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Abstract

Kernel functions have become an extremely pop-
ular tool in machine learning, with an attractive
theory as well. This theory views a kernel as im-
plicitly mapping data points into a possibly very
high dimensional space, and describes a kernel
function as being good for a given learning prob-
lem if data is separable by a large margin in that
implicit space. However, while quite elegant, this
theory does not directly correspond to one’s intu-
ition of a good kernel as a good similarity func-
tion. Furthermore, it may be difficult for a do-
main expert to use the theory to help design an
appropriate kernel for the learning task at hand
since the implicit mapping may not be easy to
calculate. Finally, the requirement of positive
semi-definiteness may rule out the most natural
pairwise similarity functions for the given prob-
lem domain.

In this work we develop an alternative, more gen-
eral theory of learning with similarity functions
(i.e., sufficient conditions for a similarity func-
tion to allow one to learn well) that does not re-
quire reference to implicit spaces, and does not
require the function to be positive semi-definite
(or even symmetric). Our results also general-
ize the standard theory in the sense that any good
kernel function under the usual definition can be
shown to also be a good similarity function under
our definition (though with some loss in the pa-
rameters). In this way, we provide the first steps
towards a theory of kernels that describes the ef-
fectiveness of a given kernel function in terms of
natural similarity-based properties.

function that takes in two data objects (which could be im-
ages, DNA sequences, or pointsifi) and outputs a num-
ber, with the property that the function is symmetric and
positive-semidefinite. That is, for any kerrié) there must
exist an (implicit) mapping, such that for all inputs;, z’

we havelC(z,z') = ¢(z) - ¢(z'). The kernel is then used
inside a “kernelized” learning algorithm such as SVM or
kernel-perceptron as the way in which the algorithm inter-
acts with the data. Typical kernel functions for structured
data include the polynomial kernél(z, ') = (1 +z-2')?

and the Gaussian kernklz, 2/) = e~lle=21"/20* ‘and a
number of special-purpose kernels have been developed for
sequence data, image data, and other types of data as well
(Cortes & Vapnik, 1995; Cristianini et al., 2001; Lanckriet
et al., 2004; Muller et al., 2001; Smola et al., 2000).

The theory behind kernel functions is based on the fact
that many standard algorithms for learning linear separa-
tors, such as SVMs and the Perceptron algorithm, can be
written so that the only way they interact with their data is
via computing dot-products on pairs of examples. Thus, by
replacing each invocation of - 2’ with a kernel compu-
tationK(z, 2’), the algorithm behaves exactly as if we had
explicitly performed the mapping(x), even thouglp may

be a mapping into a very high-dimensional space. Further-
more, these algorithms have convergence rates that depend
only on themarginof the best separator, and not on the di-
mension of the space in which the data resides (Anthony
& Bartlett, 1999; Shawe-Taylor et al., 1998). Thus, kernel
functions are often viewed as providing much of the power
of this implicit high-dimensional space, without paying fo

it computationally (because thiemapping is only implicit)

or in terms of sample size (if data is indeed well-separated
in that space).

While the above theory is quite elegant, it has a few lim-
itations. First, when designing a kernel function for some
learning problem, the intuition typically employed is tlaat
good kernel would be one that serves as a good similarity

1. Introduction : :

i . function for the given problem (Scholkopf et al., 2004). On
Kernel functions have become an extremely popular tool ie gther hand, the above theory talks about margins in an
machine learning, with an attractive theory as well (ShaweTmplicit and possibly very high-dimensional space. So, in

Taylor & Cristianini, 2004; Scholkopf et al., 2004; Her- s sense the theory is not that helpful for providing intu-
brich, 2002; Joachims, 2002; Vapnik, 1998). A kernel is &jtjon when selecting or designing a kernel function. Sec-
ond, it may be that the most natural similarity function for
a given problem is not positive-semidefinite, and it could
require substantial work, possibly reducing the quality of
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the function, to coerce it into a legal form. Finally, from a essarily guaranteed to produce a good hypothesis when
complexity-theoretic perspective, itis a bit unsatisfyfor  rectly plugged into standard learning algorithms like SVM
the explanation of the effectiveness of some algorithm toor Perceptron (which would be the caseifsatisfied the
depend on properties of an implicit high-dimensional map-standard notion of being a good kernel function). In-
ping that one may not even be able to calculate. In parstead, what we show is that such a similarity function can
ticular, the standard theory at first blush has a “somethindpe employed in a 2-stage algorithm: first usikgto re-
for nothing” feel to it (all the power of the implicit high- represent the data as described above,thadrunning a
dimensional space without having to pay for it) and perhapstandard (non-kernelized) linear separator algorithnmén t
there is a more prosaic explanation of what it is that makesew space. One advantage of this, however, is that it allows
a kernel useful for a given learning problem. For these reafor the use of a broader class of learning algorithms since
sons, it would be helpful to have a theory that was in termsne does not need the algorithm used in the second step to
of more tangible quantities. be “kernelizable”. In fact, this work is motivated by result
of (Balcan et al., 2004) that showed how such 2-stage algo-
ithms could be applied as an alternative to kernelizing the
arning algorithm in the case of kernel functions.

