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Abstract

Kernel functions have become an extremely pop-
ular tool in machine learning, with an attractive
theory as well. This theory views a kernel as im-
plicitly mapping data points into a possibly very
high dimensional space, and describes a kernel
function as being good for a given learning prob-
lem if data is separable by a large margin in that
implicit space. However, while quite elegant, this
theory does not directly correspond to one’s intu-
ition of a good kernel as a good similarity func-
tion. Furthermore, it may be difficult for a do-
main expert to use the theory to help design an
appropriate kernel for the learning task at hand
since the implicit mapping may not be easy to
calculate. Finally, the requirement of positive
semi-definiteness may rule out the most natural
pairwise similarity functions for the given prob-
lem domain.

In this work we develop an alternative, more gen-
eral theory of learning with similarity functions
(i.e., sufficient conditions for a similarity func-
tion to allow one to learn well) that does not re-
quire reference to implicit spaces, and does not
require the function to be positive semi-definite
(or even symmetric). Our results also general-
ize the standard theory in the sense that any good
kernel function under the usual definition can be
shown to also be a good similarity function under
our definition (though with some loss in the pa-
rameters). In this way, we provide the first steps
towards a theory of kernels that describes the ef-
fectiveness of a given kernel function in terms of
natural similarity-based properties.

1. Introduction
Kernel functions have become an extremely popular tool in
machine learning, with an attractive theory as well (Shawe-
Taylor & Cristianini, 2004; Scholkopf et al., 2004; Her-
brich, 2002; Joachims, 2002; Vapnik, 1998). A kernel is a
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function that takes in two data objects (which could be im-
ages, DNA sequences, or points inRn) and outputs a num-
ber, with the property that the function is symmetric and
positive-semidefinite. That is, for any kernelK, there must
exist an (implicit) mappingφ, such that for all inputsx, x′

we haveK(x, x′) = φ(x) · φ(x′). The kernel is then used
inside a “kernelized” learning algorithm such as SVM or
kernel-perceptron as the way in which the algorithm inter-
acts with the data. Typical kernel functions for structured
data include the polynomial kernelK(x, x′) = (1+x ·x′)d

and the Gaussian kernelK(x, x′) = e−||x−x′||2/2σ2

, and a
number of special-purpose kernels have been developed for
sequence data, image data, and other types of data as well
(Cortes & Vapnik, 1995; Cristianini et al., 2001; Lanckriet
et al., 2004; Muller et al., 2001; Smola et al., 2000).

The theory behind kernel functions is based on the fact
that many standard algorithms for learning linear separa-
tors, such as SVMs and the Perceptron algorithm, can be
written so that the only way they interact with their data is
via computing dot-products on pairs of examples. Thus, by
replacing each invocation ofx · x′ with a kernel compu-
tationK(x, x′), the algorithm behaves exactly as if we had
explicitly performed the mappingφ(x), even thoughφ may
be a mapping into a very high-dimensional space. Further-
more, these algorithms have convergence rates that depend
only on themarginof the best separator, and not on the di-
mension of the space in which the data resides (Anthony
& Bartlett, 1999; Shawe-Taylor et al., 1998). Thus, kernel
functions are often viewed as providing much of the power
of this implicit high-dimensional space, without paying for
it computationally (because theφ mapping is only implicit)
or in terms of sample size (if data is indeed well-separated
in that space).

While the above theory is quite elegant, it has a few lim-
itations. First, when designing a kernel function for some
learning problem, the intuition typically employed is thata
good kernel would be one that serves as a good similarity
function for the given problem (Scholkopf et al., 2004). On
the other hand, the above theory talks about margins in an
implicit and possibly very high-dimensional space. So, in
this sense the theory is not that helpful for providing intu-
ition when selecting or designing a kernel function. Sec-
ond, it may be that the most natural similarity function for
a given problem is not positive-semidefinite, and it could
require substantial work, possibly reducing the quality of
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the function, to coerce it into a legal form. Finally, from a
complexity-theoretic perspective, it is a bit unsatisfying for
the explanation of the effectiveness of some algorithm to
depend on properties of an implicit high-dimensional map-
ping that one may not even be able to calculate. In par-
ticular, the standard theory at first blush has a “something
for nothing” feel to it (all the power of the implicit high-
dimensional space without having to pay for it) and perhaps
there is a more prosaic explanation of what it is that makes
a kernel useful for a given learning problem. For these rea-
sons, it would be helpful to have a theory that was in terms
of more tangible quantities.

In this paper, we develop a theory of learning with simi-
larity functions that addresses a number of these issues. In
particular, we define a notion of what it means for a pair-
wise functionK(x, x′) to be a “good similarity function”
for a given learning problem that (a) does not require the
notion of an implicit space and allows for functions that are
not positive semi-definite, (b) we can show is sufficient to
be used for learning, and (c) is broad in that a good kernel
in the standard sense (large margin in the implicitφ-space)
will also satisfy our definition of a good similarity function,
though with some loss in the parameters. In this way, we
provide the first theory that describes the effectiveness ofa
given kernel (or more general similarity function) in terms
of natural similarity-based properties.

