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1 IntroductionGiven a �nite set of strings, we would like to �nd their shortest common superstring. That is, wewant the shortest possible string s such that every string in the set is a substring of s.The question is NP-hard [5, 6]. Due to its important applications in data compression [14] andDNA sequencing [8, 9, 13], e�cient approximation algorithms for this problem are indispensable.We give an example from the DNA sequencing practice. A DNA molecule can be represented asa character string over the set of nucleotides fA;C;G;Tg. Such a character string ranges from afew thousand symbols long for a simple virus to approximately 3� 109 symbols for a human being.Determining this representation for di�erent molecules, or sequencing the molecules, is a crucial steptowards understanding the biological functions of the molecules. With current laboratory methods,only small fragments (chosen from unknown locations) of at most 500 bases can be sequencedat a time. Then from hundreds, thousands, sometimes millions of these fragments, a biochemistassembles the superstring representing the whole molecule. A simple greedy algorithm is routinelyused [8, 13] to cope with this job. This algorithm, which we call GREEDY, repeatedly mergesthe pair of distinct strings with maximum overlap until only one string remains. It has been anopen question as to how well GREEDY approximates a shortest common superstring, althougha common conjecture states that GREEDY produces a superstring of length at most two timesoptimal [14, 15, 16].From a di�erent point of view, Li [9] considered learning a superstring from randomly drawnsubstrings in the Valiant learning model [17]. In a restricted sense, the shorter the superstring weobtain, the smaller the number of samples are needed to infer a superstring. Therefore �nding a goodapproximation bound for shortest common superstring implies e�cient learnability or inferabilityof DNA sequences [9]. Our linear approximation result improves Li's O(n logn) approximation bya multiplicative logarithmic factor.Tarhio and Ukkonen [15] and Turner [16] established some performance guarantees for GREEDYwith respect to so-called \compression" measure. This basically measures the number of symbolssaved by GREEDY compared to plainly concatenating all the strings. It was shown that if theoptimal solution saves l symbols, then GREEDY saves at least l=2 symbols. But, in general thisimplies no performance guarantee with respect to optimal length since in the best case this onlysays that GREEDY produces a superstring of length at most half the total length of all the strings.In this paper we show that the superstring problem can be approximated within a constantfactor, and in fact that algorithm GREEDY produces a superstring of length at most 4n. Further-more, we give a simple modi�ed greedy procedure MGREEDY that also achieves a bound of 4n,2



and then present another algorithm TGREEDY, based on MGREEDY, that we show achieves 3n.The rest of the paper is organized as follows: Section 2 contains notation, de�nitions, and somebasic facts about strings. In Section 3 we describe our main algorithm MGREEDY with its proof.This proof forms the basis of the analysis in the next two sections. MGREEDY is improved toTGREEDY in Section 4. We �nally give the 4n bound for GREEDY in Section 5. In Section 7, weshow that the superstring problem is MAX SNP-hard which implies that there is unlikely to exista polynomial time approximation scheme for the superstring problem.2 PreliminariesLet S = fs1; . . . ; smg be a set of strings over some alphabet �. Without loss of generality, weassume that the set S is \substring-free" in that no string si 2 S is a substring of any other sj 2 S.A common superstring of S is a string s such that each si in S is a substring of s. That is, foreach si, the string s can be written as uisivi for some ui and vi. In this paper, we will use n andOPT(S) interchangeably for the length of the shortest common superstring for S. Our goal is to�nd a superstring for S whose length is as close to OPT(S) as possible.Example. Assume we want to �nd the shortest common superstring of all words in the followingsentence: \Alf ate half lethal alpha alfalfa". The word \alf" is a substring of both \half" and\alfalfa", so we can immediately eliminate it. Our set of words is now S0 = f ate, half, lethal,alpha, alfalfa g. A trivial superstring is \atehal
ethalalphaalfalfa" of length 25, which is simplythe concatenation of all substrings. A shortest common superstring is \lethalphalfalfate", of length17, saving 8 characters over the previous one (a compression of 8). Looking at what GREEDYwould make of this example, we see that it would start out with the largest overlaps from \lethal"to \half" to \alfalfa" producing \lethalfalfa". It then has 3 choices of single character overlap, twoof which lead to another shortest superstring \lethalfalfalphate", and one of which is lethal in thesense of giving a superstring that is one character longer. In fact, it is easy to give an examplewhere GREEDY outputs a string almost twice as long as the optimal one, for instance on inputfc(ab)k; (ba)k; (ab)kcg.For two strings s and t, not necessarily distinct, let v be the longest string such that s = uvand t = vw for some non-empty strings u and w. We call jvj the (amount of) overlap betweens and t, and denote it as ov(s; t). Furthermore, u is called the pre�x of s with respect to t, andis denoted pref (s; t). Finally, we call jpref (s; t)j = juj the distance from s to t, and denote it asd(s; t). So, the string uvw = pref (s; t)t, of length d(s; t) + jtj = jsj + jtj � ov(s; t) is the shortest3



