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Abstract these connections will be made (approximately) according to

In this paper we provide theoretical and experimental fbe stationary distribution of the walk, which is exactly the
sults on a random-surfer model for construction of a randdifeferential attachment distribution. Furthermore, since such
graph. In this model, a new node connects to the existiigPhs have high conductan_ce [15], one should not nged an
graph by choosing a start node at random and then perfofiftremely low value op for this to hold. Thus, preferential-

ing a short random walk. We show that in certain formul&itachment may arise even if all nodes are in a sense “equally
tions, this results in the same distribution as the preferenti@@od”, and differences between degrees may not necessarily
attachment random-graph model, and in others we give akff-an indicator of differences in inherent quality.

rect analysis of power-law distribution of degrees or “virtual Based on this as motivation, in this paper we propose
degrees” of the resulting graphs. We also present experim@id analyze several “random surfer” models for graph con-
tal results for a number of settings of parameters that we ghgiction. We also give a number of experimental results,

not able to analyze mathematically. both for models we know how to analyze and for several that
we do not. Interestingly, the models we are best able to ana-
1 Introduction lyze in this setting are allirectedgraph models, rather than

. . H1ndirected models as the one described above. In addition,
There has been substantial work in recent years on the . .
SQme of these models can be thought of as making a bridge

preferen't|al attachmenF random grgph model. In this mo between the preferential attachment model and the copying
a graph is constructed in the following manner. Nodes arrivé

one at a time, and each new node makesonnections model of [13].

to the existing graph. However, unlike classic rando

graph models, these connections are not made uniforr?:Iy Random Surfer Model_s

at random, but rather with probability proportional to thi this section, we describe several random surfer models
degree of existing nodes in the graph. This process is knoWat we will examine in the rest of the paper. In each model,
to produce graphs with a power law degree distribution [2Pdes arrive one at a time, makiigconnections to the

and that have high conductance [15], and has been propd®¢gting graph. In some models these connections will be
as a model for graphs such as the graph of links betwadgwed as directed edges, and in some as undirected edges.
pages on the World Wide Web. All our models begin with a single start noadg having &

A natural question that arises when considering tfg!f-l00ps. In general, we usg to denote the vertex added
preferential attachment model vghy: why should a new I thet"" step, andh as the total number of vertices.
node connect to existing nodes with probability proportional 10 motivate our first model, note that if the connections
to their degree? Is it because we imagine that high degf@dhe existing graph are made uniformly at random, then
nodes are “better” (and the degree of a node is an indicaft have an online version of the standard Erdos-Renyi
of its quality) or is it for some other reason? graph model, and with high probability the maximum degree

The starting point for this paper is the observation théfll be O(logn). On the other hand, suppose we make
a simple “random surfer” model provides a natural explan@ach connection by first picking a random start node in the
tion for preferential attachment. In particular, imagine th&isting graph, and then taking a random wallexéctly one
each new node (a person setting up their web page) pits HeP Then, in the directed case, this will just produce a star
links into the existing graph by picking a random start nod@!l €dges will point to the root,), and in the undirected
and then randomly surfing the web until it findénteresting CaSe, it is not hard to show that there is a good chance this
pages to connect to. Imagine also that each page is equaiduces something star-like of maximum degfee:)."

likely to be interesting to the surfer and each link is bidirec-

tional (so we have an undirected graph). Then, if the prob- In particular, if the graph is currently a star ®hodes, then there is

ability p of a page being “interesting” is sufficiently smalla (+ — 1)/t chance the random start node is one of the spokes, so the 1-
step walk moves to the center and the next edge maintains the star. More

*Computer Science Department, Carnegie Mellon University, pit@enerally, with high probability, the number of non-leaf vertices remains
burgh, PA 15213.{avrim, hubert, rwebj at cs.cmu.edu small and the expected degree of the initial nod@(s) See Section 3.3.



However, if we flip a coin and with probability € (0,1) Proof. First, notice that the graph is necessarily a DAG, with
connect to the random start and with probability p take a all edges pointing backwards in time, and each vertex has an
1-step walk, then we get something much more natural. out-degree of. Now, consider some vertexin the existing
graph with in-degreé,,. An edge from the new vertex will
MODEL 1. (1-STEP WALK WITH SELFLOOP) In this connect tau if either the process choosesas the start node
model, we are given parametgrsandp. At timet, vertexv, of its walk and does not take a step, or else it chooses one
makesk connections to the existing graph by repeating thef «'s in-neighborsu’ as the start node artbestake a step,
following process: times: selecting the edge fromf tow. The first case has probability
) o ) p/t, and the second case has probabllity- p)d.,/(kt). For
1. Pick an existing nodes uniformly at random from p = 1/2, the sum of these two quantities(& -+ d,,)/(2kt)
{vo, .. v} which is exactly proportional to the total degree- d., of w.