1.1. Our Results and Structure of the Paper

Our main result is a theory for what it means for a pair-
wise function to be a “good similarity function” for a given
learning problem, along with results showing that our main
definition is sufficient to be able to learn well and that it
captures the standard notion of a good kernel. We begin
with a definition (Definition 2) that is especially intuitive
and allows for learning via a very simple algorithm, but is
fairly restrictive and does not include all kernel functions
that induce large-margin separators. We then extend this
notion to our main definition (Definition 3) that is some-
what less intuitive, but is now able to capture all functions
satisfying the usual notion of a good kernel function and
still have implications to learning. Specifically, we show
that ifK is a similarity function satisfying Definition 3 then
one can algorithmically perform a simple,explicit transfor-
mation of the data under which there is a low-error large-
margin separator. In particular, this transformation involves
performing what might be called an “empirical similarity
map”: selecting a subset of data points as landmarks, and
then re-representing the data set based on the similarity of
each example to those landmarks. We also consider some
variations on this definition that produce somewhat better
guarantees on the quality of the final hypothesis produced
when combined with known efficient learning algorithms.
Finally, in Section 5.1, we describe relationships between
our framework and the notion of kernel-target alignment.

A similarity functionK satisfying our definitions is not nec-

essarily guaranteed to produce a good hypothesis whendi-
rectly plugged into standard learning algorithms like SVM
or Perceptron (which would be the case ifK satisfied the
standard notion of being a good kernel function). In-
stead, what we show is that such a similarity function can
be employed in a 2-stage algorithm: first usingK to re-
represent the data as described above, andthenrunning a
standard (non-kernelized) linear separator algorithm in the
new space. One advantage of this, however, is that it allows
for the use of a broader class of learning algorithms since
one does not need the algorithm used in the second step to
be “kernelizable”. In fact, this work is motivated by results
of (Balcan et al., 2004) that showed how such 2-stage algo-
rithms could be applied as an alternative to kernelizing the
learning algorithm in the case of kernel functions.

2. Background and Notation

We consider a learning problem specified as follows. We
are given access to labeled examples(x, `) drawn from
some distributionP overX × {−1, 1}, whereX is an ab-
stract instance space. The objective of a learning algorithm
is to produce a classification functiong : X → {−1, 1}
whose error ratePr(x,`)∼P [g(x) 6= `] is low. We will
be considering learning algorithms whose only access to
their data is via a pairwise similarity functionK(x, x′) that
given two examples outputs a number in the range[−1, 1].
Specifically,

Definition 1 A similarity functionoverX is any pairwise
functionK : X×X → [−1, 1]. We say thatK is a symmet-
ric similarity function ifK(x, x′) = K(x′, x) for all x, x′.

Our goal is to give definitions for what it means for a simi-
larity functionK to be “good” for a learning problemP that
(ideally) are intuitive, broad, and have the property that a
good similarity function results in the ability to learn well.
Note that as with the theory of kernel functions, the notion
of “goodness” is with respect to a given learning problem
P , andnot with respect to a class of target functions as in
the PAC framework.

A similarity functionK is a kernel if there exists a function
φ from the instance spaceX into a (possibly implicit) “φ-
space” such thatK(x, x′) = φ(x) · φ(x′). We say thatK is
an(ε, γ)-good kernel functionfor a given learning problem
P if there exists a vectorw in theφ-space that has errorε
at marginγ, where we use a normalized notion of margin,
and for simplicity we consider only separators through the
origin. Specifically,K is an(ε, γ)-good kernel functionif
there exists a vectorw such that

Pr
(x,`(x))∼P

[

`(x)
φ(x) · w

||φ(x)|| ||w|| ≥ γ

]

≥ 1 − ε.

We say thatK is aγ-good kernel functionif it is (ε, γ)-good
for ε = 0; i.e., it has zero error at marginγ. Moreover, we
say thatK is a normalized kernel ifK(x, x) = 1 for all x.
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For simplicity we will assume all kernels are normalized:
note that any kernel functionK can be converted to a nor-
malized oneK̂(x, x′) = K(x,x′)√

K(x,x)K(x′,x′)
without changing

its margin properties.

If the standard linear kernelK defined asK = x · x′ is an
(ε, γ)-good kernel functionfor a given learning problemP ,
we say that the learning problem is(ε, γ)-linearly separa-
ble. Moreover, if ||x|| = 1 for all x we say thatP is a
normalized(ε, γ)-linearly separable problem.

Note that a similarity function need not be a legal ker-
nel. For example, suppose we say two documents have
similarity 1 if they have either an author in common or
a keyword in common, and otherwise they have similar-
ity 0. Then you could have three documentsA, B, and
C, such thatK(A, B) = 1 becauseA andB have an au-
thor in common,K(B, C) = 1 becauseB andC have a
keyword in common, butK(A, C) = 0 becauseA and
C have neither an author nor a keyword in common (and
K(A, A) = K(B, B) = K(C, C) = 1). On the other hand,
a kernel requires that ifφ(A) andφ(B) are of unit length
andφ(A) ·φ(B) = 1, thenφ(A) = φ(B), so this could not
happen ifK was a kernel.1

In the following we will use`(x) to denote the label of
examplex and usex ∼ P as shorthand for(x, `(x)) ∼ P .

