, 1955.

[18] Gilbert Strang. Linear Algebra and its Applications. Har-
court Brace Jacanovich, 1988.

[19] D.J. Watts. Small Worlds:They Dynamics of Networks Be-
tween Order and Randomness. Princeton University Press,
Princeton, 1999.

[20] G. Yule. A mathematical theory of evolution based on the
theories of j.c. willis.Philosophical Transactions of the Royal
Society of London (series B), pages 21–87, 1925.