In this paper, we develop a theory of learning with simi-
larity functions that addresses a number of these issues. (
particular, we define a notion of what it means for a pair-
wise functionK(z, 2’) to be a “good similarity function” ]
for a given learning problem that (a) does not require the2. Background and Notation
notion of an implicit space and allows for functions that are . . -
not positive semi-definite, (b) we can show is sufficient toWe C(_)n3|der a learning problem specified as follows. We
be used for learning, and (c) is broad in that a good kernef'® given access to labeled examplest) draW” from

in the standard sense (large margin in the implieipace) some _d|str|but|orP overX x {._1’.1}’ whereX IS an ab—_
will also satisfy our definition of a good similarity functip stract instance space. _The_ ObJeCt'Ve of a learning algurith
though with some loss in the parameters. In this way, weS © produce a classification functign: X — {—1,1}

provide the first theory that describes the effectiveness of \t/)vhose e.gor. ratleP (z,O)~P [Ig (m)'th# ] E low. YVe will .
given kernel (or more general similarity function) in terms € considering learning algorithms Wnose only access 1o

of natural similarity-based properties. their data is via a pairwise similarity fun_ctidﬁ(a:, x’) that
given two examples outputs a number in the rapgg 1].
1.1. Our Results and Structure of the Paper Specifically,
Our main result is a theory for what it means for a pair- Defin_ition 1 Asimilarity functionover X is any pairwise
wise function to be a “good similarity function” for a given functionC : X x X' — [—1,1]. We say thak’ is a symmet-
learning problem, along with results showing that our mainfic similarity function ifK(z, 2") = K(«', z) for all z, 2’
definition is sufficient to be able to learn well and that it
captures the standard notion of a good kernel. We begi
with a definition (Definition 2) that is especially intuitive
and allows for learning via a very simple algorithm, but is
fairly restrictive and does not include all kernel functon
that induce large-margin separators. We then extend thi
notion to our main definition (Definition 3) that is some-

ur goal is to give definitions for what it means for a simi-
arity functionkC to be “good” for a learning probler that
(ideally) are intuitive, broad, and have the property that a
good similarity function results in the ability to learn Wwel
Note that as with the theory of kernel functions, the notion
of “goodness” is with respect to a given learning problem

what less intuitive, but is now able to capture all functions’» @ndnotwith respect to a class of target functions as in

satisfying the usual notion of a good kernel function andthe PAC framework.

still have implications to learning. Specifically, we show A similarity functionk is a kernel if there exists a function

that if IC is a similarity function satisfying Definition 3 then ¢ from the instance spack into a (possibly implicit) %-

one can algorithmically perform a simpkxplicittransfor-  space” such that (z, z') = ¢(z) - ¢(z’). We say thakC is

mation of the data under which there is a low-error Iarge-an(e’ ~+)-good kernel functiofor a given learning problem

margin separator. In particular, this transformationlmes P if there exists a vectow in the ¢-space that has errer

performing what might be called an “empirical similarity at marginy, where we use a normalized notion of margin,

map”: selecting a subset of data points as landmarks, anghnd for simplicity we consider only separators through the

then re-representing the data set based on the similarity @frigin. Specifically,K is an (¢,~v)-good kernel functioiif

each example to those landmarks. We also consider somRere exists a vectav such that

variations on this definition that produce somewhat better

guarantees on the quality of the final hypothesis produced P(x) - w

. . C . . . r @) >y > 1—e

when combined with known efficient learning algorithms. (z,8(z))~P [lo()]] [Jwl]]

Finally, in Section 5.1, we describe relationships between

our framework and the notion of kernel-target alignment. We say thafC is ay-good kernel functioif itis (e, )-good
for e = 0; i.e., it has zero error at margin Moreover, we

A similarity functionC satisfying our definitions is not nec- say thatk is a normalized kernel i (z, ) = 1 for all z.
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For simplicity we will assume all kernels are normalized: have similarity at least 0.2 with each other, but positivé an
note that any kernel functiok can be converted to a nor- negative examples have similarities distributed unifgrml
malized one(z, 2') = __ K@) \without changing atrandomin—1,1]. Then, this would satisfy Definition 2

, , _ K(z,2)K(",2") for v = 0.2 ande = 0, but with high probability would not
Its margin properties. be positive semidefinite.
If the standard linear kernél defined adC = = - 2’ is an
(e,7v)-good kernel functiofor a given learning problerf?,
we say that the learning problem(is v)-linearly separa-
ble. Moreover, if||z|| = 1 for all z we say thatP is a
normalized(e, v)-linearly separable problem.