3. Sufficient Conditions for Learning with
Similarity Functions

We now provide a series of sufficient conditions for a simi-
larity function to be useful for learning, leading to our main
notion given in Definition 3.

We begin with our first and simplest notion of “good sim-
ilarity function” that is intuitive and yields an immediate
learning algorithm, but which is not broad enough to cap-
ture all good kernel functions. Nonetheless, it provides a
convenient starting point. This definition says thatK is a
good similarity function for a learning problemP if most
examplesx (at least a1−ε probability mass) are on average
at leastγ more similar to random examplesx′ of thesame
label than they are to random examplesx′ of the opposite
label. Formally,

Definition 2 K is a strongly (ε, γ)-good similarity func-
tion for a learning problemP if at least a1 − ε proba-
bility mass of examplesx satisfy:Ex′∼P [K(x, x′)|`(x′) =
`(x)] ≥ Ex′∼P [K(x, x′)|`(x′) 6= `(x)] + γ.

For example, suppose all positive examples have similar-
ity at least 0.2 with each other, and all negative examples

1You could make such a function positive semidefinite by in-
stead defining similarity to be thenumberof authors and key-
words in common, but perhaps that is not what you want for the
task at hand. Alternatively, you can make the similarity matrix
positive semidefinite by blowing up the diagonal, but that would
reduce the normalized margin.

have similarity at least 0.2 with each other, but positive and
negative examples have similarities distributed uniformly
at random in[−1, 1]. Then, this would satisfy Definition 2
for γ = 0.2 andε = 0, but with high probability would not
be positive semidefinite.2

Definition 2 captures an intuitive notion of what one might
want in a similarity function. In addition, if a similarity
functionK satisfies Definition 2 then it suggests a simple,
natural learning algorithm: draw a sufficiently large setS+

of positive examples and setS− of negative examples, and
then output the prediction rule that classifies a new example
x as positive if it is on average more similar to points inS+

than to points inS−, and negative otherwise. Formally:

Theorem 1 If K is strongly (ε, γ)-good, then
(4/γ2) ln(2/δ) positive examplesS+ and (4/γ2) ln(2/δ)
negative examplesS− are sufficient so that with probabil-
ity ≥ 1 − δ, the above algorithm produces a classifier with
error at mostε + δ.

Proof: Let Good be the set of x satisfying
Ex′∼P [K(x, x′)|`(x) = `(x′)] ≥ Ex′∼P [K(x, x′)|`(x) 6=
`(x′)]+γ. So, by assumption,Prx∼P [x ∈ Good] ≥ 1− ε.
Now, fix x ∈ Good. SinceK(x, x′) ∈ [−1, 1], by Hoeffd-
ing bounds we have that over the random draw of the sam-
pleS+, Pr

(
∣

∣Ex′∈S+ [K(x, x′)]−Ex′∼P [K(x, x′)|`(x′) =

1]
∣

∣ ≥ γ/2
)

≤ 2e−2|S+|γ2/4, and similarly forS−. By our
choice of|S+| and |S−|, each of these probabilities is at
mostδ2/2.

So, for any givenx ∈ Good, there is at most aδ2 proba-
bility of error over the draw ofS+ andS−. Since this is
true for anyx ∈ Good, it implies that theexpectederror
of this procedure, overx ∈ Good, is at mostδ2, which by
Markov’s inequality implies that there is at most aδ proba-
bility that the error rate overGood is more thanδ. Adding
in the ε probability mass of points not inGood yields the
theorem.

Theorem 1 implies that ifK is a strongly(ε, γ)-good sim-
ilarity function for smallε and not-too-smallγ, then it can
be used in a natural way for learning. However, Definition
2 is not sufficient to capture all good kernel functions. In
particular, Figure 3.1 gives a simple example inR2 where
the standard kernelK(x, x′) = x·x′ has a large margin sep-
arator (margin of1/2) and yet does not satisfy Definition
2, even forγ = 0 andε = 0.49.

Notice, however, that if in Figure 3.1 we simply ignored
the positive examples in the upper-left when choosingx′,
then we would be fine. In fact, if we weregivena weight-
ing functionw that down-weighted certain regions of the

2In particular, if the domain is large enough, then with high
probability there would exist negative exampleA and positive ex-
amplesB, C such thatK(A, B) is close to 1 (so they are nearly
identical as vectors),K(A, C) is close to−1 (so they are nearly
opposite as vectors), and yetK(B, C) ≥ 0.2 (their vectors form
an acute angle).
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Figure 3.1.Positives are split equally among upper-left and upper-
right. Negatives are all in the lower-right. Forα = 30o (soγ =
1/2) a large fraction of the positive examples (namely the 50% in
the upper-right) have a higher dot-product with negative examples
( 1

2
) than with a random positive example( 1

2
· 1 + 1

2
(− 1

2
) = 1

4
).

input space, so that at least a1 − ε probability mass of ex-
amplesx satisfyEx′∼P [w(x′)K(x, x′)|`(x) = `(x′)] ≥
Ex′∼P [w(x′)K(x, x′)|`(x) 6= `(x′)] + γ, then we could
useK andw to learn in exactly the same way as a similar-
ity functionK satisfying Definition 2.3 This now motivates
our main definition given below. The key difference is that
whereas in the above observation one would need the de-
signer to construct both the similarity functionK and the
weighting functionw, in Definition 3 we only require that
such aw exist, but it need not be known a-priori.

