
NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAINAVRIM BLUM �, PRABHAKAR RAGHAVAN y , AND BARUCH SCHIEBER zAbstract. Consider a robot that has to travel from a start location s to a target t in anenvironment with opaque obstacles that lie in its way. The robot always knows its current absoluteposition and that of the target. It does not, however, know the positions and extents of the obstaclesin advance; rather, it �nds out about obstacles as it encounters them. We compare the distancewalked by the robot in going from s to t to the length of the shortest (obstacle-free) path betweens and t in the scene. We describe and analyze robot strategies that minimize this ratio for di�erentkinds of scenes. In particular, we consider the cases of rectangular obstacles aligned with the axes,rectangular obstacles in more general orientations, and wider classes of convex bodies both in two andthree dimensions. For many of these situations, our algorithms are optimal up to constant factors.We study scenes with non-convex obstacles, which are related to the study of maze-traversal. Wealso show scenes where randomized algorithms are provably better than deterministic algorithms.Key words. Robot navigation, computational geometry, on-line algorithmsAMS subject classi�cations. 68Q25, 68T05, 52C051. Motivation and Results. Practical work on robot motion planning fallsinto two categories: motion planning through a known scene, in which the robot hasa complete map of the environment, and motion planning through an unknown scenein which an autonomous robot must �nd its way through a new environment (see, forexample, [9, 13, 15, 21, 24] and references therein). Virtually all previous theoreticalwork ([32] and references therein) has focused on the former problem. Papadimitriouand Yannakakis [26] studied the latter problem, which is also the subject of this paper:the design and evaluation of strategies for navigation in an unknown environment. Theunfamiliar environment may be either a warehouse or a factory oor whose contentsare frequently moved, or a remote terrain such as Mars [30]. The design and evaluationof algorithms for such navigation is a natural algorithmic problem that deserves moretheoretical study.1.1. Model. A scene S is a region (ofR2 or R3) containing a start point s and atarget t, together with a set of opaque, impenetrable, non-overlapping obstacles noneof which contains s or t. Most of this paper will consider 2-dimensional scenes. Thetarget t may be a point, or a polygon/polyhedron, or an in�nite wall. To avoid certaindegeneracies, we assume that a unit diameter circle (unit cube in three dimensions)can be inscribed in each obstacle; this guarantees that the obstacles have a certainminimum \thickness".A point robot has to travel from s to t, and it knows both its current absoluteposition and the position of t. In walking towards t it must circumvent the obstaclesin S. The robot does not know the positions and extents of these obstacles in advance;rather, it �nds out about obstacles as it encounters them. Where two obstacles touch,we assume that the robot can \squeeze" between them. Thus a scene that consists� School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. Email:avrimtheory.cs.cmu.edu. Part of this work was done while the author was visiting IBM T.J. WatsonResearch Center, and part while at MIT and supported by an NSF graduate fellowship.y IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598. Email:praghwatson.ibm.comz IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598. Email:sbarwatson.ibm.com 1

2 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERonly of convex obstacles cannot have a non-convex obstacle composed of abuttingconvex obstacles.The most natural mechanism for the robot to learn about a scene is vision: therobot discovers obstacles as they come into its view, and uses this information to decidehow to proceed towards t. For simplicity of exposition we describe our algorithmsassuming that when the robot �rst sees an obstacle it is given the shape, size andposition of the obstacle (even though much of that obstacle may be invisible fromwhere it stands). However, we show how many of our algorithms can be made to workwith essentially the same upper bounds (up to a constant factor) under a considerablyweaker assumption | a tactile robot that learns about obstacles only by bumping intothem and moving along them. For this we use variants on the \doubling" strategiesof Baeza-Yates et al. [1].Let R(S) be the total distance walked by a robot R in going from s to t in sceneS, and let d(S) denote the length of the shortest (obstacle-free) path in the scenebetween s and t (because of the obstacles, this may be substantially larger than theEuclidean distance between s and t). Let S(n) denote the set of scenes in which theEuclidean distance between s and t is n. Following the lead of [26], we use as the�gure of merit for the robot the ratio�(R;n) = supS2S(n) R(S)d(S) ;and study its growth as a function of n.For convenience, we put the scene in Cartesian coordinates, using \north"/\south"to denote the direction of increasing/decreasing y value, \east"/\west" for the direc-tion of increasing/decreasing x value, and \up"/\down" for the direction of increas-ing/decreasing z value, respectively. In two dimensions, we also use \vertical" tomean parallel to the y axis, and \horizontal" to mean parallel to the x axis. The startpoint s is always assumed