
Clustering with Interactive Feedback

Maria-Florina Balcan and Avrim Blum

Carnegie Mellon University
Pittsburgh, PA 15213-3891
{ninamf,avrim}@cs.cmu.edu

Abstract. In this paper, we initiate a theoretical study of the problem
of clustering data under interactive feedback. We introduce a query-based
model in which users can provide feedback to a clustering algorithm in
a natural way via split and merge requests. We then analyze the “clus-
terability” of different concept classes in this framework — the ability
to cluster correctly with a bounded number of requests under only the
assumption that each cluster can be described by a concept in the class
— and provide efficient algorithms as well as information-theoretic upper
and lower bounds.

1 Introduction

Clustering is often a highly under-specified problem: given a set of data items,
there may be many different possible clusterings a user might be interested in.
For instance, given a set of documents or news articles, should all those about
sports go into a single cluster or should there be different clusters for football,
baseball, hockey and so on? Should articles on salaries paid to sports figures be
classified under sports or under business? Or perhaps, completely orthogonally,
the user wants articles clustered by length or by writing style and not by topic.
Most theoretical work “wishes away” this under-specification by making strong
distributional assumptions, such as the data distribution being a mixture of
Gaussians with each Gaussian as one of the clusters (e.g., [9, 3]). In this work,
we instead embrace the idea that a given set of data might have multiple plausible
clusterings, and consider the problem of clustering under feedback. That is, we
imagine users are willing to help a clustering algorithm arrive at their own desired
answer with a small amount of additional prodding, and ask what kinds of
algorithms can take advantage of such feedback and under what conditions can
they succeed. In this paper, we consider the problem of clustering under a quite
natural type of feedback in the form of split and merge requests. Specifically,
given a proposed clustering of the dataset, the user responds with either:

Split: The user identifies a cluster c in the algorithm’s clustering that contains
points from multiple target clusters (and therefore should be split), or

Merge: The user identifies two clusters c, c′ in the algorithm’s clustering that
are both subsets of the same target cluster and therefore should be merged.

Or, if neither of these applies, the user responds that the algorithm’s clustering
is correct. Thus, this model is similar to the standard model of learning with

equivalence queries [10], except that rather than return a misclassified data point,
the user instead responds with the more vague request that, say, some cluster
should be split (but without saying how that split should be done, or where in
that cluster a mistake was made). We then show, perhaps surprisingly, that a
number of interesting positive results can be had in this model under only the
assumption that each cluster in the target is a member of some given concept
class C, without any distributional assumptions on the data. In contrast, as
mentioned above, most work on clustering has focused on generative models,
such as mixtures of Gaussian or logconcave distributions, in which the underlying
data distribution is effectively committing to only a single answer [1, 8, 7, 9, 14,
12].

Our model can be illustrated by the following simple example. Suppose our
given dataset S consists of m points on the real line. We are told that each
cluster is an interval, and let us say for simplicity of discussion we also are told
there are only k ≤ 2 clusters. In this case we could begin by proposing a single
cluster with all the points and proposing it to the user. If we are incorrect, the
user will respond with a split request, in which case we split the cluster into
two intervals of m/2 points each and present the result to the user again. In
general, if the user asks us to split a cluster, we partition it exactly in half (by
cardinality), and if the user asks us to merge two clusters, we merge them. Since
at most one of the algorithm’s intervals can contain points from both of the
user’s intervals, and since each split request causes the number of points in the
offending interval to drop by a factor of 2, the total number of split requests is
at most lg m. Therefore, the total number of merge requests is at most lg m as
well, and so the overall number of requests at at most 2 lg m.

Note that clustering in this model with m requests is trivial for any concept
class C: just begin with each point in its own cluster and merge as requested. So,
our goal will be to develop algorithms whose query complexity is logarithmic in
m and polynomial in parameters such as log |C| and (ideally) k. Note also that
if we strengthened the model to allow the algorithm to specify which cluster
the user should focus on, then we could simulate membership queries [2, 11];1

indeed, one of the key difficulties in our model will be designing algorithms that
can make progress no matter which clusters are asked to be split or merged.