superstring of s and t in which s appears (strictly) before t, and is also called the merge of s andt. For si; sj 2 S, we will abbreviate pref (si; sj) to simply pref (i; j), and d(si; sj) and ov(si; sj) tod(i; j) and ov(i; j) respectively. The overlap between a string and itself is called a self-overlap. Asan example of self-overlap, we have for the string s = undergrounder an overlap of ov(s; s) = 5Also, pref (s; s) = undergro and d(s; s) = 8. The string s = alfalfa, for which ov(s; s) = 4, showsthat the overlap is not limited to half the total string length .Given a list of strings si1 ; si2 ; . . . ; sir , we de�ne the superstring s = hsi1 ; . . . ; siri to be the stringpref (i1; i2)pref (i2; i3) � � � pref (ir�1; ir)sir . That is, s is the shortest string such that si1 ; si2 ; . . . ; sirappear in order in that string. For a superstring of a substring-free set, this order is well-de�ned,since substrings cannot `start' or `end' at the same position, and if substring sj starts before sk,then sj must also end before sk. De�ne �rst(s) = si1 and last(s) = sir . In each iteration ofGREEDY the following invariant holds:Claim 1 For two distinct strings s and t in GREEDY's set of strings, neither �rst(s) nor last(s)is a substring of t.Proof. Initially, �rst(s) = last(s) = s for all strings, so the claim follows from the fact that Sis substring-free. Suppose that the invariant is invalidated by a merge of two strings t1 and t2 intoa string t = ht1; t2i that has, say, �rst(s) as a substring. Let t = u �rst(s) v. Since �rst(s) is not asubstring of either t1 or t2, it must properly `contain' the piece of overlap between t1 and t2, i.e.,j�rst(s)j > ov(t1; t2) and juj < d(t1; t2). Hence, ov(t1; s) > ov(t1; t2); a contradiction.So when GREEDY (or its variation MGREEDY that we introduce later) chooses s and t ashaving the maximum overlap, then this overlap ov(s; t) in fact equals ov(last(s);�rst(t)), and as aresult, the merge of s and t is h�rst(s); . . . ; last(s);�rst(t); . . . ; last(t)i. We can therefore say thatGREEDY orders the substrings, by �nding the shortest superstring in which the substrings appearin that order.We can rephrase the above in terms of permutations. For a permutation � on the set f1; . . . ;mg,let S� = hs�(1); . . . ; s�(m)i. In a shortest superstring for S, the substrings appear in some total order,say s�(1); . . . ; s�(m), hence it must equal S�.We will consider a traveling salesman problem on a weighted directed complete graphGS derivedfrom S and show that one can achieve a factor of 4 approximation for TSP on that graph, yieldinga factor of 4 approximation for the shortest-common-superstring problem. Graph GS = (V;E; d)has m vertices V = f1; . . . ;mg, and m2 edges E = f(i; j) : 1 � i; j � mg. Here we take as weight4



Figure 1: The overlap and distance graphs.function the distance d(; ): edge (i; j) has weight d(i; j) = d(si; sj), to obtain the distance graph.This graph is similar to one considered by Turner in the end of his paper [16]. Later we will takethe overlap ov(; ) as the weight function to obtain the overlap graph. We will call si the stringassociated with vertex i, and let pref (i; j) = pref (si; sj) be the string associated with edge (i; j).As examples we draw in Figure 1 the overlap graph and the distance graph for our previousexample S0 = f ate, half, lethal, alpha, alfalfa g. All edges not shown have overlap 0. Note thatthe sum of the distance and overlap weights on an edge (i; j) is the length of the string si.Notice now that TSP(GS) � OPT(S)� ov(last(s);�rst(s)) � OPT(S), where TSP(GS) is thecost of the minimum weight Hamiltonian cycle on GS . The reason is that turning any superstringinto a Hamiltonian cycle by overlapping its last and �rst substring saves on cost by charging last(s)for only d(last(s);�rst(s)) instead of its full length.We now de�ne some notation for dealing with directed cycles in GS . Call two strings s; tequivalent, s � t, if they are cyclic shifts of each other, i.e., if there are strings u; v such that s = uvand t = vu. If c is a directed cycle in GS with vertices i0; . . . ; ir�1 in order around c, we de�nestrings(c) to be the equivalence class [pref (i0; i1)pref (i1; i2) � � � pref (ir�1; i0)] and strings(c; ik) therotation starting with pref (ik; ik+1), i.e., the string pref (ik; ik+1) � � � pref (ik�1; ik), where subscriptarithmetic is modulo r. Let us say that an equivalence class [s] has periodicity k (k > 0), if s isinvariant under a rotation by k characters (s = uv = vu; juj = k). Obviously, [s] has periodicity jsj.A moment's re
ection shows that the minimum periodicity of [s] must equal the number of distinctrotations of s. This is the size of the equivalence class and denoted by card([s]). Furthermore, itis easily proven that if [s] has periodicities a and b, then it has periodicity gcd(a; b) as well. (See,e.g., [4].) It follows that all periodicities are a multiple of the minimum one. In particular, we havethat jsj is a multiple of card([s]).In general, we will denote a cycle c with vertices i1; . . . ; ir in the order by \i1 ! � � � ! ir ! i1."Also, let w(c), the weight of cycle c, equal jsj; s 2 strings(c). For convenience, we will say that sjis in c, or \sj 2 c" if j is a vertex of the cycle c.Now, a few preliminary facts about cycles in GS . Let c = i0 ! � � � ! ir�1 ! i0 and c0 be cyclesin GS . For any string s, sk denotes the string consisting of k copies of s concatenated together.Claim 2 Each string sij in c is a substring of sk for all s 2 strings(c) and su�ciently large k.Proof. By induction, sij is a pre�x of pref (ij; ij+1) � � � pref (ij+l�1; ij+l) sij+l for any l �5