2. With probabilityp stay atv; with probability 1 — p take "
a 1-step walk to a random neighbor af One implication of Theorem 3.1 is that fpr> 1/2, the

model is a mixture of preferential-attachment and uniform-
random connections. That is, the case> 1/2 can be

In the directed version, the edges added are directed fromviewed as: with probabilityp — 1 choose a neighbor uni-

into the existing graph. In the undirected version, edges dR&mly atrandom, and with the remaining probability choose
undirected. a neighbor with probability proportional to degree. This pro-

cess is known to produce power-law degree distributions.
Our next model is a walk of the form given in thé-or generap € (0,1), we now give an argument for power-
Introduction: instead of taking one step, we keep walkih@w degree distributions from first principles.
until we find a node of interest and then connect there. In Letd;(t) be the number of nodes with in-degriet step
order to make the model easier to think about, for the cdséind D;(t) be the expectation of;(t). We now analyze
k > 1 we imagine after each connection we re-start at a néd(t) via the following equation.
random start node when performing the next walk.

3. Add an edge from, to the current node.

MODEL 2. (RANDOM WALK WITH COIN FLIPS) In  this (1)  Di(t+1) = Di(t) +

model, we are again given parametesand p. At time 5, Pk D () — Di(t
t, vertexv, makesk connections to the existing graph b)s 2) t {Dia(t) i+
repeating the following procegstimes: (3.3) (1-pk (G = 1Dy 1 (t) — iDs()} 1
. - - i—1\t) — 1L T
t k

1. Pick an existing nodey uniformly at random from

{vo, ..., vi_1}. Observe that the number of nodes with in-degiee

increases if the new node connects to an existing node of
2. Flip a coin of biasp degreei — 1 and decreases if the new node connects to one
of degreei. The term in (3.2) is due to the fact that with
3. If the coin comes up heads add an edge frgnio the probability p the new node is connected to an existing node
current node and stop. picked uniformly at random. The term in (3.3) corresponds
. . . to the case when with probability — p, the new node
4. If the coin comes up tails, move to a random neighbeg\nacts to a random out-going neighbor of a randomly
of the current node and go back to (2). picked node. The factok appears in both (3.2) and (3.3)

In the directed version, the edges added are directed frpmbecause each new node makesonnections to the existing

into the existing graph. In the undirected version, edges a{}gdes. The factot /k appears onIy'in (3'3,) because in the
undirected. case where a random out-going neighbor is chosen, there are

k possible choices. We require for large enougla new

3 Theoretical results 2232 does not make more than one connection to an existing

3.1 Directed Walk with Self-Loop. Our first (simple)

result is that the directed version of Model 1 with= 1/2iS  THeoREM3.2. There exists a constadt > 0 such that as
exactly the preferential attachment model. ¢ tends to infinity,D; () ~ Ci~ ot

THEOREM3.1. The directed version of Model 1, with= proof. Using the above equations, the proof follows directly
1/2, has the same distribution as preferential attachment. from the techniques of Kumar et al. [13], Cooper and Frieze



[10], and Mitzenmacher [16], which allow one to determinBEFINITION 1. Suppose: is a node in the tree. For > 0,
the asymptotic behavior dd;(t). denoteL;(u) to be the set of level descendants of and

In particular, for eachi, we make the substitution/;(u) = |L;(u)|. For instance,Lq(u) is the set of children,
D;(t) = ¢;t in (3.1) - (3.3) to obtain the following equation.L; (u) is the set of grandchildren, and so on. Lgt=
{B:}i>0 be a sequence of real numbers such that= 1.

The virtual degree of, with respect ta3 is
(34) C; = pk? . {Cq;_l — Ci} + (1 —p) . {(’L — 1)Ci—1 — Zcz}

Rearranging (3.4), we have

k>0

C; 1 2—p 2—p 1
Ci—1 1+pk—|—(1—p)i 1—p i’

) In the definition of virtual degree(u), the leading term
forlarge values of. Using the fact thalll__, (1+)/i) = | corresponds to the parent of We requireg, = 1, for
©(n*), we have each child ofu should contribute 1 towards the degree of

v. We would like the virtual degree to reflect the actual

degree of a node, and hence ideally, for 1, we would

5 2—p 1 _2-p
¢i = OG-, (1 - 1-p ) 3)) ~Ci T, like 3; to be small. On the other hand, we also want that
the expected increase in the virtual degrée) of nodew in
for someC' > 0. B each step to be proportional to its current virtual degree. The

following theorem states we can satisfy these requirements
Moreover, using Theorem 4 of [10], one can also shayimultaneously.

thatd;(¢) is concentrated around its mean, as stated in the
following theorem.