The main results we show in this model are as follows (here, m is the total
number of data points and k is the number of clusters in the target):

1. For the case of points on the line and the class of intervals, we give a simple
algorithm that requires only O(k log m) requests to cluster correctly.

1 Suppose inductively we have determined points x1, . . . , xk′ that are all known to be
in different clusters. Then, in this strengthened model, given a new point x we could
query the sequence of clusters {x, x1}, {x, x2}.... The first one of these that does not
produce a split request is the label of x (or if all produce a split request, we assign x

to label k′ + 1).

2. For the case of points in {0, 1}n and the class of conjunctions (each cluster
in the target is specified by a conjunction, and each data point satisfies
exactly one of these conjunctions) we give an efficient algorithm with query
complexity O(nk). Thus, this is polynomial when k is constant. For the
case of disjunctions, we give an efficient algorithm with query complexity
O(n), independent of k. We do not know if there is an efficient algorithm for
conjunctions with query complexity poly(n, k).

3. For a general class C, (each cluster is a member of C, so there are at most |C|k

possible clusterings overall), we give a generic but computationally inefficient
algorithm with query complexity O(k3 log |C|).

4. The generic algorithm mentioned above requires the algorithm, as it is
learning, to produce clusterings in which there are many more than k clus-
ters. If instead we restrict the algorithm to producing clusterings with only
poly(k, log m, log |C|) clusters (e.g., we allow the user a third option of re-
fusing to split or merge and instead just saying “way too many clusters”)
then even for simple classes no algorithm can succeed.

1.1 Related work and motivation

There has, of course, been substantial theoretical work on clustering, e.g., [3,
1, 5, 8, 7, 9, 14, 12]. Much of this work assumes a generative model in which the
distribution of data contains enough information at least in principle to recon-
struct the single correct answer. Our model is motivated by recent work [4] that
considers a relaxation of this setting in which the assumption is only that the
target clustering satisfies certain natural relations with respect to the data. For
instance, the target clustering might have the property that data points are
closer to points in their own cluster than to points in any other cluster. This
condition and others considered in [4] are not sufficient to uniquely identify the
target clustering directly, but they are sufficient as shown in [4] to produce a
tree (a hierarchical clustering) such that the desired clustering is some pruning
of this tree. The idea is then that a user, given such a tree, could begin at the
root and “click” on any node that is too broad to navigate down. This model
is similar to clustering with split requests only, since the tree can be viewed as
a pre-specification of what the algorithm would do on any given such request.
Unfortunately, this approach is not sufficient to handle even the case of intervals
described above, since for intervals we have multiple different possible cluster-
ings even for k = 2, and none of these are refinements of the others (so no single
such tree is possible). By considering an interactive model with both split and
merge requests, we are able to avoid this difficulty and analyze a broader class
of settings.

2 Notation and Definitions

We are given a set S of m points from some instance space X , and we assume
that a user has in mind some partition of S into k disjoint clusters c1, . . . , ck.

We call {c1, . . . , ck} the target clustering. Our goal will be to identify this target
clustering from a limited number of split and merge requests (so, in learning-
theoretic terms, we are considering a transductive problem). In particular, given
a proposed clustering {h1, h2, . . . , hk′} of S produced by the algorithm, if this
clustering is not correct then the user will respond with either split(hi) for some
hi that contains points from multiple target clusters, or merge(hi, hj) for two
clusters hi, hj that are both subsets of the same target cluster. Note that if none
of these conditions hold for any of hi then the proposed clustering must be correct
(to be clear, we say that {h1, . . . , hk} is correct if there is some permutation σ
on {1, . . . , k} such that hi = cσ(i) for all i). We think of the act of proposing a
clustering as making a “query” (much like the notion of an equivalence query in
learning, except the response is split or merge rather than a labeled example),
and our goal is to identify the target from a small number of queries. As in the
standard equivalence query model, we view the user as adversarial in the sense
that we want to identify the target with a small number amount of feedback no
matter how the user chooses which request to make if multiple split or merge

requests apply.

If C is a concept class, we say that the clustering {c1, . . . , ck} is in class C if
each ci ∈ C. We say that an algorithm clusters class C with Q queries if it is able
to identify the target with at most Q queries for any clustering in C. Our goal
will be to do this for a number of queries that is polynomial in k, log |C|, and
log m. As noted above, clustering with m queries is trivial: simply begin with m
clusters each containing a single point in S and then merge as requested.