0 (addition modulo r). Taking k = djsij j=w(c)e and l = kr we get that sij is a pre�x ofpref (ij; ij+1) � � � pref (ij+kr�1; ij+kr) = strings(c; ij)k, which itself is a substring of sk+1 for anys 2 strings(c).Claim 3 If each of fsj1 ; . . . ; sjrg is a substring of sk for some string s 2 strc and su�ciently largek, then there exists a cycle of weight jsj = w(c) containing all these strings.Proof. In a (in�nite) repetition of s, every string si appears as a substring at every other jsjcharacters. This naturally de�nes a circular ordering of the strings fsj1 ; . . . ; sjrg and the strings inc whose successive distances sum to jsj.Claim 4 The superstring hsi0 ; � � � ; sir�1i is a substring of strings(c; i0)si0 .Proof. String hsi0 ; . . . ; sir�1i is clearly a substring of hsi0 ; . . . ; sir�1 ; si0i, which by de�nitionequals pref (i0; i1) � � � pref (ir�1; i0)si0 = strings(c; i0)si0 .Claim 5 If strings(c0) = strings(c), then there exists a third cycle ~c with weight w(c) containingall vertices in c and all those in c0.Proof. Follows from claims 2 and 3.Claim 6 There exists a cycle ~c of weight card(strings(c)) containing all vertices in c.Proof. Let u be the pre�x of length card(strings(c)) of some string s 2 strings(c). By ourperiodicity arguments, juj divides jsj = w(c), and s = uj where j = w(c)=juj. It follows that everystring in strings(c) = [s] is a substring of uj+1. Now use Claim 3 for u.The following lemma has been proved in [15, 16]. Figure 2 below gives a graphical interpretation ofit. In the �gure, the vertical bars surround pieces of string that match, showing a possible overlapbetween v� and u+, giving an upper bound on d(v�; u+).Lemma 7 Let u; u+; v�; v be strings, not necessarily di�erent, such that ov(u; v) �maxfov(u; u+); ov(v�; v)g. Then, ov(u; v) + ov(v�; u+) � ov(u; u+) + ov(v�; v), and d(u; v) +d(v�; u+) � d(u; u+) + d(v�; v).That is, given the choice of merging u to u+ and v� to v or instead merging u to v and v�to u+, the best choice is that which contains the pair of largest overlap. The conditions in theabove Lemma are also known as \Monge conditions" in the context of transportation problems[1, 3, 7]. In this sense the Lemma follows from the observation that optimal shipping routes donot intersect. In the string context, we are transporting `items' from the ends of substrings to thefronts of substrings. 6



v� vu u+� d(v�; v) -� d(u; v)-� d(u; u+) -Figure 2: Strings and overlaps3 A 4 �OPT(S) bound for a modi�ed greedy algorithmLet S be a set of strings and GS the associated graph. Now, although �nding a minimum weightHamiltonian cycle in a weighted directed graph is in general a hard problem, there is a polynomial-time algorithm for a similar problem known as the assignment problem [10]. Here, the goal is simplyto �nd a decomposition of the graph into cycles such that each vertex is in exactly one cycle and thetotal weight of the cycles is minimized. Let CYC(GS) be the weight of the minimum assignmenton graph GS , so CYC(GS) � TSP(GS) � OPT(S).The proof that a modi�ed greedy algorithm MGREEDY �nds a superstring of length at most4�OPT(S) proceeds in two stages. We �rst show that an algorithm that �nds an optimal assignmenton GS , then opens each cycle into a single string, and �nally concatenates all such strings togetherhas a performance ratio of at most 4. We then show (Theorem 10) that in fact, for these particulargraphs, a greedy strategy can be used to �nd optimal assignments. This result can also be found(in a somewhat di�erent form) as Theorem 1 in Ho�man's 1963 paper [7].Consider the following algorithm for �nding a superstring of the strings in S.Algorithm Concat-Cycles1. On input S, create graph GS and �nd a minimum weight assignment C on GS . Let C be thecollection of cycles fc1; . . . ; cpg.2. For each cycle ci = i1 ! � � � ! ir ! i1, let ~si = hsi1 ; . . . ; sir i be the string obtained byopening ci, where i1 is arbitrarily chosen. The string ~si has length at most w(ci) + jsi1 j byClaim 4.3. Concatenate together the strings ~si and produce the resulting string ~s as output.7