Definition 3 (main) A similarity functionK is an (ε, γ)-
good similarity function for a learning problemP if there
existsa bounded weighting functionw over X (w(x′) ∈
[0, 1] for all x′ ∈ X) such that at least a1 − ε probability
mass of examplesx satisfy: Ex′∼P [w(x′)K(x, x′)|`(x) =
`(x′)] ≥ Ex′∼P [w(x′)K(x, x′)|`(x) 6= `(x′)] + γ.

We now show two interesting properties of Definition 3.
First, if K is a similarity function satisfying it, then we can
useK to explicitly map the data into a space in which there
is a separator with low-error (not much more thanε) at a
large margin (not too much less thanγ), and thereby con-
vert the learning problem into a standard one of learning a
linear separator. The second is that any “good kernel” (a
kernel with a large margin separator in its implicitφ-space)
must satisfy Definition 3, though with some degradation in
the parameters. We prove the first statement, which is the
easier of the two, in this section, and we will consider the
second one, which has a more involved proof, in Section 4.

Theorem 2 If K is an(ε, γ)-good similarity function, then
if one draws a setS fromP containingd = (4/γ)2 ln(2/δ)
positive examplesS+ = {y1, y2, . . . , yd} and d negative
examplesS− = {z1, z2, . . . , zd}, then with probability
at least1 − δ, the mappingρS : X → R2d defined as

3The proof is similar to that of Theorem 1 (except now we
view w(x′)K(x, x′) as the bounded random variable we plug into
Hoeffding bounds).

ρS(x) = (K(x, y1), . . . ,K(x, yd),K(x, z1), . . . ,K(x, zd))
has the property that the induced distributionρS(P ) in R2d

has a separator of error at mostε+δ at margin at leastγ/4.

Proof: Consider the linear separator̃w in the ρS space
defined asw̃i = w(yi), for i ∈ {1, 2, . . . , d} and w̃i =
−w(zi−d), for i ∈ {d + 1, d + 2, . . . , 2d} . We will
show that, with probability at least(1 − δ), w̃ has error
at mostε + δ at marginγ/4. Let Good be the set ofx sat-
isfying inequalityEx′∼P [w(x′)K(x, x′)|`(x) = `(x′)] ≥
Ex′∼P [w(x′)K(x, x′)|`(x) 6= `(x′)] + γ; so, by assump-
tion, Prx∼P [x ∈ Good] ≥ 1 − ε.

Consider some fixed pointx ∈ Good. We begin by show-
ing that for any suchx,

Pr
S+,S−

(

`(x)
w̃ · ρS(x)

||w̃|| ||ρS(x)|| ≥
γ

4

)

≥ 1 − δ2.

To do so, first notice thatd is large enough so that
with high probability, at least1 − δ2, we have both
|Ex′∈S+ [w(x′)K(x, x′)] − Ex′∼P [w(x′)K(x, x′)|`(x′) =
1]| ≤ γ

4 and |Ex′∈S− [w(x′)K(x, x′)] −
Ex′∼P [w(x′)K(x, x′)|`(x′) = −1]| ≤ γ

4 . Let’s con-
sider now the case wheǹ(x) = 1. In this case we
have `(x)w̃ · ρS(x) = d( 1

d

∑d
i=1 w(yi)K(x, yi) −

1
d

∑d
i=1 w(zi)K(x, zi)), and so combining these facts we

have that with probability at least(1 − δ2) the following
holds: `(x)w̃ · ρS(x) ≥ d(Ex′∼P [w(x′)K(x, x′)|`(x′) =
1]−γ/4−Ex′∼P [w(x′)K(x, x′)|`(x′) = −1]−γ/4). Since
x ∈ Good, this then implies that̀(x)w̃ · ρS(x) ≥ dγ/2.
Finally, since w(x′) ∈ [−1, 1] for all x′, and since
K(x, x′) ∈ [−1, 1] for all pairs x, x′, we have that
||w̃|| ≤

√
2d and ||ρS(x)|| ≤

√
2d, which implies

PrS+,S−

(

`(x) w̃·ρS(x)
||w̃||||ρS(x)|| ≥

γ
4

)

≥ 1 − δ2. The same

analysis applies for the case that`(x) = −1.

Since the above holds for anyx ∈ Good, it is also true
for randomx ∈ Good, which implies by Markov’s in-
equality that with probability1 − δ, the vectorw̃ has er-
ror at mostδ at marginγ/4 over P restricted to points
x ∈ Good. Adding back theε probability mass of points
x not satisfyingEx′∼P [w(x′)K(x, x′)|`(x) = `(x′)] ≥
Ex′∼P [w(x′)K(x, x′)|`(x) 6= `(x′)] + γ, yields the the-
orem.