Note that because we assume each point x ∈ S belongs to exactly one cluster
ci of the target, not every clustering in a given class C may be consistent with
a given dataset S and vice-versa. E.g., if C is the class of disjunctions and S
contains the point 10010, then the target could not, for instance, have x1 ∨ x2

as one cluster and x4 ∨ x5 as another. In fact, because of this issue, we will also
consider what we call the extended model, where we allow the final cluster ck to
equal S − (c1 ∪ . . .∪ ck−1), even if this cannot be written as a concept in C. So,
for k = 2, the set of possible clusterings of the given dataset S in the extended
model is exactly {(c ∩ S, c ∩ S) : c ∈ C}. All of our results can be made to hold
for the extended model as well.

We have not yet specified whether or not algorithms are allowed to produce
clusterings {h1, . . . , hk′} in which the clusters hi overlap. We find that in some
cases (e.g., Section 4) it is easier to design algorithms if we allow overlap, but
we are also able to remove this at the expense of somewhat worse bounds. In all
cases, however, we require the hypothesis clustering to cover all the points of S.

One final point: we have not yet placed any conditions on the number of
clusters k′ that the algorithm may use in its clusterings. Ideally, an algorithm
should use k′ = O(k) or perhaps k′ = poly(k, logm) clusters, since this quantity
in some sense determines the “cognitive load” on the user. In fact, for most of
our algorithms this is indeed the case. However, our generic algorithm (Section
5) may need substantially more clusters, and in Section 6 we show that in fact
this is necessary in our framework to achieve a good bound in general.

3 Intervals

To illustrate the general setting, in this section we present a simple algorithm
for the class C of intervals on the line, that requires at most k log m requests to
cluster correctly. Specifically, the algorithm is as follows.

Algorithm Cluster-Intervals:

– Begin with a single cluster containing all m points of S.
– On a split request to a cluster c, partition c into two clusters of equal

cardinality.
– On a merge request, merge the two clusters indicated.

Theorem 1. Algorithm Cluster-Intervals requires only O(k log m) requests to

cluster the class of intervals on the line.

Proof: Since the target consists of k intervals, we can identify k − 1 decision
boundaries a1, . . . , ak−1, where ai is an arbitrary position between the largest
point in S in target interval i and the smallest point in S in target interval i+1.
If ai lies inside some cluster c of the algorithm’s clustering, define size(ai) to
be the number of points of S in c; else define size(ai) = 0. (For concreteness,
if a hypothesis cluster c contains points p1 < p2 < . . . < pt ∈ S, we define
c = [p1, pt].) So, initially, we have size(ai) = m for all i.

Now, a split request can only be made to a cluster c that contains at least one
of the ai (otherwise c would contain points from only one target interval). Since
the result of a split is to replace c with two clusters of half as many points, this
means that each split request reduces size(ai) by a factor of 2 for at least one of
the decision boundaries ai. Furthermore, a merge request can only be made on
two clusters c, c′ such that c ∪ c′ does not contain any of the ai. Therefore, the
total number of split requests can be at most k log m total, which implies a total
of at most k log m merge requests as well. ⊓⊔

Note that for intervals, the extended model with k clusters (where the last
cluster can be a “default bucket”) can be expressed using the standard model
with 2k − 1 clusters, so Theorem 1 applies to the extended model as well.

4 Conjunctions and Disjunctions

We now present an algorithm for clustering the class C of disjunctions over
{0, 1}n. That is, each target cluster can be described by some disjunction of
literals, and each point x ∈ S satisfies exactly one of the target disjunctions.
We show we can do this making only O(n) queries if we allow the clusters in
the hypothesis clusterings to overlap. We then show how this algorithm can
be adapted to remove this overlap (so that each proposed clustering is indeed a
partition of S), but at the expense of now making O(n2) queries. We finally show
how these can be used to yield algorithms for the class C of conjunctions that are
polynomial for constant k. Specifically, these algorithms make O(nk−1) queries

and O(n2(k−1)) queries respectively depending on whether or not disjointness is
required.