Theorem 8 Algorithm Concat-Cycles produces a string of length at most 4 �OPT(S).Before proving Theorem 8, we �rst need a preliminary lemma giving an upper bound on theamount of overlap possible between strings in di�erent cycles of C. The lemma is also implied bythe results in [4].Lemma 9 Let c and c0 be two cycles in a minimum weight assignment C with s 2 c and s0 2 c0.Then, the overlap between s and s0 is less than w(c) + w(c0).Proof. Let x = strings(c) and x0 = strings(c0). Since C is a minimum weight assignment, weknow x 6= x0. Otherwise, by Claim 5, we could �nd a lighter assignment by combining the cycles cand c0. In addition, by Claim 6, w(c) � card(x).Suppose that s and s0 overlap in a string u with juj � w(c) + w(c0). Denote the substring of ustarting at the i-th symbol and ending at the j-th as ui;j . Since by Claim 2 s = tk for some t 2 xand large enough k and s0 = t0k0 for some t0 2 x0 and large enough k0, we have that x = [u1;w(c)]and x0 = [u1;w(c0)]. >From x 6= x0 we conclude that w(c) 6= w(c0); assume without loss of generalitythat w(c) > w(c0). Thenu1;w(c) = u1+w(c0);w(c)+w(c0) = u1+w(c0);w(c)uw(c)+1;w(c)+w(c0) = u1+w(c0);w(c)u1;w(c0):This shows that x has periodicity w(c0) < w(c) � card(x), which contradicts the fact that card(x)is the minimum periodicity.Proof of Theorem 8. Since C = fc1; . . . ; cpg is an optimal assignment, CYC(GS) =Ppi=1 w(ci) � OPT(S). A second lower bound on OPT(S) can be determined as follows: Foreach cycle ci, let wi = w(ci) and li denote the length of the longest string in ci. By Lemma 9, ifwe consider the longest string in each cycle and merge them together optimally, the total amountof overlap will be at most 2Ppi=1 wi. So the resulting string will have length at least Ppi=1 li� 2wi.Thus OPT(S) � max(Ppi=1 wi;Ppi=1 li � 2wi).The output string ~s of algorithm Concat-Cycles has length at most Ppi=1 li+wi (Claim 4). So,j~sj � pXi=1 li + wi= pXi=1 li � 2wi + pXi=1 3wi� OPT(S) + 3 �OPT(S)= 4 �OPT(S):8



We are now ready to present the algorithm MGREEDY, and show that it in fact mimicsalgorithm Concat-Cycles.Algorithm MGREEDY1. Let S be the input set of strings and T be empty.2. While S is non-empty, do the following: Choose s; t 2 S (not necessarily distinct) such thatov(s; t) is maximized, breaking ties arbitrarily. If s 6= t, then remove s and t from S andreplace them with the merged string hs; ti. If s = t, then just remove s from S and add it toT .3. When S is empty, output the concatenation of the strings in T .We can look at MGREEDY as choosing edges in the overlap graph (V = S;E = V � V; ov(; )).When MGREEDY chooses strings s and t as having the maximum overlap (where t may equal s), itchooses the directed edge from last(s) to �rst(t) (see Claim 1). Thus, MGREEDY constructs/joinspaths, and closes them into cycles, to end up with a collection of disjoint cycles M � E that coverthe vertices ofGS . We will callM the assignment created by MGREEDY. Now think of MGREEDYas taking a list of all the edges sorted in the decreasing order of their overlaps (resolving ties insome de�nite way), and going down the list deciding for each edge whether to include it or not.Let us say that an edge e dominates another edge f if e precedes f in this list and shares its head(or tail) with the head (or tail, respectively) of f . By the de�nition of MGREEDY, it includes anedge f if and only if it has not yet included an edge dominating f .Theorem 10 The assignment created by algorithm MGREEDY is an optimal assignment.Proof. Note that the overlap weight of an assignment and its distance weight add up to thetotal length of all strings. Accordingly, an assignment is optimal (i.e., has minimum total weightin the distance graph) if and only if it has maximum total overlap. Among the maximum overlapassignments, let N be one that has the maximum number of edges in common with M . We shallshow that M = N .Suppose this is not the case, and let e be the edge of maximum overlap in the symmetricdi�erence of M and N , with ties broken the same way as by MGREEDY. Suppose �rst that thisedge is in N nM . Since MGREEDY did not include e, it must have included another adjacentedge f that dominates e. Edge f cannot be in N (since N is an assignment), therefore f is in9



M nN , contradicting our choice of the edge e. Suppose that e = k ! j is in M nN . The two Nedges i! j and k ! l that share head and tail with e are not in M , and thus are dominated by e.Since ov(k; j) � maxfov(i; j);ov(k; l)g, by Lemma 7, ov(i; j) + ov(k; l) � ov(k; j) + ov(i; l). Thusreplacing in N these two edges with e = k ! j and i ! l would yield an assignment N 0 that hasmore edges in common with M and has no less overlap than N . This would contradict our choiceof N .Since algorithm MGREEDY �nds an optimal assignment, the string it produces is no longerthan the string produced by algorithm Concat-Cycles. (In fact, it could be shorter since it breakseach cycle in the optimum position.)4 Improving to 3 �OPT(S)Recall that in the last step of algorithm MGREEDY, we simply concatenate all the strings in set Twithout any compression. Intuitively, if we instead try to overlap the strings in T , we might be ableto achieve a bound better than 4 � OPT(S). Let TGREEDY denote the algorithm that operatesin the same way as MGREEDY except that in the last step, it merges the strings in T by runningGREEDY on them. We can show that TGREEDY indeed achieves a better bound: it produces asuperstring of length at most 3 �OPT(S).Theorem 11 Algorithm TGREEDY produces a superstring of length at most 3 �OPT(S).Proof. Let S = fs1; . . . ; smg be a set of strings and s be the superstring obtained by TGREEDYon S. Let n = OPT(S) be the length of a shortest superstring of S. We show that jsj � 3n.Let T be the set of all \self-overlapping" strings obtained by MGREEDY on S and C be theassignment created by MGREEDY. For each x 2 T , let cx denote the cycle in C corresponding tostring x, and let wx = w(cx) be its weight. For any set R of strings, de�ne jjRjj =Px2R jxj to be thetotal length of the strings in set R. Also let w =Px2T wx. Since CYC(GS) � TSP(GS) � OPT(S),we have w � n.By Lemma 9, the compression achieved in a shortest superstring of T is less than 2w, i.e.,jjT jj � nT � 2w. By the results in [15, 16], we know that the compression achieved by GREEDYon set T is at least half the compression achieved in any superstring of T . That is,jjT jj � jsj � (jjT jj � nT )=2 = jjT jj � nT � (jjT jj � nT )=2 � jjT jj � nT � w:10