Theorem 2 states that ifK is a good similarity function then
with high probability there exists a low-error (at mostε+δ)
large-margin (at leastγ4 ) separator in the transformed space
under mappingρS . Furthermore the dimensionality of this
space is not too large, onlyO( 1

γ2 log 1
δ ). Thus, all we need

now to learn well is to draw a new, fresh sample, map it
into the transformed space usingρS , and then apply a good
algorithm for learning linear separators in the new space.4

4One interesting aspect to notice is that we can useunlabeled
examplesinstead of labeled examples when defining the mapping
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Remark: Standard margin bounds imply that ifK is a
goodkernelfunction, then with high probability, the points
in a random sampleS = {x1, . . . , xd} can be assigned
weights so that the resulting vector defines a low-error
large-margin separator in theφ-space. Definition 3 can be
viewed as requiring that each pointx′ have a weightw(x′)
that is solely a function of the example itself and not the set
S to which it belongs. The results in Section 4 below imply
that ifK is a good kernel, then these “sample independent”
weights must exist as well.

3.1. Variations Tailored to Efficient Algorithms

Our implication is that there will exist a low-error large-
margin separator in the transformed space, so that we can
then run a standard linear-separator learning algorithm.
Technically, however, the guarantee for algorithms such as
SVM and Perceptron is not that they necessarily find the
minimum-errorseparator on their data (which is NP-hard)
but rather that they find the separator that minimizes theto-
tal distanceone would need to move points to put them on
the correct side by the given margin. Thus, our worst-case
guarantee for SVM and Perceptron is only that they find a
separator of errorO((ε + δ)/γ), though such algorithms
are known to do quite well in practice and the same issue
would apply for the definition of an(ε, γ)-good kernel.5

We can also modify our definition to capture the notion of
good similarity functions for the SVM and Perceptron al-
gorithms as follows:

Definition 4 (tailored to SVM and Perceptron) A simi-
larity functionK is an (ε, γ)-good similarity function in
hinge lossfor a learning problemP if there exists a weight-
ing functionw(x′) ∈ [0, 1] for all x′ ∈ X such that

1

γ
Ex

[

max
(

γx, 0
)

]

≤ ε,

whereγx = Ex′∼P [w(x′)K(x, x′)|`(x) 6= `(x′)] + γ −
Ex′∼P [w(x′)K(x, x′)|`(x) = `(x′)].

In other words, we are asking: on average, by how much
would a random examplex fail to satisfy the desiredγ sep-
aration between the weighted similarity to examples of its
own label and the weighted similarity to examples of the
other label (this isγx). This quantity is then scaled by1/γ.

By applying the same analysis as in the proof of Theorem
2, one can show that given a similarity function satisfying
this definition, we can use SVM in the transformed space
to achieve errorO(ε + δ).

ρS(x). However, if the data distribution is highly unbalanced, say
with substantially more negatives than positives, then themapping
may no longer have the large-margin property.

5Recent results of Kalai et al. (Kalai et al., 2005) give a method
to efficiently perform agnostic learning, achieving error rate arbi-
trarily close toε+δ, if the distribution of points in the transformed
space is sufficiently “well-behaved”.

3.2. Combining Multiple Similarity Functions

Suppose that rather than having a single similarity func-
tion, we were instead givenn functionsK1, . . . ,Kn, and
our hope is that some convex combination of them will sat-
isfy Definition 3. Is this sufficient to be able to learn well?
(Note that a convex combination of similarity functions is
guaranteed to have range[−1, 1] and so be a legal similar-
ity function.) The following generalization of Theorem 2
shows that this is indeed the case, though the margin pa-
rameter drops by a factor of

√
n. This result can be viewed

as analogous to the idea of learning a kernel matrix studied
by Lanckriet et al. (2004) except that rather than explic-
itly learning the best convex combination, we are simply
folding the learning process into the second stage of the
algorithm.

Theorem 3 SupposeK1, . . . ,Kn are similarity func-
tions such that some (unknown) convex combination
of them is (ε, γ)-good. If one draws a setS from
P containing d = (4/γ)2 ln(2/δ) positive examples
S+ = {y1, y2, . . . , yd} and d negative examplesS− =
{z1, z2, . . . , zd}, then with probability at least1 − δ,
the mappingρS : X → R2nd defined asρS(x) =
(K1(x, y1), . . . ,Kn(x, yd),K1(x, z1), . . . ,Kn(x, zd)) has
the property that the induced distributionρS(P ) in R2nd

has a separator of error at mostε + δ at margin at least
γ/(4

√
n).

Proof: Let K = α1K1 + . . . + αnKn be an(ε, γ)-good
convex-combination of theKi. By Theorem 2, had we in-
stead performed the mapping:ρ̂S : X → R2d defined as

ρ̂S(x) = (K(x, y1), . . . ,K(x, yd),K(x, z1), . . . ,K(x, zd)),

then with probability1− δ, the induced distribution̂ρS(P )
in R2d would have a separator of error at mostε+δ at mar-
gin at leastγ/4. Let ŵ be the vector corresponding to such
a separator in that space. Now, let us convertŵ into a vector
in R2nd by replacing each coordinatêwj with then values
(α1ŵj , . . . , αnŵj). Call the resulting vector̃w. Notice that
by design, for anyx we havew̃ · ρS(x) = ŵ · ρ̂S(x). Fur-
thermore,||w̃|| ≤ ||ŵ|| (the worst case is when exactly one
of theαi is equal to 1 and the rest are 0). Thus, the vector
w̃ under distributionρS(P ) has the same properties as the
vectorŵ underρ̂S(P ), except that||ρS(x)|| may now be
as large as

√
2nd rather than the upper-bound of

√
2d on

||ρ̂S(x)|| used in the proof of Theorem 2. Thus, the margin
bound drops by a factor of

√
n.