Definition 2 captures an intuitive notion of what one might
want in a similarity function. In addition, if a similarity
function IC satisfies Definition 2 then it suggests a simple,
natural learning algorithm: draw a sufficiently large Set

of positive examples and s&t” of negative examples, and
Note that a similarity function need not be a legal ker-then outputthe prediction rule that classifies a new example
nel. For example, suppose we say two documents have as positive if it is on average more similar to pointsSih
similarity 1 if they have either an author in common or than to points inS—, and negative otherwise. Formally:

a keyword in common, and otherwise they have similar- :
ity 0. Then you could have three documerts B, and | "eorem LIt = K is strongly+ (6’7)'9002(1' then
C, such thatC(A, B) = 1 becaused and B have an au- (4/~ ?1n(2/6) posnlve examples™ and (4/ )ln(2/5).
thor in common/C(B,C) = 1 becauseB andC have a negative exampleS— are sufficient so that with probabil-

keyword in common, butC(4,C) = 0 becaused and ity > 1 — ¢, the above algorithm produces a classifier with
C have neither an author nor a keyword in common (anoerror at moste + 0.

K(A, A) = K(B,B) = K(C,C) = 1). On the other hand, . oy
a E<erne)l requ(ires t)hat 'tﬁ((A) a%dqb(é) are of unit length Er?g];[,cl‘(it x,()i?&d) :bzx/;g]i Ee,twp?,fcé x/S)TE(S;))”;g
andg(A) - ¢(B) = 1, thenp(A) = ¢(B), so this could not é(”;,)] +. So, by assumptiorP,_rIN;[x c Goé)d] >l
happen ifiC was a kernet. Now, fix z € Good. Sincel(x,z’) € [-1, 1], by Hoeffd-
In the following we will use/(z) to denote the label of ing bounds we have that over the random draw of the sam-
exampler and use: ~ P as shorthand fofz, £(z)) ~ P.  ple ST, Pr (|Eyes+[K(z,2)] — Borop[K(z, 2/)(2') =

1| > ~/2) < 2¢25"1*/4 and similarly forS~. By our
3. Sufficient Conditions for Learning with choice of|S*| and|S~|, each of these probabilities is at

Similarity Functions mosts? /2.

We now provide a series of sufficient conditions for a simi- S0, for any given: € Good, there is at most &* proba-

larity function to be useful for learning, leading to our mai  bility of error over the draw of5™ and.S~. Since this is
notion given in Definition 3. true for anyz € Good, it implies that theexpectecderror

L i _ i . _ of this procedure, over € Good, is at most?, which by
We begin with our first and simplest notion of “good sim- \arkov's inequality implies that there is at mosi aroba-
ilarity function” that is intuitive and yields an immediate bility that the error rate oveBood is more thar. Adding

learning algorithm, but which is not broad enough to cap+ the ¢ probability mass of points not iGood yields the
ture all good kernel functions. Nonetheless, it provides gnegrem. -

convenient starting point. This definition says tiais a

good similarity function for a learning problei if most ~ Theorem 1 implies that ik is a strongly(e, 7)-good sim-

examples (at least d —e probability mass) are on average ilarity function for smalle and not-too-smal, then it can

at leasty more similar to random examples$ of thesame  be used in a natural way for learning. However, Definition

label than they are to random exampléf the opposite 2 is not sufficient to capture all good kernel functions. In

label. Formally, particular, Figure 3.1 gives a simple examplefii where
o ) o the standard kerné&l(x, 2’) = z-2’ has alarge margin sep-

Definition 2 K is astrongly (¢, 7)-good similarity func-  arator (margin oft /2) and yet does not satisfy Definition

tion for a learning problemP if at least al — ¢ proba- 2, even fory = 0 ande = 0.49.

bility mass of examples satisfy: E,/ . p[KC(z, 2")|¢(z') = _ S _ _

Ux)] > By pK(x, 2)|0(2) # ()] + 7. Notice, however, that if in Figure 3.1 we simply ignored

the positive examples in the upper-left when choosihg
For example, suppose all positive examples have similarthen we would be fine. In fact, if we weggvena weight-
ity at least 0.2 with each other, and all negative example#ng functionw that down-weighted certain regions of the