So, jsj � nT + w.For each x 2 T , let six be the string in cycle cx that is a pre�x of x. Let S 0 = fsix jx 2 Tg,n0 = OPT(S0), S00 = fstrings(cx; ix)six jx 2 Tg, and n00 = OPT(S00).By Claim 4, a superstring for S 00 is also a superstring for T , so nT � n00, where nT = OPT(T ).For any permutation � on T , we have jS00� j � jS0�j +Px2T wx, so n00 � n0 + w, where S 0� and S 00�are the superstrings obtained by overlapping the members of S0 and S 00, respectively, in the ordergiven by �. Observe that S 0 � S implies n0 � n. Summing up, we getnT � n00 � n0 + w � n+ w:Combined with jsj � nT + w, this gives jsj � n+ 2w � 3n:5 GREEDY achieves linear approximationOne would expect that an analysis similar to that of MGREEDY would also work for the originalGREEDY. This turns out not to be the case. The analysis of GREEDY is severely complicatedby the fact that it continues processing the \self-overlapping" strings. MGREEDY was especiallydesigned to avoid these complications, by separating such strings. Let GREEDY (S) denote thelength of the superstring produced by GREEDY on a set S. It is tempting to claim thatGREEDY (S [ fsg) � GREEDY (S) + jsj:If this were true, a simple argument would extend the 4�OPT(S) result for MGREEDY to GREEDY.But the following counterexample disproves this seemingly innocent claim. LetS = fcam; am+1cm; cmbm+1; bmcg; s = bm+1am+1:Now GREEDY (S) = jcam+1cmbm+1cj = 3m + 4, whereas GREEDY (S [ fsg) =jbmcmbm+1am+1cmamj = 6m+ 2 > (3m+ 4) + (2m+ 2).With a more complicated analysis we will nevertheless show thatTheorem 12 GREEDY produces a string of length at most 4 �OPT(S).Before proving the theorem formally, we give a sketch of the basic idea behind the proof. If wewant to relate the merges done by GREEDY to an optimal assignment, we have to keep track ofwhat happens when GREEDY violates the maximum overlap principle, i.e. when some self-overlap11



is better than the overlap in GREEDY's merge. One thing to try is to charge GREEDY some extracost that re
ects that an optimal assignment on the new set of strings (with GREEDY's merge) maybe somewhat longer than the optimal assignment on the former set (in which the self-overlappingstring would form a cycle). If we could just bound these extra costs then we would have a boundfor GREEDY. Unfortunately, this approach fails because the self-overlapping string may be mergedby GREEDY into a larger string which itself becomes self-overlapping, and this nesting could goarbitrarily deep. Our proof concentrates on the inner-most self-overlapping strings only. These socalled culprits form a linear order in the �nal superstring. We avoid the complications of higherlevel self-overlaps by splitting the analysis in two parts. In one part, we ignore all the originalsubstrings that connect �rst to the right of a culprit. In the other part, we ignore all the originalsubstrings that connect �rst to the left of a culprit. In each case, it becomes possible to bound theextra cost. This method yields a bound of 7 �OPT(S). By combining the two analyses in a cleverway, we can even eliminate the e�ect of the extra costs and obtain the same 4 �OPT(S) bound aswe found for MGREEDY. A detailed formal proof follows.Proof of Theorem 12. We will need some notions and lemmas. Think of both GREEDY andMGREEDY as taking a list of all edges sorted by overlap, and going down the list deciding for eachedge whether to include it or not. Call an edge better (worse) if it appears before (after) anotherin this list. Better edges have at least the overlap of worse ones. Recall that an edge dominatesanother i� it is better and shares its head or tail with the other one.At the end, GREEDY has formed a Hamiltonian paths1 ! s2 ! � � � ! smof `greedy' edges. (w.l.o.g., the strings are renumbered to re
ect their order in the superstringproduced by GREEDY.) For convenience we will usually abbreviate si to i. GREEDY does notinclude an edge f i�1. f is dominated by an already chosen edge e, or2. f is not dominated but it would form a cycle.Let us call the latter \bad back edges"; a bad back edge f = j ! i necessarily has i � j. Each badback edge f = j ! i corresponds to a string hsi; si+1; . . . ; sji that, at some point in the executionof GREEDY, has more (self) overlap than the pair that is merged. When GREEDY considers f , ithas already chosen all (better) edges on the greedy path from i to j, but not yet the (worse) edgesi� 1 ! i and j ! j + 1. The bad back edge f is said to span the closed interval If = [i; j]. Theabove observations provide a proof of the following lemma.12