We begin with a simple O(n)-query algorithm for disjunctions, if we allow
hypothesis clusters to overlap. Without loss of generality we may assume the
target disjunctions are monotone (by the standard trick of introducing variables
yi = 1− xi for every variable xi).

Algorithm Cluster-Disjunction:
– Begin with one cluster for each variable xi, containing all points x ∈ S

such that xi = 1. (Note that these may overlap).
– On a split request to a cluster xi, simply delete that cluster.
– On a merge request, merge the two clusters indicated.

Theorem 2. Algorithm Cluster-Disjunction requires at most n− k requests

to cluster the class of disjunctions over {0, 1}n.

Proof: First, notice that whenever two clusters are merged, they can never be
split, since by definition, the result of a merge operation is pure (contains points
from only one target cluster). Therefore, all split requests are made to clusters
corresponding to single variables. Second, note that if xi is a relevant variable
(belongs to one of the target disjunctions), then its associated cluster is pure
and so will not be split. Since each point x ∈ S must satisfy one of the target
disjunctions, this means we maintain the (crucial) invariant that our clustering
is legal: every point x ∈ S belongs to at least one cluster in the hypothesis.
Thus, we ensure that if our current hypothesis is incorrect, there must be a split

or merge request the user can make. Since each request results in reducing the
number of clusters by 1, this means that the total number of requests is at most
n− k. ⊓⊔

Notice that the above algorithm produces hypothesis clusterings in which the
clusters are non-disjoint (because a given point x ∈ S may have several variables
set to 1). If we want the hypothesis clusters to be disjoint, a natural approach
to doing so is to just arbitrarily remove each example x from all but one of the
clusters i such that xi = 1. However, this may cause the result of a split request
to no longer be a legal clustering since some points x may no longer belong to
any clusters, and arbitrarily re-assigning them may break the invariant that the
clusters resulting from merge requests can never be split later. We can fix this
problem, but at a loss of using O(n2) requests, as follows.

Algorithm Disjoint-Disjunction:
– Begin with one cluster for each variable xi, containing all points x ∈ S

such that xi = 1 and xj = 0 for all j < i.
– On a split request to a cluster xi, delete that variable from every point in

S and restart the entire algorithm from the beginning (with n← n− 1).
– On a merge request, merge the two clusters indicated.

Theorem 3. Algorithm Disjoint-Disjunction maintains a disjoint clustering

and requires at most O(n2) requests to cluster the class of disjunctions over

{0, 1}n.

Proof: The initialization step of the algorithm insures that clusters are disjoint
and furthermore include all points x ∈ S. As before, since the result of a merge

operation must contain points in only one target cluster, any split request must
be to a cluster corresponding to a single variable xi. By assumption that the
target clusters are disjunctions, any hypothesis clusters corresponding to rele-

vant variables are pure, and therefore any split request must be to an irrelevant
variable. So, deleting such variables maintains the invariant that each target
cluster can be expressed as a disjunction. Since each split request reduces the
total number of variables by 1, and there can be at most n − k merge requests
in a row, the total number of requests is O(n2). ⊓⊔

We now show how the above algorithms can be used to cluster the class of con-
junctions, making O(nk−1) queries and O(n2(k−1)) queries respectively depend-
ing on whether or not disjointness is required. In particular, let c1, c2, . . . , ck de-
note the target clusters and assume without loss of generality that each conjunc-
tion is monotone. Because each point x ∈ S lies in exactly one target cluster, this
means we can equivalently write cluster ci as c1∧ . . .∧ci−1∧ci+1∧ . . .∧ck. Since
each cj is a conjunction, this means we can write ci as a (k−1)-DNF, or equiva-
lently as a disjunction over a space of nk−1 variables yi1···ik−1

= xi1xi2 · · ·xik−1
.

Thus, we can cluster by expanding to this space of nk−1 variables and running
the disjunction algorithms given above. The bounds then follow immediately.