Note that the above argument actually shows something a
bit stronger than Theorem 3. In particular, if we define
α = (α1, . . . , αn) to be the mixture vector for the optimal
K, then we can replace the margin boundγ/(4

√
n) with

γ/(4||α||√n). For example, ifα is the uniform mixture,
then we just get the bound in Theorem 2 ofγ/4.

3.3. Multiclass Classification

We can naturally extend all our results to multiclass clas-
sification. In particular, the analog of Definition 3 in that
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we require most examples to have their average weighted
similarity to points of their own class be at leastγ greater
than there average weighted similarity toeachof the other
classes. One can then learn using standard adaptations of
linear-separator algorithms to the multiclass case (e.g.,see
Freund and Schapire (1999)).

4. Good Kernels are Good Similarity
Functions

In this section we show that a good kernel in the standard
sense (i.e. a kernel with a large margin separator in its im-
plicit φ-space) will also satisfy Definition 3, though with
some degradation of the parameters. Formally:

Theorem 4 If K is a (ε, γ)-good kernel function, then for
anyεacc > 0, K is a(8(ε+2εacc)

γ , 1
2M(γ,εacc)

)-good similar-

ity function, whereM (γ, ε) = 1
ε

(

3
γ2 + log(1

ε )
)

.

For example, ifK is a(0, γ)-good kernel function, then for
anyε′ it is also a(ε′, Õ(ε′γ3))-good similarity function. To
prove Theorem 4, we first need some useful lemmas.

4.1. Some Preliminary Lemmas

The first step to proving Theorem 4 is to show the follow-
ing. LetP be a normalized(ε, γ)-linearly separable learn-
ing problem. For anyεacc, δ > 0, if we draw a sample
S = {z1, ..., zM} of size at leastM = 1

εacc

(

3
γ2 +log

(

1
δ

))

,
then with probability at least(1 − δ) there exists a weight-
ing w̃(zi) ∈ {0, 1} of the exampleszi ∈ S such that the
linear separatorwS given bywS =

∑M
i=1 `(zi)w̃(zi)zi has

length||wS || ≤ 3/γ and error at mostε + εacc at margin
1/||wS ||. To prove this, we consider a modification of the
standard Perceptron algorithm (Minsky & Papert, 1969;
Novikoff, 1962) which we call Margin-Perceptron.6

Algorithm 1 Margin-Perceptron

Let〈(x1, `(x1)), . . . , (xm, `(xm))〉 be the sequence of
labeled examples. Initializet := 1, and start with
w1 = `(x1)x1.

For i = 2, . . . , m:

• Predict positive ifwt · xi ≥ 1, predict negative ifwt ·
xi ≤ −1, and consider an example to be a margin
mistake whenwt · xi ∈ (−1, 1).

• On a mistake (incorrect prediction, or margin mis-
take), update as follows:wt+1 := wt + `(xi)xi,
t := t + 1.

We can now prove the following guarantee on the number

6Note: we are using the margin-Perceptron algorithm here
only as a proof technique.

of updates made by the Margin-Perceptron algorithm.

Lemma 5 Let S = 〈(x1, `(x1)), . . . , (xm, `(xm))〉 be a
sequence of labeled examples with||xi|| = 1. Suppose
that there exists a vectorw∗ such that||w∗|| = 1 and
`(xi)w

∗ · xi ≥ γ for all examples in the sequenceS.
Then the number of updatesN onS made by the Margin-
Perceptron algorithm is at most3/γ2, and furthermore
||wt|| ≤ 3/γ for all t.

In other words, the mistake-bound is comparable to that
of the standard Perceptron algorithm, and in addition the
algorithm if cycled through the data produces a hypothesis
wt of margin at least1/||wt|| ≥ γ/3.

Proof: Let wk denote the prediction vector used prior to
the kth update (here by an update we mean an update on
an incorrect prediction or margin mistake). Thus, if thekth
update occurs on(xi, `(xi)), then`(xi)wk · xi < 1 and
wk+1 := wk + `(xi)xi.

As in the classical proof of Perceptron algorithm, we ana-
lyze ||wt|| andwt ·w∗. First, we havewt+1 ·w∗ ≥ γt since
all examplesxi satisfy `(xi)w

∗ · xi ≥ γ. Second, since
||wk+1||2 = ||wk||2 +2`(xi)wk ·xi +1 ≤ ||wk||2 +3, after
t updates we have||wt||2 ≤ 3t. Putting these together we
obtain that the number of updatesN satisfiesγN ≤

√
3N

and thereforeN ≤ 3/γ2. Furthermore since||wt||2 ≤ 3t
for all t, this means that for allt we have||wt|| ≤ 3/γ.

Using Lemma 5 we can now show the following structural
result for(ε, γ)-linearly separable learning problems:

Lemma 6 LetP be a normalized(ε, γ)-linearly separable
learning problem. Then, for anyεacc, δ > 0, if we draw a
sampleS = {z1, ..., zM} of sizeM = 1

εacc

(

3
γ2 + log

(

1
δ

))

,
then with probability at least(1 − δ) (over the draw of
our sample) there exists a weighting of the exampleszi

appearing in the samplẽw(z1), ..., w̃(zM ) ∈ {0, 1} with
the property that the linear separatorwS given bywS =
∑M

i=1 `(zi)w̃(zi)zi has ||wS || ≤ 3/γ and error at most
ε + εacc at margin1/||wS ||.