Figure 3: Culprits and weak links in Greedy merge path.Lemma 13 Let e and f be two bad back edges. The closed intervals Ie and If are either disjoint,or one contains the other. If Ie � If then e is worse than f (thus, ov(e) � ov(f)).Thus, the intervals of the bad back edges are nested and bad back edges do not cross eachother. Culprits are the minimal (innermost) such intervals. Each culprit [i; j] corresponds to aculprit string hsi; si+1; . . . ; sji. Note that, because of the minimality of the culprits, if f = j ! iis the back edge of a culprit [i; j], and e is another bad back edge that shares head or tail with f ,then Ie � If , and therefore f dominates e.Call the worst edge between every two successive culprits on the greedy path a weak link . Notethat weak links are also worse than all edges in the two adjacent culprits as well as their back edges.If we remove all the weak links, the greedy path is partitioned into a set of paths, called blocks.Every block consists of a nonempty culprit as the middle segment, and (possibly empty) left andright extensions. The set of strings (nodes) S is thus partitioned into three sets Sl; Sm; Sr of left,middle, and right strings. The example in Figure 3 has 7 substrings, of which 2 by itself and themerge of 4, 5, and 6 form the culprits (indicated by thicker lines). Bad back edges are 2! 2, 6! 4,and 6! 1. The weak link 3! 4 is the worst edge between culprits [2] and [4;5; 6]. The blocks inthis example are thus [1;2; 3] and [4;5; 6; 7], and we have Sl = f1g;Sm = f2; 4; 5; 6g;Sr = f3;7g.The following lemma shows that a bad back edge must be from a middle or right node to amiddle or left node.Lemma 14 Let f = j ! i be a bad back edge. Node i is either a left node or the �rst node of aculprit. Node j is either a right node or the last node of a culprit.Proof. Let c = [k; l] be the leftmost culprit in If . Now either i = k is the �rst node of c,or i < k is in the left extension of c, or i < k is in the right extension of the culprit c0 to the leftof c. In the latter case however, If includes the weak link, which by de�nition is worse than alledges between the culprits c0 and c, including the edge i� 1! i. This contradicts the observationpreceding Lemma 13. A similar argument holds for sj .Let Cm be the assignment on the set Sm of middle strings (nodes) that has one cycle for eachculprit, consisting of the greedy edges together with the back edge of the culprit. If we considerthe application of the algorithm MGREEDY on the subset of strings Sm, it is easy to see that13



the algorithm will actually construct the assignment Cm. Theorem 10 then implies the followinglemma.Lemma 15 Cm is an optimal assignment on the set Sm of middle strings.Let the graph Gl = (Vl; El) consist of the left/middle part of all blocks in the greedy path,i.e. Vl = Sl [ Sm and El is the set of non-weak greedy edges between nodes of Vl. Let Ml be amaximum overlap assignment on Vl, as created by MGREEDY on the ordered sublist of edges inVl�Vl. Let Vr = Sm[Sr, and de�ne similarly the graph Gr = (Vr;Er) and the optimal assignmentMr on the right/middle strings. Let lc be the sum of the lengths of all culprit strings. De�nell = Pi2Sl d(si; si+1) as the total length of all left extensions and lr = Pi2Sr d(sRi ; sRi�1) as thetotal length of all right extensions. (Here xR denotes the reversal of string x.) The length of thestring produced by GREEDY is ll + lc + lr � ow, where ow is the summed block overlap (i.e. thesum of the overlaps of the weak links).Denoting the overlap Pe2E ov(e) of a set of edges E as ov(E), de�ne the cost of a set of edgesE on a set of strings (nodes) V as cost(E) = jjV jj � ov(E):Note that the distance plus overlap of a string s to another equals jsj. Because an assignment (e.g.Ml or Mr) has an edge from each node, its cost equals its distance weight. Since Vl and Vr aresubsets of S and Ml and Mr are optimal assignments, we have cost(Ml) � n and cost(Mr) � n.For El and Er we have that cost(El) = ll + lc and cost(Er) = lr + lc.We have established the following (in)equalities:ll + lc + lr = (ll + lc) + (lc + lr)� lc= cost(El) + cost(Er)� lc= jjVljj � ov(El) + jjVrjj � ov(Er)� lc= cost(Ml) + ov(Ml)� ov(El) + cost(Mr) + ov(Mr)� ov(Er)� lc� 2n+ ov(Ml)� ov(El) + ov(Mr)� ov(Er)� lc:We proceed by bounding the overlap di�erences in the above equation. Our basic idea is tocharge the overlap of each edge of M to an edge of E or a weak link or the back edge of a culpritin a way such that every edge of E and every weak link is charged at most once and the back edgeof each culprit is charged at most twice. This is achieved through combining the left/middle and14