1You could make such a function positive semidefinite by in-  2In particular, if the domain is large enough, then with high
stead defining similarity to be theumberof authors and key- probability there would exist negative exampleand positive ex-
words in common, but perhaps that is not what you want for theamplesB, C such thatC(A, B) is close to 1 (so they are nearly
task at hand. Alternatively, you can make the similarity nixat identical as vectors)C(A, C) is close to—1 (so they are nearly
positive semidefinite by blowing up the diagonal, but thatldo  opposite as vectors), and y&{ B, C') > 0.2 (their vectors form
reduce the normalized margin. an acute angle).
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ps(@) = (K(z,y1),...,K(@,ya), K(z,21), ..., K(z,2a))
has the property that the induced distributipg( P) in R2¢
has a separator of error at most-o at margin at leasty/4.

Proof: Consider the linear separatar in the ps space
defined asw; = w(y;), fori € {1,2,...,d} andw; =
—w(zi—q), fori € {d+ 1,d +2,...,2d} . We will
show that, with probability at leagtl — ¢), w has error
at moste + § at marginy/4. Let Good be the set of: sat-
isfying inequalityE,/ . p[w(z)K(z, 2")|(z) = £(z")] >
Ey plw(z)K(z,2")|l(x) # £(z")] + ; so, by assump-
. . . tion, Pr,.p[z € Good] > 1 — .

Figure 3.1Positives are split equally among upper-left and upper-

right. Negatives are all in the lower-right. Far= 30° (soy = Consider some fixed point € Good. We begin by show-

1/2) alarge fraction of the positive examples (namely the 50% ining that for any suclz,
the upper-right) have a higher dot-product with negativeneples
1 i iti . lr_1y_1 D -
(3) than with a random positive exampflé - 1 + 1 (—3) = ). Pr < (2) w ps(x) > z) s
§+.5- @[ lps(x)]| — 4

input space, so that at leasl & € probability mass of ex- 1 4o so, first notice thatl is large enough so that
amplesz satisfy B,/ ~p[w(z)K(z,2")|l(z) = La)] = it high probability, at leastl — ?52, we r?ave both
E, ~plw(x)K(z,2")|l(x) # £(z)] + ~, then we could B, cs+ [w(z)K(z,2)] — Byoplw(@)K(z, 2)|(z)) =
usek andw to learn in exactly the same way as a similar- |7, € < 7 and E,. 7[w(x/),é(x ) —
ity function K satisfying Definition 2 This now motivates E. p[w_(x’)IC(x 2|0 _° fs’lﬂ < 2 Lets con-
our main definition given below. The key difference is thatsiéeNr now the c7ase whef(z) = 1. _In4this case we
whereas in the above observation one would need the d?fave (@) - ps(z) = AL wly)K(,y:) —
signer to construct both the similarity functid®and the f ps\T) = g 2ui=1 WAL, i
weighting functionw, in Definition 3 we only require that g >-i—1 @(2:)K(z, 27)), and so combining these facts we
such aw exist but it need not be known a-priori. have that with probability at leagt — §2) the following

holds: £(z)w - ps(x) > d(Ep~plw(a")K(x,2")|(z)) =
Definition 3 (main) A similarity functionC is an (¢,v)-  1]—v/4—E, . p[w(z")K(x,2')|¢(z') = —1]—v/4). Since
good similarity function for a learning problenP if there 2 € Good, this then implies that(x)w - ps(x) > dvy/2.
existsa bounded weighting functiom over X (w(z’) €  Finally, sincew(2’) € [-1,1] for all 2/, and since
[0,1] for all ' € X) such that at least @ — e probability  K(z,2') € [-1,1] for all pairs z,2’, we have that
mass of examples satisfy: E, . p[w(z)K(z, 2')[{(z) =  ||@|| < v2d and ||ps(z)]] < +/2d, which implies
()] > Epmplw(@’)K (e, a')|(x) £ £)] + 7. ;

w-ps (z) oi _ 52
Prs. s (o) ety > §) > 1 - 6% The same

We now show two interesting properties of Definition 3. analysis applies for the case tHét) = —1.
First, if I is a similarity function satisfying it, then we can
usek to explicitly map the data into a space in which there

is a separator with low-error (not much more tharat a equality that with probabilitl — §, the vectorw has er-