4.1 Conjunctions and Disjunctions in the Extended Model

In the extended model (where we allow ck to be a default cluster not necessarily
in C), Algorithm Cluster-Disjunction “almost” works. The only problem is
that deleting a cluster xi may cause some points to become completely uncov-
ered, because points in ck do not have any relevant variables set to 1. However,
since all points with no relevant variables must be in the same cluster ck, we
can fix this problem with a small modification to the algorithm. Specifically,
we just create an extra “default bucket” containing all the points not covered
by any of the other hypothesis clusters. This bucket will never be split (since
all such points must be in ck) so the analysis proceeds exactly as before. The
same modification and analysis applies to Algorithm Disjoint-Disjunction: in
particular, the default bucket will just contain all points that have no variables
set to 1. Thus we have the following theorem.

Theorem 4. The above modification to Algorithm Cluster-Disjunction re-

quires at most n− k + 1 requests to cluster the class of disjunctions over {0, 1}n

in the extended model. The modification to Algorithm Disjoint-Disjunction

maintains disjoint clusters and requires at most O(n2) requests to cluster dis-

junctions in the extended model.

For conjunctions, the difficulty with the reduction given in the non-extended
model is that the expression c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ ck for cluster ci is no
longer a (k− 1)-DNF, except for the case i = k. However, we can deal with this
problem with the following procedure.

Algorithm Extended-Cluster-Conjunctions:

– Begin with one cluster for each term yi1···ik−1
= xi1xi2 · · ·xik−1

, contain-
ing all points in S satisfying this term. Instantiate a default bucket with
all points not covered by any other cluster.

– On a split request to one of the y clusters, or a merge request to a y cluster
and a cluster in the default bucket, delete the y cluster. If any points
become uncovered, insert them into the default bucket and instantiate
(or restart from scratch) a (k − 1)-cluster conjunction algorithm for the
non-extended model on the points in that bucket.

– On a merge request to two y clusters, merge the two clusters indicated.
– On a split or merge request to two clusters within the default bucket, send

them to the conjunction-learning algorithm being run on the datapoints
in that bucket.

Theorem 5. Algorithm Extended-Cluster-Conjunctions requires at most

O(n2k−3) requests to cluster the class of conjunctions over {0, 1}n in the extended

model.

Proof: Because cluster ck can be written as a disjunction over the y variables,
the relevant y variables for ck will never receive split requests or be asked to be
merged with clusters within the default bucket. Therefore, the above algorithm
maintains the invariant that only points within c1∪· · ·∪ck−1 are ever placed into
the default bucket. This implies that at most O(nk−2) requests will be made to
clusters inside that bucket between any two consecutive restarts to the (k − 1)-
cluster conjunction-learning algorithm in that bucket. There can be at most nk−1

restarts, so overall the number of requests will be at most O(n2k−3). ⊓⊔

One can also consider a disjoint-cluster version of Algorithm Extended-

Cluster-Conjunctions, by deleting y variables and restarting on split requests
as in Algorithm Disjoint-Disjunction, and by using a disjoint clustering algo-
rithm for the default bucket. In this case, we have at most O(n2(k−2)) requests
to the default bucket between restarts, and at most nk−1 restarts, resulting in
at most O(n3k−5) requests total.

5 A General Upper Bound

We now describe a generic but computationally inefficient algorithm that will
cluster any concept class C using O(k3 log |C|) queries. The high-level idea is
that ideally we would like to use some form of halving algorithm, except that
because feedback is in the form of split and merge requests rather than labeled
examples, it is not so clear how to do this directly. What we will do instead is
carefully construct a clustering such that any split or merge request removes at
least a 1/k2 fraction of the version space, leading to the bound given above. We
point out that the clustering constructed in each step may have many more than
k clusters in it. However, this is unavoidable: as we show in Section 6, it is not
possible to achieve a query complexity polynomial in k, log |C| and log m if we
require the algorithm to use only poly(k, log |C|, log m) clusters.

The generic algorithm is as follows. We begin with the simple “wrapper” and
then present the main “engine” of the algorithm.

Algorithm Generic-Clustering:

1. Let CV S denote the current version space: the set of clusterings consis-
tent with the results of all queries so far. So, initially we have |CV S | ≤
|C|k−1.

2. Run Algorithm Generate-Interesting-Clustering(CV S , S) described
below to produce a clustering that is guaranteed to have the property
that any split or merge request removes a substantial fraction of the
version space, and propose it to the user.

3. When a split or merge request is received, remove from CV S all cluster-
ings inconsistent with the request and go to (2).