THEOREM 3.4. Suppose we consider the directed walk with
coin flipping probabilityp € (0,1). Then, there exists
2 B = {Bx}r>0, dependent op, with 5y = 1 such that for
Pr(|d;(t) — Di(t)| = p) < eXp(—@) each nodeu, the expected increase in(u) from stept to
stept + 1isp/t - v(u). Moreover, fork > 0, |8| < 1, and
3.2 Directed Walk with Coin Flipping. We now consider ask tends to infinity3; tends to zero exponentially, i.e. there
the directed case of Model 2, for the cdse: 1. Thatis, we is someC’ > 0 and0 < p < 1 such that 3| < Cp*.
connect a new node to the existing graph by picking a start
nodew uniformly at random, and then performing a random
walk, where at each step we halt the walk with probabili§roof. We fix the coin flipping probability and find some
p. Sincek = 1, we can view the random graph constructexbquence that satisfies the requirements.
as a tree, in which the initial node is the root and every other For convenience, we denote= 1 — p andL_;(u) =
node has an edge directed to its parent. {u}. Then, fori > 0, if a new connection is made to a node
To analyze this walk, we define a notion of thietual in L;_;(u), then the increase im(u) is j;.
degreeof a node that is related to the node’s actual degree, Fix ¢ > 0. We first calculate the probability that a new
but also contains terms for the local neighborhood of tkkennection is made to a node Iy, (u). Recall that we
node as well. We then prove that for this definition, at eafihst pick a node uniformly at random to start the directed
step the expected increase in virtual degree of any givamdom walk. If we end up making a new connection to a
node is proportional to the virtual degree itself. (The virtuabde inL;_;(u), we must have begun the random walk at
degree itself is a fractional quantity, and at each step wdbbme node iL;_; . ;(u), for somej > 0.
change by at most some constant.) Using this, we can show We fix somej > 0 and calculate the probability that
that the expected virtual degrees follow a power-law, and e random walk starts at some nodelin ; +;(u) and ends
can also give some bounds on their concentration about thgirat some node if;_; (u). Note that there arg_;;(u)
means. Moreover, we can give a crude lower bound on thedes to start and there aféhops to be made. Hence, the
expectedeal degree of a given node, which is comparablgrobability isl;_14;(u)/t - ¢’ - p.
to its expected virtual degree. It follow that the probability that a new connection is
However, our concentration bounds are not shampade to some node ib;—1(u)is %>, @Plici4j(u).
enough to give a true proof that the virtual degrees, or the Hence, the expected increase/ifn) from stept to step
real degrees, follow the power law. t+1is

THEOREM3.3. For anyp > 0,



THEOREM3.5. For any nodeu and stept > t,, the
expectation® v (u)] = ©((t/tu)P).

> i ItZ Y @ i)

i>0 >0 Proof. For anyt > t,,, we have from Theorem 3.4 that
_ b k—itl
=L 2 T Blva(u)] = (1+p/(t = 1)) Blor-1 ()]
i>0 k>i—1
_ 1% Z Z B; " () Hence,
heol Osisk Bl (uw)] = 2 (1+p/i) = O((t/t.)P).
Recall we wish that the above quantity to be equal to -
p p
;V(U) =1 {1+ Z B s (u) }- We next give an intuition, similar in spirit to [3], of how
k20 Theorem 3.5 suggests that the virtual degrees of the random
Hence, it suffices to find a sequen@esuch that the graph should follow the power law. Suppose the random
corresponding coefficients &f (u) are equal. process is run fon steps to form a random graph with
Fork = —1, we requires, = 1; for k = 0, we have nodes. Then, from Theorem 3.5, the expected virtual degree
Bogq + B1 = Bo, which implies that3; = p. In general, for of the ith node joining the graph i®((n/i)?). If we let
k > 0, we have x ~ O((n/i)P), we would have ~ ©(nx~'/P). Observing
that nodes joining later should probably have smaller virtual
Br = Z Bi qF L degrees, one might expect that the proportion of nodes
0<i<k+1 having virtual degrees smaller thanto bel — @(5*1/17).