large margin (not too much less thah and thereby con- . ; .
vert the learning problem into a standard one of learning 3o a(t; m%stigé_magglnlzfﬁ overlf t;.?.fmCted tof p0|_ntts
linear separator. The second is that any “good kernel” (& < toot'.f ; I]gg ac /&’Cpro "i‘ Iély mésséo/pog S
kernel with a large margin separator in its impligispace) “E rjo [55(5,3/’?& ;,/ﬂ?(%(;) Z((;’,)T—)F' () i(;ds(t?()e] the-
must satisfy Definition 3, though with some degradation inorgfeanP ’ RAR -
the parameters. We prove the first statement, which is the' =

easier of the two, in this section, and we will consider the . L .
second one, which has a more involved proof, in Section 4Theor§m 2 stateg.thatltf ISa QOOd similarity function then
with high probability there exists a low-error (at mest )
Theorem 2 If K is an (e, v)-good similarity function, then ~ large-margin (at leasf) separator in the transformed space
if one draws a se§ from P containingd = (4/4)?In(2/5) ~ Under mappings. Furthermolre theldlmensuonahty of this
positive example$™ = {y1,vo,...,ys} andd negative ~SPace is nottoo large, only( log 5). Thus, all we need
examplesS~ = {z1,2,...,24}, then with probability ~Nnow to learn well is to draw a new, fresh sample, map it

at least1 — 4, the mappingps : X — R2?? defined as into the transformed space usipg, and then apply a good
algorithm for learning linear separators in the new sgace.

Since the above holds for any € Good, it is also true
for randomz € Good, which implies by Markov’s in-

3The proof is similar to that of Theorem 1 (except now we —
view w(z')K(x, z") as the bounded random variable we pluginto  *One interesting aspect to notice is that we canurdabeled
Hoeffding bounds). examplesnstead of labeled examples when defining the mapping



On a Theory of Learning with Similarity Functions

Remark: Standard margin bounds imply thatkf is a  3.2. Combining Multiple Similarity Functions
goodkernelfunction, then with high probability, the points Suppose that rather than having a single similarity func-
in a random samplé = {zi,...,2z4} can be assigned tjon, we were instead given functionsk,, ..., K., and
weights so that the resulting vector defines a low-errolyr hope is that some convex combination of them will sat-
large-margin separator in thespace. Definition 3 can be sty Definition 3. Is this sufficient to be able to learn well?
viewed as requiring that each poirfthave a weightu(+')  (Note that a convex combination of similarity functions is
that is solely a function of the example itself and not the Seluaranteed to have ranfiel, 1] and so be a legal similar-
S'to which it belongs. The results in %ectlon 4 below imply ity function.) The following generalization of Theorem 2
that if € is a good kernel, then these “sample independentshows that this is indeed the case, though the margin pa-

weights must exist as well. rameter drops by a factor fr. This result can be viewed
o _ o _ as analogous to the idea of learning a kernel matrix studied
3.1. Variations Tailored to Efficient Algorithms by Lanckriet et al. (2004) except that rather than explic-

itly learning the best convex combination, we are simply

Our implication is that there will exist a low-error large- folding the learning process into the second stage of the
margin separator in the transformed space, so that we car ori?hm gp 9
then run a standard linear-separator learning algorithm: 9 '

Technically, however, the guarantee for algorithms such agneorem 3 Suppose K1, ..., K, are similarity func-

minimum-errorseparator on their data (which is NP-hard) of them is (¢, y)-good. If one draws a sef from

but rather that they find the separator that minimizesahe  p containingd = (4/7)2In(2/5) positive examples
tal distanceone would need to move points to putthemon g+ — y, 4, .. 4.} and d negative example§~ =
the correct side by the given margin. Thus, our worst-cas¢ ., ., " >l then with probability at leastl — §,

guarantee for SVM and Perceptron is only that they find ghe mappingps : X — R?" defined aspg(z) =

separator of erroO((e + 6)/), though such algorithms (i, (1), ..., Kp (2, ya), K1 (2, 21), .. ., Kn(z, 24)) has
are known to do quite well in practice and the same isSUgne property that the induced distributigns(P) in k2"
would apply for the definition of afe, 7)-good kerneP has a separator of error at most+ § at margin at least