Figure 4: Left/middle and middle/right parts with weak links.middle/right parts carefully as shown below. For convenience, we will refer to the union operationfor multisets (i.e., allowing duplicates) as the disjoint union.Let V be the disjoint union of Vl and Vr, let E be the disjoint union of El and Er, and letG = (V;E) be the disjoint union of Gl and Gr. Thus each string in Sl [ Sr occurs once, while eachstring in Sm occurs twice in G. We modify E to take advantage of the block overlaps. Add eachweak link to E as an edge from the last node in the corresponding middle/right path of Gr to the�rst node of the corresponding left/middle path of Gl. This procedure yields a new set of edges E0.Its overlap equals ov(E0) = ov(El) + ov(Er) + ow. A picture of (V;E0) for our previous example isgiven in Figure 4.Let M be the disjoint union of Ml and Mr, an assignment on graph G. Its overlap equalsov(M) = ov(Ml) + ov(Mr). Every edge of M connects two Vl nodes or two Vr nodes; thus, alledges of M satisfy the hypothesis of the following lemma.Lemma 16 Let N be any assignment on V . Let e = t ! h be an edge of N n E0 that is not inVr � Vl. Then e is dominated by either1. an adjacent E0 edge, or2. a culprit's back edge with which it shares the head h and h 2 Vr, or3. a culprit's back edge with which it shares the tail t and t 2 Vl.Proof. Suppose �rst that e corresponds to a bad back edge. By Lemma 14, h corresponds to aleft node or to the �rst node of a culprit. In the latter case, e is dominated by the back edge of theculprit (see the comment after Lemma 13). Therefore, either h is the �rst node of a culprit in Vr(and case 2 holds), or else h 2 Vl. Similarly, either t is the last node of a culprit in Vl (and case 3holds) or else t 2 Vr. Since e is not in Vr � Vl, it follows then that case 2 or case 3 holds. (Notethat if e is in fact the back edge of some culprit, then both cases 2 and 3 hold.)Suppose that e does not correspond to a bad back edge. Then e must be dominated by somegreedy edge since it was not chosen by GREEDY. If the greedy edge dominating e is in E0 then wehave case 1. If it is not in E 0, then either h is the �rst node of a culprit in Vr or t is the last nodeof a culprit in Vl, and in both cases f is dominated by the back edge of the culprit. Thus, we havecase 2 or 3. 15



While Lemma 16 ensures that each edge of M is bounded in overlap, it may be that someedges of E0 are double charged. We will modify M without decreasing its overlap and withoutinvalidating Lemma 16 into an assignment M 0 such that each edge of E0 is dominated by one of itsadjacent M 0 edges.Lemma 17 Let N be any assignment on V such that N nE 0 does not contain any edges in Vr�Vl.Then there is an assignment N 0 on V satisfying the following properties.1. N 0 nE0 has also no edges in Vr � Vl,2. ov(N 0) � ov(N),3. each edge in E0 nN 0 is dominated by one of its two adjacent N 0 edges.Proof. Since N already has the �rst two properties, it su�ces to argue that if N violatesproperty 3, then we can construct another assignment N 0 that satis�es properties 1 and 2, and hasmore edges in common with E0.Let e = k ! j be an edge in E 0 � N that dominates both adjacent N edges, f = i ! j, andg = k ! l. By Lemma 7, replacing edges f and g of N with e and i ! l produces an assignmentN 0 with at least as large overlap. To see that the new edge i! l of N 0 nE 0 is not in Vr�Vl, observethat if i 2 Vr then j 2 Vr because of the edge f = i ! j (N n E0 does not have edges in Vr � Vl),which implies that k is in Vr because of the E0 edge e = k! j (E0 does not have edges in Vl�Vr),which implies that also l 2 Vr because of the N edge g = k ! l.By Lemmas 16 and 17, we can construct from the assignment M another assignment M 0 withat least as large total overlap, and such that we can charge the overlap of each edge of M 0 to anedge of E 0 or to the back edge of a culprit. Every edge of E0 is charged for at most one edge of M 0,while the back edge of each culprit is charged for at most two edges of M 0: for the M 0 edge enteringthe �rst culprit node in Vr and the edge coming out of the last culprit node in Vl. Therefore,ov(M) � ov(M 0) � ov(E0)+ 2oc, where oc is the summed overlap of all culprit back edges. Denoteby wc the summed weight of all culprit cycles, i.e., the weight of the (optimal) assignment Cm onSm from Lemma 15. Then lc = wc + oc. As in the proof of Theorem 8, we have oc � 2wc � n andwc � n. (Note that the overlap of a culprit back edge is less than the length of the longest stringin the culprit cycle.) Putting everything together, the string produced by GREEDY has lengthll + lc + lr � ow � 2n+ ov(Ml)� ov(El) + ov(Mr)� ov(Er)� lc � ow� 2n+ ov(M 0)� ov(E0)� lc16



� 2n+ 2oc � lc= 2n+ oc � wc� 3n+ wc� 4n:6 Which algorithm is the best?Having proved various bounds for the algorithms GREEDY, MGREEDY, and TGREEDY, one maywonder what this implies about their relative performance. First of all we note that MGREEDY cannever do better than TGREEDY since the latter applies the GREEDY algorithm to an intermediateset of strings that the former merely concatenates.Does the 3n bound for TGREEDY then mean that it is the best of the three? This proves notalways to be the case. In the example fc(ab)k; (ab)k+1a; (ba)kcg, GREEDY produces the shortestsuperstring c(ab)k+1ac of length n = 2k + 5, whereas TGREEDY �rst separates the middle stringto end up with something like c(ab)kac(ab)k+1a of length 4k + 6.Perhaps then GREEDY is always better than TGREEDY, despite the fact that we cannot proveas good an upper bound for it. This turns out not to be the case either, as shown by the followingexample. On input fcabk; abkabka; bkdabk�1g, TGREEDY separates the middle string, merges theother two, and next combines these to produce the shortest superstring cabkdabkabka of length3k + 6, whereas GREEDY merges the �rst two, leaving nothing better than cabkabkabkdabk�1 oflength 4k + 5.Another greedy type of algorithm that may come to mind is one that arbitrarily picks any of thestrings and then repeatedly merges on the right the string with maximum overlap. This algorithm,call it NAIVE, turns out to be disastrous on examples likefabcde; bcde#a; cde#a#b;de#a#b#c; e#a#b#c#d;#a#b#c#d#eg:Instead of producing the optimal abcde#a#b#c#d#e, NAIVE might pick #a#b#c#d#e as astarting point to produce #a#b#c#d#e#a#b#c#de#a#b#cde#a#bcde#abcde. It is clear thatin this way superstrings may be produced whose length grows quadratically in the optimum lengthn. 17