We now give the main “engine” of the algorithm. Here we say that a cluster
b is consistent with a clustering {c1, . . . , ck} if b ⊆ ci for some i.

Algorithm Generate-Interesting-Clustering(CV S , S):
1. Initialize k buckets B1, . . . , Bk (initially all empty) and let α = 1/k2.

We will maintain the invariant that each Bi is consistent with at least a
1− α fraction of the clusterings in CV S .
For each point x ∈ S (in an arbitrary order) do:
(a) Insert x into the bucket Bi of least index such that Bi ∪ {x} is

consistent with at least an α fraction of the clusterings in CV S . If
no such Bi exists, then halt with failure.

(b) If Bi is now consistent with less than a 1−α fraction of clusterings in
CV S , then output Bi as one of the hypothesis clusters, and replace
it with a new empty bucket, putting the new bucket at the end of
the list. That is, let Bi ← Bi+1, Bi+1 ← Bi+2, . . . , Bk−1 ← Bk and
call the new empty bucket Bk.

2. If we reach this point (no more points x ∈ S and all buckets Bi are
consistent with at least a 1 − α fraction of CV S), output the clusters
B1, B2, . . . , Bk, ignoring empty buckets.

Theorem 6. Algorithm Generic-Clustering succeeds in clustering any class

C using at most O(k3 log |C|) requests, and furthermore this holds in the extended

model as well.

Proof: We show that Algorithm Generate-Interesting-Clustering outputs a
clustering such that any split or merge request is guaranteed to remove at least a
1/k2 fraction of clusterings from the version space CV S . This will immediately
imply that the total number of queries of Algorithm Generic-Clustering is at
most O(k2 log |CV S |) = O(k3 log |C|) (in both standard and extended models)
as desired.

First, we argue that the algorithm will never halt with failure in Step 1(a).
By construction, we maintain the invariant that each bucket Bi is consistent
with at least a 1 − α fraction of clusterings in CV S , since otherwise we would

have already outputted it in Step 1(b) (and by definition, an empty bucket is
consistent with the entire CV S). Therefore, at least a 1 − kα fraction of CV S

is consistent with all Bi simultaneously. In addition, for each pair i < j for
which Bj is non-empty, at most an α fraction of CV S can be consistent with
Bi ∪Bj (because each point x ∈ Bj has the property that at most an α fraction
of CV S is consistent with Bi ∪ {x}, else it would have been inserted into Bi

instead). Moreover, we only care about the case that no buckets are empty since
otherwise we could always put x into the first empty bucket. Therefore at least
a 1− kα−

(

k

2

)

α fraction of CV S is consistent with each Bi and has all k buckets
Bi as subsets of distinct clusters. By definition of α, this is at least a kα fraction
of CV S . Now, each of these clusterings has x in one of its k clusters, and that
cluster is associated with a single bucket Bi. So, there must exist an index i such
that at least a kα/k = α fraction of CV S has x in a cluster consistent with Bi,
and therefore Step 1(a) succeeds.

We now argue that the clustering produced has the desired property that any
split or merge request removes at least an α fraction of the version space. First,
if the algorithm outputs a cluster in Step 1(b), then the fraction of clusterings
in CV S consistent with the cluster Bi produced is in the range [α, 1 − α], and
therefore any split or merge request involving it removes at least an α fraction of
the version space. So, all clusters produced in Step 1(b) have the desired property.
Next, we need to consider the clusters output in Step 2. For those, the situation
is even better: any split or merge request involving only these clusters removes
at least a 1−α fraction of the version space. In particular, for split requests this
is because each Bi is consistent with at least a 1 − α fraction of CV S , and for
merge requests this is because at most an α fraction of CV S is consistent with
Bi ∪ {x} for all x ∈ Bj , j > i. Thus, overall the clustering produced has the
property that any request removes at least an α = 1/k2 fraction of the version
space as desired. ⊓⊔

6 Lower Bounds

We now show that if we restrict the algorithm to only producing clusterings
with poly(k, log m) clusters, then there exist classes for which no algorithm can
succeed. Thus, the use of what might potentially be a large number of small
clusters in the generic algorithm of Section 5 is in fact necessary.

We begin first with a much easier statement to prove.