We can also modify our definition to capture the notion of v/ (4v/n).
good similarity functions for the SVM and Perceptron al-

gorithms as follows: Proof: LetK = auKy + ... + a,K,, be an(e, v)-good

convex-combination of th&;. By Theorem 2, had we in-

nflLs - 2d i
Definition 4 (tailored to SVM and Perceptron) A simi- stead performed the mappings : X — R* defined as

larity function K is an (¢, y)-good similarity function in ps(x) = (K(z,1),...,K(x,yq), K(z,21),...,K(z, 24)),
hinge lossfor a learning problent” if there exists aweight-  then with probabilityl — 4, the induced distributiops (P)

ing functionw(z’) € [0, 1] for all 2 € X such that in R24 would have a separator of error at mestd at mar-
1 gin at leasty/4. Letw be the vector corresponding to such

“E, {max (%, 0)} <, a separator in that space. Now, let us conidrito a vector

v in R?"4 by replacing each coordinate with then values

(c1y, . .., apy). Call the resulting vectob. Notice that

vahere'yI » I]é)zwp/[wg(:c’)li(:z,x/’)|£(:c) 7 )]+ - by design, for any: we havew - ps(z) = W - ps(x). Fur-
v w(@)K(@, 2")[6(x) = £(2")] thermore/|@|| < ||®|| (the worst case is when exactly one
I91‘ the; is equal to 1 and the rest are 0). Thus, the vector

In other words, we are asking: on average, by how muc e .
would a random examplefail to satisfy the desired sep- under distributiorpg(P) has the same properties as the
vectorw underpg(P), except that|ps(z)|| may now be

aration between the weighted similarity to examples of its
own label and the weighted similarity to examples of the@S 1arge as/2nd rather than the upper-bound of2d on

other label (this is,). This quantity is then scaled By~.  ||#s(%)|| used in the proof of Theorem 2. Thus, the margin
bound drops by a factor gf'n. ]

By applying the same analysis as in the proof of Theore .
2, one can show that given a similarity function satisfyinghote that the above argument actually shows something a

this definition, we can use SVM in the transformed spacé’!t Stronger than Theorem 3. In particular, if we define
to achieve erroO (e + ) a = (aq,...,a,) to be the mixture vector for the optimal

' K, then we can replace the margin boupt4./n) with
ps(x). However, if the data distribution is highly unbalanced; sa ~/(4||a[|\/n). For example, ifo is the uniform mixture,

with substantially more negatives than positives, themtapping  then we just get the bound in Theorem 2y0ffL.
may no longer have the large-margin property.
°Recent results of Kalai et al. (Kalai et al., 2005) give aréth 3.3, Multiclass Classification
to efficiently perform agnostic learning, achieving erraterarbi- .
trarily close toe+4, if the distribution of points in the transformed We can naturally extend all our results to multiclass clas-
space is sufficiently “well-behaved”. sification. In particular, the analog of Definition 3 in that
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we require most examples to have their average weightedf updates made by the Margin-Perceptron algorithm.
similarity to points of their own class be at leasgreater
than there average weighted similarityetachof the other Lemma5 LetS = ((z1,4(z1)), ..., (Zm, (z))) be a

classes. One can then learn using standard adaptations gfquence of labeled examples wijith;|| = 1. Suppose
linear-separator algorithms to the multiclass case (seg., that there exists a vectar* such that|jw*|| = 1 and
Freund and Schapire (1999)). (z;)w* - x; > ~ for all examples in the sequence

Then the number of updat@é on S made by the Margin-
Perceptron algorithm is at most/2, and furthermore

4. Good Kernels are Good Similarity llwe|| < 3/~ forall ¢
! < :

Functions
4n other words, the mistake-bound is comparable to that
of the standard Perceptron algorithm, and in addition the

algorithm if cycled through the data produces a hypothesis
w, of margin at least /||w¢|| > ~/3.

In this section we show that a good kernel in the standar
sense (i.e. a kernel with a large margin separator in its im
plicit ¢-space) will also satisfy Definition 3, though with
some degradation of the parameters. Formally:

Proof: Letw; denote the prediction vector used prior to
i 8(etPeue) N o the kth update (here by an update we mean an update on
anyeace > 0, Kis a(==5=, g7 ——)-good similar-  ap incorrect prediction or margin mistake). Thus, if ke
ity function, whereM (y,¢) = 1 (% + 1og(§)). update occurs off;, £(x;)), thenf(zi)wy, - z; < 1 and
v W41 = wi + £(x;)x;.