Proof Sketch: We simply use the weighting function
given by the Margin Perceptron algorithm when applied
only over the “good” points in the sample (those that are
correctly separated by marginγ). If our distribution had
error 0 at marginγ, then the result would follow from
Lemma 5 and a standard result of converting an online mis-
take bound guarantee into a PAC guarantee (Littlestone,
1989). Addingε probability mass for the points not hav-
ing marginγ, we get the desired result.

4.2. The Main Argument

We can now use Lemma 6 to prove Theorem 4 that a good
kernel function is in fact a good similarity function in the
sense of Definition 3.
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Proof of Theorem 4: The proof follows from the defini-
tion of a kernel and Theorem 7 below.

Theorem 7 If P is a normalized(ε, γ)-linearly separable
learning problem, then for anyεacc > 0 there exists a
weightingw(x) of examplesx in X such thatw(x) ∈ [0, 1]

and at least a1 − 8(ε+2εacc)
γ probability mass of the ex-

amplesx satisfy: Ex′∼P [w(x′)x′ · x|`(x) = `(x′)] ≥
Ex′∼P [w(x′)x′ · x|`(x) 6= `(x′)] + 1

2M , where M =
1

εacc

(

3
γ2 + log

(

1
εacc

))

.

Proof Sketch: From Lemma 6 we know that with prob-
ability at least(1 − δ), a randomly drawn sequenceS of
M = 1

εacc

(

3
γ2 + log

(

1
δ

))

examples can be given weights
in {0, 1} so that the resulting classifierwS has the property
that Prx [`(x)(wS · x) ≤ 1] ≤ ε + εacc and furthermore
||wS || ≤ 3/γ. Definewx′,S to be thetotal weight given
to examplex′ in S and letwS be

∑

x′∈S `(x′)wx′,Sx′; so,
formally wx′,S is a sum of weights̃w(x′) over all appear-
ances ofx′ in the sampleS (if x′ appears multiple times),
andwS is a weighted sum of examples inS. We will say
thatx is bad with respect towS if `(x)(wS · x) ≤ 1.

Now notice that for each sampleS of sizeM the set of
“bad” x’s with respect towS could be the same or different.
However, we know that:

Pr
S

[

Pr
x

[`(x)(wS · x) ≤ 1] ≥ ε + εacc

]

≤ δ.

This then implies that at most a8(ε+εacc+δ)
γ probability

mass ofx’s are bad for more than aγ8 probability mass
of S’s. DefineGood to be the remainder of thex’s. So,
for x ∈ Good we have that over the random draw ofS,
there is at least a1 − γ/8 chance that̀ (x)wS · x ≥ 1 ,
and in the remainingγ/8 chance, we at least know that
`(x)wS · x ≥ −||wS || ≥ −3/γ. This implies that for
x ∈ Good, we haveES[`(x)wS · x] ≥ (1 − γ

8 )1 − γ
8 ( 3

γ )

and so forx ∈ Good we haveES[`(x)wS · x] ≥ 1
2 .

Consider the following weighting schemew(x′) =
Pr [`(x′)]ES [wx′,SI(x′ ∈ S)]/ES [#(x′ ∈ S)], where
Pr [`(x′)] is the probability mass over examples inP
with the same label asx′. Note that w(x′) ∈
[0, 1]. We will show that this weighting scheme sat-
isfies the desired property and for simplicity of no-
tation consider a discrete spaceX . Consider x ∈
Good. We know thatES[`(x)wS · x] ≥ 1

2 , and ex-
panding outwS we get `(x)ES [

∑

x′∈S `(x′)wx′,Sx′] ·
x ≥ 1

2 , or `(x)`(x′)
∑

x′ (e(x′, S)x′) · x ≥ 1
2 , where

e(x′, S) = ES [wx′,SI(x′ ∈ S)]. This implies that

`(x)`(x′)
∑

x′

(

e(x′, S) 1
E[#(x′∈S)]

E[(#x′∈S)]
M

)

x′ ·x ≥ 1
2M ,

and thereforè(x)Ex′

[

w(x′)
Pr [`(x′)] (x

′ · x)
]

≥ 1
2M . Thus we

have shown that forx ∈ Good we have:Ex′∼P [w(x′)x′ ·
x|`(x) = `(x′)] ≥ Ex′∼P [w(x′)x′ ·x|`(x) 6= `(x′)]+ 1

2M .
Finally, pickingδ = εacc we obtain the desired result.

5. Similarity Functions, Weak Learning, and
Kernel-Target Alignment

Our definitions so far have required that almost all of the
points (at least a1 − ε fraction) be on average more sim-
ilar (perhaps in a weighted sense) to random points of the
same label than to those of the other label. A weaker no-
tion would be simply to require that two random points of
the same label be on average more similar than two random
points of different labels. For instance, one could consider
the following generalization of Definition 2:

Definition 5 K is a weakly γ-good similarity function
for a learning problemP if: Ex,x′∼P [K(x, x′)|`(x) =
`(x′)] ≥ Ex,x′∼P [K(x, x′)|`(x) 6= `(x′)] + γ.