Differentiating this quantity with respect tg we conjecture

Now, supposé > 0. Then, we have : !
that the proportion of nodes having degreeshould be

Br+1 = Z Bi gk e
0<i<k-+1 Unfortunately, we do not have a strong enough concen-
kil tration bound that would allow us to make the above intu-
= Brr2tg Z Pia ition rigorous. However, using martingale techniques, we
Osisk+l can show that the virtual degree cannottbe much larger
= Pre2t b than its mean for the case when the coin flipping probability

Hence, the sequengecan be determined by the recurrenc® ~ 1/2.

Bo =1, =pandfork >0, Be2 — Bpt1 + a0k = 0. THEOREM 3.6. There exists a constant > 0 such that for
_ We show inductively thaid,| < 1. We first obsgn/e that coin flipping probabilityp > 1/2 and anyp > 1,

this is true fork = 0,1, 2. Assume that the result is true for

integers up td + 1. In the first case, supposk and Sy 1 Prlvi(u) > CpE[v(u)]] < exp{—p?/t.}.

have the same sign. The 12| = ||Bk+1| —¢lBk|| < 1, by _ _ _

the induction hypothesis. In the second case, supfipsad Proof. Consider a node and recall that,, is the time when

Br41 have different signs. Hencgia| = |Brs1 — ¢B] < it first appears. Define; = 1 + p/i. Recall from the proof

1Bi11 — Bx| = qlBs_1] < 1, by the induction hypothesis. Of Theorem 3.5 thal[v (u)] = I a; = O((t/tu)").
Forp = 3/4, we have, = 22, Otherwise, for ~ DefineY; = vi(u)/Elvi(u)], for i > .. Then, it

other values op in (0,1), let \; = (1 — \/T—4g)/2 and follows that{Y;} is a martingale. Defin®; :=Y; —Y;_;.

X2 = (1+T—4g)/2 and B, = ANY + B)}, for some Recall that the sequendgs,} tends to zero. Hence,

constants4 and B. Observe that sincé < p < 1, the it follows that |v;(u) — v;—1(u)| = O(1), and we have

magnitudes of\; and, are both strictly less than 1. HencelDi| = |[Yi — Yi—1| = 1/E[vi(w)] - [vi(u) — ai—1vi—1(u)| =

in any case, ak tends to infinity,3, tends to 0 exponentially. 1/ E[vi(u)] - [©(1) — 25 - vici(u)| = ©(1/E[v;(u)]),

n sincev;_1(u) = O(i — 1). Hence, we can leK; =

©(1/E[v;(uw)]), and sdD;| < K;. By the Azuma-Hoeffding

For the rest of the discussion, we consider the virtug@lartingale inequality, we have for any> 0,

degree defined with respect to some sequéhibat satisfies

Theorem 3.4. We next explore how the virtual degree of a .

particular node changes with time. Defingu) to be the 2 2

virtual degree of node at stept andt, to beﬁ(hg time when Pri¥; —Y:, 2 a] Sexp{~a’/2 ) K}}.

nodew first appears. Then, it follows that, (u) = 1, since

each new node is a leaf when it first appears. Observe that fop > 1/2, we have

i=ty,+1



t
> w

i=t,+1

IN

Z (1/E[v;(u))?)
Z

= ( ( —1)- (1= (t/t,)" 7YY
O(tu)-

Hence, for some large enough > 0, if we putz =

3.3 Undirected Walk without Self-loop. We now con-
sider the model mentioned when motivating Model 1 in
which a new connection is made to a random neighbor of
a randomly selected node. We show that there is a node,
namely the initial node, that in expectation has degree linear
in the size of the random tree produced. Thus, the self-loop
in Model 1 is crucial for producing natural graphs.

THEOREM3.8. Under the undirected walk without self-
loop model, the expected number of leaves connected to the
initial node in the random tree produced(iXn) , wheren is

the number of nodes.

C"/st,, we havePr[Y; —Y; > z] < e °. Observing that Proof. Let L,, be number of leaves connected to the initial

Y;, = 1 and takingo = \/st,,, we have

Pr{v(u) > CpBlu(u)]] < exp{—p*/t.},
whereC > 0 is a constant large enough to absorb the &

3.2.1 ACrude lower bound for the expectedeal degree.
Recall that for a given node in the tree and > 0, L;(u)
is the set of level descendants af andi;(u) = |L;(u)]. In
particular,iy(u) is the number of children node has. We
can give a crude lower bound fty(«) for any given nodex.