Theorem 4 If K is a (e, v)-good kernel function, then for

For example, ifC is a(0, v)-good kernel function, then for As in the classical proqf of Perceptron algorithm, we ana-
any¢' itis also a(¢’, O(¢'y3))-good similarity function. To  lyze||w|| andw, - w*. First, we havev;, -w* > ~t since

prove Theorem 4, we first need some useful lemmas.  all examples; satisfy £(z;)w” - z; > ~. Second, since
[lwi1]|? = [Jwp|® +26(2i)wi -2 +1 < [[wg ][> +3, after
4.1. Some Preliminary Lemmas t updates we havgu,||> < 3t. Putting these together we

. . _ obtain that the number of updatdssatisfiesyN < v3N
The first step to proving Theorem 4 is to show the follow- gnd thereforev < 3/~2. Furthermore sinc@w,||> < 3t

ing. Let P be a normalizede, v)-linearly separable learn-  for all ¢, this means that for allwe havel|w|| < 3/7. ®
ing problem. For any,..,d > 0, if we draw a sample

S ={z1, ..., 2m} of size atleasM = —— (% +log(5)),  Using Lemma 5 we can now show the following structural
then with probability at leagtl — §) there exists a weight-  result for(e, )-linearly separable learning problems:

ing w(z;) € {0,1} of the examples; € S such that the _ _

linear separatows given byws = Zi]\il 0(2:)(2;)2i has Lemma 6 LetP be a normalizede, 'y)-llnearly separable
length|[ws|| < 3/~ and error at Most + eqc. at margin learning problem. Then, for aneym,51> 0,3|f we dr?w a
1/|[ws||. To prove this, we consider a modification of the SAMPIES = {z1, ..., 2ar} of sizeM = (3% +log (3)),
standard Perceptron algorithm (Minsky & Papert, 1969:then with probability at leastl — &) (over the draw of

Novikoff, 1962) which we call Margin-Perceptrén. our sample) there exists a weighting of the examples
appearing in the sampl&(z1), ..., w(za) € {0,1} with
Algorithm 1 Margin-Perceptron the property that the linear separatars given byws =

Zj‘ilﬁ(zi)w(zi)zi has ||wg|| < 3/v and error at most

Let((z1,4(x1)), ..., (xm, {(xm))) be the sequence of ot enee at margind/|[ws].

labeled examples. Initializé := 1, and start with

wy = ). Proof Sketch: We simply use the weighting function

Fori=2,....,m: given by the Margin Perceptron algorithm when applied
only over the “good” points in the sample (those that are
correctly separated by margiy). If our distribution had
error 0 at margimy, then the result would follow from
Lemma 5 and a standard result of converting an online mis-
take), update as followsw,,; = w; + £(z;)z;, 1989). Addinge probability mass for the points not hav-
t=t41. ing marginy, we get the desired result. |

e Predict positive ifw; - x; > 1, predict negative ifv; -
x; < —1, and consider an example to be a margin
mistake whenu, - z; € (—1,1).

4.2. The Main Argument

We can now prove the following guarantee on the numbewe can now use Lemma 6 to prove Theorem 4 that a good

6Note: we are using the margin_Perceptron a|gorithm heré(ernel function is in fact a gOOd S|m|lar|ty function in the
only as a proof technique. sense of Definition 3.
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Proof of Theorem 4: The proof follows from the defini-
tion of a kernel and Theorem 7 below. [ |

Theorem 7 If P is a normalizede, v)-linearly separable
learning problem, then for any,.. > 0 there exists a
weightingw(x) of examples: in X such thatw(z) € [0, 1]
and at least al — S3(cF2¢ace) probability mass of the ex-
amplesz satisfy: E, . plw(z')a’ - z|f(x) = L(z")] >
E. Np[ ()2 - zll(x) # ((a')] + 757, where M =

5a1<'c ( + 1Og (€acc ))

Proof Sketch: From Lemma 6 we know that with prob-
ability at Ieast(l — 6) a randomly drawn sequendéeof
M =
in {0, 1} so that the resulting classifiers has the property
that Pr, [{(2)(ws - ) < 1] < € 4 €qcc and furthermore
[lws|| < 3/v. Definew, s to be thetotal weight given
to exampler’ in S and letws bed"., ‘es 0(x")wy sx'; S0,
formally w, ¢ is a sum of weightso(z’) over all appear-
ances ofr’ in the sampleS (if =’ appears multiple times),
andwg is a weighted sum of examples # We will say
thatz is bad with respect tag if ¢(z)(ws - =) < 1.

Now notice that for each sample of size M the set of
“bad” 2’s with respect tavg could be the same or different.
However, we know that:

Pr [Prif()(ws - @) < 1] = €+ cace| 6.

This then implies that at most %“*637”) probability
mass ofz’s are bad for more than & probability mass
of S's. DefineGood to be the remainder of the's. So,
for € Good we have that over the random draw 8f
there is at least & — +/8 chance that(z)ws -2 > 1,

and in the remaining//8 chance, we at least know that ~

l(x)ws - x > —|lwg||] > —3/v. This implies that for
a € Good, we haveEs[((z)ws - z] > (1 — $)1 - Z(3)
and so forr € Good we haveEg[((z)ws - z] > 3.