7 Lower boundWe show here that the superstring problem is MAX SNP-hard. This implies that if there is apolynomial time approximation scheme for the superstring problem, then there is one also for awide class of optimization problems, including several variants of maximum satis�ability, the nodecover and independent set problems in bounded-degree graphs, max cut, etc. This is consideredrather unlikely.1Let A, B be two optimization (maximization or minimization) problems. We say that A L-reduces (for linearly reduces) to B if there are two polynomial time algorithms f and g and constants� and � > 0 such that:1. Given an instance a of A, algorithm f produces an instance b of B such that the cost of theoptimum solution of b, opt(b), is at most � � opt(a), and2. Given any solution y of b, algorithm g produces in polynomial time a solution x of a suchthat jcost(x)� opt(a)j � �jcost(y)� opt(b)j.Some basic facts about L-reductions are: First, the composition of two L-reductions is alsoan L-reduction. Second, if problem A L-reduces to problem B and B can be approximated inpolynomial time with relative error � (i.e., within a factor of 1+ � or 1� � depending on whether Bis a minimization or maximization problem) then A can be approximated with relative error ���.In particular, if B has a polynomial time approximation scheme, then so does A. The class MAXSNP is a class of optimization problems de�ned syntactically in [11]. It is known that every problemin this class can be approximated within some constant factor. A problem is MAX SNP-hard ifevery problem in MAX SNP can be L-reduced to it.Theorem 18 The superstring problem is MAX SNP-hard.Proof. The reduction is from a special case of the TSP with triangle inequality. Let TSP(1,2)be the TSP restricted to instances where all the distances are either 1 or 2. We can consider aninstance to this problem as being speci�ed by a graph H; the edges of H are precisely those thathave length 1 while the edges that are not in H have length 2. We need here the version of theTSP where we seek the shortest Hamiltonian path (instead of cycle), and, more importantly, weneed the additional restriction that the graph H be of bounded degree (the precise bound is not1In fact, Arora et al. [2] have recently shown that MAX SNP-hard problems do not have polynomial time approx-imation schemes, unless P = NP. 18



important). It was shown in [12] that the TSP(1,2) problem (even for this restricted version) isMAX SNP-hard.Let H be a graph of bounded degree D specifying an instance of TSP(1,2). The hardness resultholds for both the symmetric and the asymmetric TSP (i.e., for both undirected and directed graphsH). We let H be a directed graph here. Without loss of generality, assume that each vertex of Hhas outdegree at least 2. The reduction is similar to the one of [5] used to show the NP-completenessof the superstring decision problem. We have to prove here that it is an L-reduction. For everyvertex v of H we have two letters v and v0. In addition there is one more letter #. Correspondingto each vertex v we have a string v#v0, called the connector for v. For each vertex v, enumeratethe edges out of v in an arbitrary cyclic order as (v;w0); . . . ; (v;wd�1) (*). Corresponding to theith edge (v;wi) out of v we have a string pi(v) = v0wi�1v0wi, where subscript arithmetic is modulod. We will say that these strings are associated with v.Let n be the number of vertices and m the number of edges of H . If all vertices have degreeat most D then m � Dn. Let k be the minimum number of edges whose addition to H su�ces toform a Hamiltonian path. Thus, the optimal cost of the TSP instance is n� 1+ k. We shall arguethat the length of the shortest common superstring is 2m+ 3n+ k+ 1. It will follow then that thereduction is linear since m is linear in n.Consider the distance-weighted graph GS for this set of strings, and let G2 be its subgraphwith only edges of minimal weight (2). Clearly, G2 has exactly one component for each vertex ofH, which consists of a cycle of the associated p strings, and a connector that has an edge to eachof them. We need only consider `standard' superstrings in which all strings associated with somevertex form a subgraph of G2, so that only the last p string has an outgoing edge of weight morethan 2 (3 or 4). Namely, if some vertex fails this requirement, then at least two of its associatedstrings have outgoing edges of weight more than 2, thus we do not increase the length by puttingall its p strings directly after its connector in a standard way. A standard superstring naturallycorresponds to an ordering of vertices v1; v2; . . . ; vn.For the converse there remains a choice of which string q succeeds a connector vi#v0i. If Hhas an edge from vi to vi+1 and the `next' edge out of vi (in (*)) goes to, say vj , then choosingq = v0ivi+1v0ivj results in a weight of 3 on the edge from the last p string to the next connectorvi+1#v0i+1, whereas this weight would otherwise be 4. If H doesn't have this edge, then the choiceof q doesn't matter. Let us call a superstring `Standard' if in addition to being standard, it alsosatis�es this latter requirement for all vertices.Now suppose that the addition of k edges to H gives a Hamiltonian path v1; v2; . . . ; vn�1; vn.19
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