Theorem 7. There exist classes C of size m such that, even for k = 2, any

algorithm that is restricted to producing k-clusterings will require Ω(m) queries.

Proof: Let S consist of m points on the circle, and let C be the class of intervals.
Assume the target clustering is a random partition of S into two contiguous
intervals of m/2 points. If the algorithm proposes a 2-clustering in which the
two clusters have different sizes, then the larger cluster must contain points
from both target clusters. So the user can issue a split request on that cluster
providing the algorithm with no information (the algorithm could simulate the

user itself). Alternatively, if the algorithm proposes two equal-size clusters, the
user can issue a split request on either cluster unless the algorithm is exactly
correct. Since the target was chosen to be a random partition, this implies any
algorithm must make Ω(m) queries in expectation. ⊓⊔

We now present our main result of this section.

Theorem 8. There exist classes C of size O(m) such that, even for k = 2,
no algorithm that is restricted to producing clusterings with only poly(k, log m)
clusters can have even a 1/poly(k, log m) chance of success after poly(k, log m)
queries.

Proof: Consider the set S = {0, 1}n, so m = 2n, and let C be the class of parity
functions and their negations. (So, for some parity function c, one cluster will
consist of all points x ∈ {0, 1}n such that c(x) = 1 and the other will consist
of all points x ∈ {0, 1}n such that c(x) = −1.) We claim that for any query
made by the algorithm, if the target is determined by a random parity c, the
user will be able to issue a split request on the largest cluster with probability
exponentially close to 1. Thus, the algorithm receives no information (since it
could simulate such a user itself) and therefore exponentially many queries will
be needed to cluster correctly (exponential in k and log m).

Specifically, suppose the largest cluster c′ in the algorithm’s proposed cluster-
ing has size αm. Define the boolean function h(x) = 1 if x ∈ c′ and h(x) = −1
if x 6∈ c′. The user will be able to issue a split request on c′ unless c′ ⊆ c or
c′ ⊆ ¬c; in the former case we have Pr[h(x) = c(x)] = 1/2 + α and in the latter
case we have Pr[h(x) = ¬c(x)] = 1/2 + α. Either of these cases imply that the
magnitude of correlation between h and c satisfies:

|Ex[h(x)c(x)]| = |Pr[h(x) = c(x)]− Pr[h(x) 6= c(x)]|

= |1/2 + α− (1/2− α)| = 2α,

or in Fourier notation, we have |〈h, c〉| = 2α. However, by Parseval’s identity [13],
we know that h can have correlation of magnitude 2α with at most 1/(2α)2

different parity functions. Thus, if c was chosen at random from among all 2n

parity functions, the probability that the algorithm’s largest cluster c′ truly is a
subset of one of the target clusters is at most 1/(4α22n). Since we assumed the
algorithm produced clusterings with only poly(k, log m) clusters, it must be the
case that α ≥ 1/poly(k, log m), and so the probability the user is not able to
issue a split request on the largest cluster is exponentially small in k and log m,
as desired. ⊓⊔

7 Relation to Equivalence Query Model

In the standard model of learning with equivalence queries, any class C can be
learned using at most log |C| queries via the halving algorithm. However, some
classes can be learned with many fewer queries, such as the class of concepts

having at most one positive example which requires only one query to learn.
In contrast, we show here that in our framework, for any class C, for the case
k = 2 there is a lower bound of Ω(log |CV S |) on the number of queries needed
to cluster, where CV S is the initial version space. Thus, for the extended model,
this gives a lower bound of Ω(log |C|) on the number of queries needed to cluster.

Theorem 9. For any class C, for k = 2, any clustering algorithm must make

Ω(log |CV S |) queries in the worst case, where CV S is the initial version space.

Proof: Let {h1, h2, . . . , ht} be a clustering produced by the clustering algorithm.
We show there must exist a split or merge request that removes at most a 5/6
fraction of the version space.

First, suppose the algorithm’s clustering has only two clusters (t = 2). In
that case, every clustering in CV S except for (a) the trivial clustering that puts
all points into a single cluster or (b) a clustering identical to {h1, h2} must split
either h1 or h2 or both. Without loss of generality, say that a majority of those
|CV S | − 2 clusterings split h1. Thus, a split request on h1 must be consistent
with at least (|CV S | − 2)/2 clusterings in the version space.