Consider the following weighting scheme(z’) =
Pr[é(d?/)]Es[wm/ysf(I/ S S)]/Es[#(.r/ S S)], where
Pr[¢(2')] is the probability mass over examples i
with the same label ast’. Note that w(z’) €
[0, 1].

Considerz €

Jws -x] > %, and ex-

s s e )war s2'] -

tation consider a discrete space.
Good. We know thatEg[{(x
panding outws we get/(x)E
z > &, or l(z)l(z) Y, (e(a’, S)x al) x> %,. where
e(x’,S) = Eglwy sI(z' € S)] This implies that
(#a'€S)
()t S (el 8) prprbresy b )ar o > by,
and thereford(z)E, {%(w’-x)] > ;L. Thus we

have shown that far € Good we haveE, .. p[w(z")x’ -
z|l(x) = £(z")] > Bpnplw(a)a - x|l(x) # ()] + 537
Finally, pickingd = €,.. we obtain the desired result. m

( + log (})) examples can be given weights

We will show that this weighting scheme sat-
isfies the desired property and for simplicity of no-

5. Similarity Functions, Weak Learning, and
Kernel-Target Alignment

Our definitions so far have required that almost all of the
points (at least 4 — ¢ fraction) be on average more sim-
ilar (perhaps in a weighted sense) to random points of the
same label than to those of the other label. A weaker no-
tion would be simply to require that two random points of
the same label be on average more similar than two random
points of different labels. For instance, one could corside
the following generalization of Definition 2:

Definition 5 K is a weakly y-good similarity function
for a learning problemP if: E, . ..p[K(z,2')|l(z) =
((z")] 2 By o p[K(z, 2)[0(z) # £(z")] +

While Definition 5 still captures a natural intuitive notion
of what one might want in a similarity function, it is not
powerful enough to implgtronglearning unless is quite
large! We can however show that for any> 0, Defini-
tion 5 is enough to imply weak learning (Schapire, 1990).
In particular, we can show that the following natural and
simple algorithm is sufficient to weak learn: draw a suf-
ficiently large setS™ of positive examples and sét~ of
negative examples. Then, for each considery(z) =

3 [Epes+[K(z,2")] — Epes- [K(z,2)]], and finally to
classify x use the following probabilistic prediction rule:
classifyx as positive with probability“rg—(””) and as nega-
tive with probability =1} (Notice thatj(z) € [~1,1]
and so our algorithm is well defined.) Then we can prove
that:

Theorem 8 If K is a weaklyvy-good similarity function,
then if one draws a sef from P containing at Ieast
2 In(J5) positive examples™ and at least?3 In ()

negatlve exampleS—, then with probability at IeasI 6
the above probabilistic classifier has error at mést 155 -

Proof: Omitted. [ |

5.1. Relationship to Kernel Target Alignment

It is interesting to notice the close relationship between
Definition 5 and the notion dkernel Target Alignmenof
Cristianini et al. (2001). Specifically, the alignment be-
tween a normalized kernel functidé and the target(z)

is defined asA(K,l(z)) = Egppll(x)l(z")(z,z")].
Notice that this is essentially the same as Definition 5
when the distributionP is balanced among positive and
negative examples. As pointed out in (Cristianini et al.,

"For example, suppose the instance space is the real line and
that the similarity measurk& we are considering is the standard
dot product:K(z,z’) = = - 2. Assume the distribution i80%
positive,50% negative, and that% of the negative examples are
at position—1 and 25% are at positioh, and vice-versa for the
positive examples. Thek is a weaklyy-good similarity func-
tion for v = 1/2, but the best accuracy one can hope for in this
situation is75%.



On a Theory of Learning with Similarity Functions

2001), if this alignment is very large, then the function ilarity of the current example with each of a pre-selected
f(z) = Epop[l(2/)K(x,2’)] has high generalization ac- set of initial documents. One can then feed the augmented
curacy. In fact, we can get an efficient algorithm in this example into a standard unkernelized online learning algo-
case using the same approach as in the proof of Theorem fithm. It would be interesting to explore this idea further.
One nice feature about our Definitions 2 and 3, however
is that they allow for similarity functions with fairly smial
values of~ to still produce high-accuracy learning algo-
rithms. For instance, the example given in Section 3 o
a similarity function such that all positive examples have

similarity at least 0.2 with each other, all negative exam-acknowledgements: This work was supported in part
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