While Definition 5 still captures a natural intuitive notion
of what one might want in a similarity function, it is not
powerful enough to implystronglearning unlessγ is quite
large.7 We can however show that for anyγ > 0, Defini-
tion 5 is enough to imply weak learning (Schapire, 1990).
In particular, we can show that the following natural and
simple algorithm is sufficient to weak learn: draw a suf-
ficiently large setS+ of positive examples and setS− of
negative examples. Then, for eachx, considerγ̃(x) =
1
2 [Ex′∈S+ [K(x, x′)] − Ex′∈S− [K(x, x′)]], and finally to
classifyx use the following probabilistic prediction rule:
classifyx as positive with probability1+γ̃(x)

2 and as nega-

tive with probability 1−γ̃(x)
2 . (Notice thatγ̃(x) ∈ [−1, 1]

and so our algorithm is well defined.) Then we can prove
that:

Theorem 8 If K is a weaklyγ-good similarity function,
then if one draws a setS from P containing at least
32
γ2 ln ( 8

γδ ) positive examplesS+ and at least32γ2 ln ( 8
γδ )

negative examplesS−, then with probability at least1− δ,
the above probabilistic classifier has error at most1

2 −
7γ
128 .

Proof: Omitted.

5.1. Relationship to Kernel Target Alignment

It is interesting to notice the close relationship between
Definition 5 and the notion ofKernel Target Alignmentof
Cristianini et al. (2001). Specifically, the alignment be-
tween a normalized kernel functionK and the target̀(x)
is defined asA(K, l(x)) = Ex,x′∼P [`(x)`(x′)K(x, x′)].
Notice that this is essentially the same as Definition 5
when the distributionP is balanced among positive and
negative examples. As pointed out in (Cristianini et al.,

7For example, suppose the instance space is the real line and
that the similarity measureK we are considering is the standard
dot product:K(x, x′) = x · x′. Assume the distribution is50%
positive,50% negative, and that75% of the negative examples are
at position−1 and 25% are at position1, and vice-versa for the
positive examples. ThenK is a weaklyγ-good similarity func-
tion for γ = 1/2, but the best accuracy one can hope for in this
situation is75%.
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2001), if this alignment is very large, then the function
f(x) = Ex′∼P [l(x′)K(x, x′)] has high generalization ac-
curacy. In fact, we can get an efficient algorithm in this
case using the same approach as in the proof of Theorem 1.
One nice feature about our Definitions 2 and 3, however,
is that they allow for similarity functions with fairly small
values ofγ to still produce high-accuracy learning algo-
rithms. For instance, the example given in Section 3 of
a similarity function such that all positive examples have
similarity at least 0.2 with each other, all negative exam-
ples have similarity at least 0.2 with each other, but posi-
tives and negatives have similarities uniformly distributed
in [−1, 1], satisfies Definition 2 withε = 0 andγ = 0.2.
So, using Theorem 1 we can achieve arbitrarily low error.
However, for a balanced distribution of positives and neg-
atives (each with 50% probability mass), such a similarity
function would have alignment score only 0.2. So, the ac-
curacy achievable based on only using the alignment score
would be much lower.

6. Conclusions
The main contribution of this work is to develop a theory of
learning with similarity functions: namely, of when a sim-
ilarity function is good for a given learning problem, that
is more general and in terms of more tangible quantities
than the standard theory of kernel functions. We provide a
definition that we show is both sufficient for learning and
satisfied by the usual large-margin notion of a good ker-
nel. Moreover, the similarity properties we consider do
not require reference to implicit high-dimensional spaces
nor do they require that the similarity function be positive
semidefinite. In this way, we provide the first rigorous ex-
planation showing why a kernel function that is good in
the large-margin sense can also formally be viewed as a
good similarity function, thereby giving formal justifica-
tion to the standard intuition about kernels. Our results also
suggest a possible direction for improved definitions in the
context of Kernel-Target Alignment.

6.1. Open Problems and Future Work

While we can show that a kernelK that has the large margin
property in its implicit space is also a good similarity func-
tion under our definitions, our reduction results in a loss in
the parameters. For example ifK is a (0, γ)-good kernel
function, then using our reduction it is roughly an(ε, εγ3)-
good similarity function. One open problem is whether one
can improve the argument and the resulting bounds.

Our algorithms (much like those of Balcan et al. (2004))
also suggest a natural way to use kernels or other similarity
functions in learning problems for which one also wishes
to use the native features of the examples. For instance,
consider the problem of classifying a stream of documents
arriving one at a time. Rather than running a kernelized
learning algorithm, one can simply take the native features
(say the words in the document) and augment them with a
small number of additional features representing the sim-

ilarity of the current example with each of a pre-selected
set of initial documents. One can then feed the augmented
example into a standard unkernelized online learning algo-
rithm. It would be interesting to explore this idea further.

Finally, our results suggest an approach to analyzing sim-
ilarity functions in the context of clustering. That is, one
would ask what properties of pairwise similarity functions
are sufficient to allow an algorithm toclusterwell.
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