THEOREM3.7. For any nodew and stept > t,, the
expectationB[lo(u)] > Q((t/t, )P0 7).

Proof. Let the number of level descendants of node at
time stept bel!(u). It follows that

Bl (w)] = Elg(uw)]
+£ s ;OE[z;(u)](l -2’
> E[lb(u)] + ril _p)E[lé(U)]

t

Suppose that for some constaht> 0, for somet > 0,
anda, we haveE|[lf(u)] > At*. Observing that for > 1,
(t+1)* —t* < at* 1, we have

BligH ()] > A{t* + M 7}
> A{(t+ 1)+ (p(1 —p) — a)t*~ 1}
> Alt+1)%,

if we seta = p(1 — p).
Note that fort = ¢, + 1, E[l§(u)] = ©(1). Hence, it
follows that E[1(u)] > Q((t/t, )P 7). -

nodeuv, at stepn and D,, be the degree of the initial nodg
at timen.

Suppose we are at step With probability at least
L, /n, a leaf ofvy would be picked and after one jump, a
new connection would be madedg, causing the number of
leaves connecting tg, to increase by 1. On the other hand,
with probability £ - L=, the initial nodev, is picked and
after one jump a new connection is made to an existing leaf,
causing the number of leaves connectedtto decrease by
1.

Hence,E[L,+1 — L,) > L,/n—1/n- L,/D, >
1/n - E[L, — 1], with the last inequality holding because
L, < D,. Hence, if we letZ,, = L, — 1, we have

E[Z,41]) > (1 4+ 1/n)E[Z,]. Observe that[Z3] > 0.
Hence,E[Z,] > 17~ (1 + 1/i)E[Z5] = Q(n) and so
E[L.] > Q(n). n

4 Experimental results

All experiments were the average of 100 runs with a size
100,000 nodes andk = 1, i.e. the random graph produced
is a tree. In each case, we investigate how the average
proportionP; of nodes having degregvaries withd. Since

we wish to observe whether the degree distribution follows
a power law, we plotog,, P; againstlog,, d, for d up to

40. All four models exhibits power-law like phenomenon.
Figure 5 shows the degree distribution for the four models
and they behave similarly, although the maximum degree
seen is much larger for the directed models than for the
undirected ones.

4.1 Directed walk with self-loops. Figure 1 shows exper-
imentally that the power-law phenomenon exhibited by the
degree distribution becomes more apparent as the probabil-
ity p decreases and the degréncreases. Notice that for

p = 1, this is just the Erdos-Renyi random graph model,
which does not obey the power law. Moreover, the maxi-
mum degree seen fgr = 1 is only about 20. A gets
smaller the graph can be fitted better with a straight line. On
the hand, the portion of the graph corresponding to large de-
grees can be fitted well with a straight line. Note that even
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for p = 0.75, power law phenomenon is exhibited for large
degreesl. 0

4.2 Directed walk with coin flips. We do not have a al
proof, but Figure 2 is very similar to Figure 1, which
indicates that in this case the degrees may be following a
power law.

0
N
T

0
N
o

4.3 Undirected walk with self-loops. We do not know
how to analyze this model yet. As seen in Figure 3, there |
are indications that power law phenomenon is exhibited by &
large degrees. On the other hand, the distribution of degrees
may follow some other nice distribution that is not very far ™|

from power law (e.g. log-normal distribution). -5

roportion of nodes with degree d
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Lo%i of degée d
4.4 Undirected walk with coin flips. Like the previous

model, this model is not easy to analyze. But Figure 4

shows that the degree sequence does not look too different Figure 3: Undirected walk with self-loopg:= 0.5
from undirected walk with self-loops model. We know
theoretically that ifp is very small the degree sequence will
tend closer to a power law. Figure 4 indeed shows that for
p = 0.05, the graph can be better fitted with a straight line. "
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5 Conclusions and Open Questions

|
N
T

In this paper we present some initial analysis and experi-
mental results for several simple random-surfer models for
web-graph construction. The models are similar in spirit to
the copying model of [13], and in fact the directed case of
Model 1, fork = 1 is identical to both the copying model
and preferential-attachment. There are many open questions®
including:

|
w
T

of proportion of nodes with degree d

!
IS
T

910

5L

1. In the case of the directed walk with self-loops, we can  -s———7—5
analyze theexpectedrirtual degrees and provide some
concentration bounds, but do not have a formal proof
that the virtual degrees necessarily follow a power-law. 0
Furthermore, even assuming this is the case, we do not |
have a proof that this implies that the actual degrees. *
must be power-law, though our experimental results & | 3
show this to in fact be the case. Thus, can one gives s
a formal proof that the degrees indeed follow a power
law for this model?