Now, for the case t > 2, consider the first three clusters h1, h2, h3 in the
algorithm’s clustering. Since all clusterings in CV S have only two clusters, each
must either split one of the hi or else have two of the hi inside the same cluster.
Thus, for each clustering in CV S , at least one of the 6 possible split or merge

requests on {h1, h2, h3} must apply. Therefore there must exist some request
that is consistent with at least a 1/6 fraction of CV S as desired. ⊓⊔

8 Conclusions

In this paper we have analyzed the problem of determining the correct clustering
of data from a bounded number of split and merge requests. We have provided ef-
ficient algorithms for several natural classes including disjunctions, conjunctions
(for bounded k), and intervals, as well as a generic O(k3 log |C|) upper bound
for clustering any given class C. We also provide lower bounds for algorithms
that use a bounded number of clusters and a separation result with respect to
the standard model of learning with equivalence queries.

This model brings up several interesting open questions. First, can one im-
prove the generic upper bound from O(k3 log |C|) to O(k log |C|), i.e., gain a
constant amount of information per query. Second, can one devise an efficient
algorithm for conjunctions whose query complexity is polynomial in both k and
n. Our generic algorithm implies this is possible information-theoretically but
we do not know any efficient procedure. Finally, a natural domain for cluster-
ing with split and merge requests is image segmentation. From this perspective,
it would be interesting to generalize the 1-dimensional results to 2 dimensions,
ideally to the case where each cluster is a region defined by a limited number s
of axis-parallel line segments as in the results on learning discretized geometric
concepts using equivalence queries of Bshouty et al. [6].

More broadly, it would be interesting to further explore clustering with other
natural forms of interactive feedback.

Acknowledgments: This work was supported in part by the National Science
Foundation under grant CCF-0514922, by an IBM Graduate Fellowship, and by
a Google Research Grant.

References

1. D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions.
In Proceedings of the 18th Annual Conference on Learning Theory, 2005.

2. D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1998.
3. S. Arora and R. Kannan. Learning mixtures of arbitrary gaussians. In Proceedings

of the 33rd ACM Symposium on Theory of Computing, 2001.
4. M.-F. Balcan, A. Blum, and S. Vempala. A discriminative framework for clustering

via similarity functions. In Proceedings of the 40th ACM Symposium on Theory of

Computing, 2008.
5. S. C. Brubaker and S. Vempala. Isotropic PCA and affine-invariant clustering. In

Proceedings of the 49th ACM Symposium on Foundations of Computer Science,
2008.

6. N. H. Bshouty, P. W. Goldberg, S. A. Goldman, and H. D. Mathias. Exact learning
of discretized geometric concepts. SIAM J. Computing, 28(2):674–699, 1998.

7. A. Dasgupta, J. Hopcroft, J. Kleinberg, and M. Sandler. On learning mixtures of
heavy-tailed distributions. In 46th IEEE Symposium on Foundations of Computer

Science, 2005.
8. A. Dasgupta, J. E. Hopcroft, R. Kannan, and P. P. Mitra. Spectral clustering

by recursive partitioning. In Proceedings of the 14th European Symposium on

Algorithms, pages 256–267, 2006.
9. S. Dasgupta. Learning mixtures of gaussians. In Proceedings of the 40th Annual

Symposium on Foundations of Computer Science, 1999.
10. L. Hellerstein, K. Pillaipakkamnatt, V. V. Raghavan, and D. Wilkins:. How many

queries are needed to learn? In Proceedings of the 27th ACM Symposium on Theory

of Computing, 1995.
11. J. Jackson. An efficient membership-query algorithm for learning dnf with respect

to the uniform distribution. Journal of Computer and System Sciences, 57(3):414–
440, 1995.

12. R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mix-
ture models. In Proceedings of the 18th Annual Conference on Learning Theory,
2005.

13. Y. Mansour. Learning boolean functions via the fourier transform. Theoretical

Advances in Neural Computation and Learning, pages 391–424, 1994.
14. S. Vempala and G. Wang. A spectral algorithm for learning mixture models.

Journal of Computer and System Sciences, 68(2):841–860, 2004.