. . .
0.8 1 12 1.4 16 18
Log10 of degree d

2

-2.5F

2. For the case of theindirectedwalk with self-loops,
we know that a® goes to 0, this walk approaches the
preferential-attachment distribution. However, experi-
mentally, even fop = 1/2 the degrees follow some -af
heavy-tailed distribution. Can one give a formal analy-
sis of the degree distribution in this case?

Logm of proportional of nodes

45 L L L
0 12 14 16 18

02 o4 06 Lo%i) of degrée d
3. Finally, another issue brought out by this work is that
differences between degrees of nodes in the (real) web _ ) . o
graph may not necessarily be due to a distinction jigure 4: Undirected walk with coin flips: (Top) = 0.5,

quality, but rather just the result of a random wall&ottom)p = 0.05



Figure 5: Average proportion of nodes having different degrees under different modets wit0, 000, p = 0.5 and 100

runs

Degree Directed walk | Directed Walk| Undirected Walk| Undirected Walk
with self-loops| with coin-flips | with self-loops | with coin-flips
1 0.6670 0.6672 0.6136 0.5840
2 0.1669 0.1862 0.1903 0.2044
3 0.06662 0.06929 0.08128 0.09132
4 0.03333 0.03107 0.04137 0.04652
5 0.01900 0.01607 0.02355 0.02596
6 0.01195 0.009108 0.01444 0.01546
7 0.007902 0.005607 0.009301 0.009703
8 0.005547 0.003662 0.006298 0.006354
9 0.004048 0.002524 0.004447 0.004286
10 0.003046 0.001809 0.003242 0.002992
11 0.002332 0.001322 0.002376 0.002134
12 0.001832 0.001006 0.001802 0.001540
13 0.001452 0.0008016 0.001405 0.001131
14 0.001187 0.0006195 0.001088 0.0008657
15 0.0009853 0.0005008 0.0008539 0.0006553
16 0.0007938 0.0004128 0.0006968 0.0005115
17 0.0007005 0.0003486 0.0005608 0.0003950
18 0.0005839 0.0002924 0.0004531 0.0003122
19 0.0005009 0.0002455 0.0003842 0.0002471
20 0.0004400 0.0002118 0.0003121 0.0002031
21 0.0003731 0.0001846 0.0002707 0.0001653
22 0.0003280 0.0001637 0.0002300 0.0001355
23 0.0003001 0.0001426 0.0001990 0.0001082
24 0.0002559 0.0001213 0.0001652 0.0000956
25 0.0002188 0.0001054 0.0001454 0.0000750
26 0.0002020 0.0001018 0.0001289 0.0000639
27 0.0001860 0.0000872 0.0001103 0.0000520
28 0.0001643 0.0000778 0.0000954 0.0000511
29 0.0001545 0.0000720 0.0000851 0.0000395
30 0.0001382 0.0000642 0.0000708 0.0000354
31 0.0001221 0.0000604 0.0000594 0.0000313
32 0.0001116 0.0000528 0.0000564 0.0000240
33 0.0001039 0.0000529 0.0000511 0.0000219
34 0.0000972 0.0000475 0.0000415 0.0000184
35 0.0000904 0.0000425 0.0000407 0.0000162
36 0.0000789 0.0000396 0.0000353 0.0000131
37 0.0000735 0.0000395 0.0000323 0.0000136
38 0.0000649 0.0000362 0.0000264 0.0000118
39 0.0000602 0.0000325 0.0000277 0.0000103
40 0.0000543 0.0000282 0.0000272 0.0000086
Max degree seen 1623 20612 325 138
in 100 runs




process. Thus, if one is using degree as a measurg18{ Gilbert Strang. Linear Algebra and its Applications Har-
quality, one may just be picking out nodes that have court Brace Jacanovich, 1988.

been around the longest. Instead, some measure {h9k D.J. Watts. Small Worlds:They Dynamics of Networks Be-
examines the degree of a nodgative to what one tween Order and Randomnes®rinceton University Press,

would expect given the time the node has been in the Princeton, 1999. , .
system might be more appropriate [20] G. Yule. A mathematical theory of evolution based on the

theories of j.c. willis.Philosophical Transactions of the Royal
Society of London (series B)ages 21-87, 1925.
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