to be at the origin, and unless speci�ed otherwise, we willassume the current scene belongs to S(n). Finally, we use logn to denote log2 n.1.2. Summary of Results. For most of this paper we consider 2-dimensionalscenes where t is a point and the obstacles are rectangles with sides parallel to theaxes (rather than squares as in [26]). Surprisingly, even this problem turns out tobe quite complicated. We solve this problem by breaking it into the following twosubproblems.The Wall ProblemScenes in which t is an in�nite vertical line and the obstacles are orientedrectangles. The goal is to reach a point on t of the robot's choosing.The Room ProblemScenes in which the obstacles are oriented rectangles that are con�ned to liewithin a square \room". Here, s is a point on a wall of the room and t is thepoint at the center of the room. The robot can \squeeze" between any twoobstacles or between the walls and any obstacle. This intriguing special caseis of interest in its own right as a model for navigation in a bounded regionsuch as a warehouse.Section 2 describes an optimal algorithm for the wall problem. The algorithm achievesan upper bound of O(pn) on the ratio �(R;n), matching the lower bound of [26]. Todevise this algorithm we develop a general \sweep" paradigm that is fairly natural: ahuman lost in a strange city would probably do a similar search.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 3Section 3 considers the room problem. The algorithm for this problem achievesa ratio �(R;n) that is O(2p3 logn). Following and building upon our result, Bar-Eliet al. [2] have established a tight bound of �(logn) on the ratio of deterministic al-gorithms for the room problem. The approach taken by the room problem algorithmis di�erent from the one taken for the wall problem. Here, we develop a \caliper"method that pins the target down to lie within a sequence of advancing paths. In-triguingly, in the room problem the shortest path from s to t has length O(n). Tosee this, suppose that s is the south-west corner of the room. So, the greedy pathfrom the target t that travels due south if possible and otherwise due west will reachs and have length the L1 distance between s and t. (If s is not in the corner, then bytraveling along the room boundaries one can reach s at an additional constant factorcost.) In contrast, greedy paths from s are not guaranteed to go anywhere near t.Thus getting out of a room is easy, but getting in towards a small target seems to behard.Section 4 shows how to combine our solutions for the wall and room problems toobtain a tight bound of �(pn) for point-to-point navigation in scenes consisting oforiented rectangular obstacles.Section 5 describes how our algorithms work (with at worst a constant factordegradation in ratio) when the robot is tactile: it learns about obstacles by \feeling"them. In this case, our algorithms bump into obstacles and slide along their edges, ina manner reminiscent of compliant motion planning [7] in the context of navigationwith a map.Section 6.1 considers the room problem with arbitrary rectangular obstacles. Weshow that d(S) can now be
(n3=2). Unlike the case of oriented rectangles the greedypath is no longer guaranteed to �nd an inexpensive way out of the room. For thesescenes we give lower and upper bounds on �(R;n).Section 6.2 extends our algorithms for the room problem to the case of moregeneral convex polygonal obstacles.Section 7 gives extensions of our algorithm for the wall problem to three di-mensions, and also for point-to-point navigation in three dimensions. Both of thesealgorithms work provided the obstacles are oriented rectangular cuboids, achievingoptimal ratios. (A cuboid is a rectangular parallelepiped.)In Section 8 we give a randomized algorithm for certain cases of the wall problem.We show that the (expected) ratio of our algorithm is 2O(plogn log logn), which is muchsmaller than the corresponding deterministic lower bound. This demonstrates thepower of randomization in navigation.Section 9 deals with non-convex obstacles (and therefore mazes). We give a lowerbound for randomized algorithms, and show that a deterministic algorithm of Raoet al. [28] meets this bound. The algorithm is memory-intensive, and so we o�er analternative algorithm that is very simple, memoryless, randomized and achieves thesame upper bound in the plane.We conclude with a list of some open problems in Section 10.1.3. Related TheoreticalWork. The ratio �(R;n) is studied in Papadimitriouand Yannakakis [26], and independently by Eades, Lin and Wormald [14]. Papadim-itriou and Yannakakis proved that when s and t are points in the plane, and allobstacles are squares, �(R;n) is at least 1:5, and complement this with an algorithmattaining �(R;n) � 1:5 + o(1) for all n. It is also shown in [14, 26] that when t isan in�nite wall at distance n from s and the obstacles are oriented rectangles, then�(R;n) is
(pn). Co�man and Gilbert [12] study the performance of simple heuris-

4 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERtics in the presence of randomly placed obstacles. Kalyanasundaram and Pruhs [16]and Mei and Igarashi [22] consider scenes in which all obstacles have bounded aspectratios. Klein [18] has given a small constant upper bound on the ratio for scenes thatare streets, a class of simple polygons. Lumelsky and Stepanov [21] earlier gave asimple navigation algorithm that guarantees R(S) to be bounded by d(S) plus thesum of the perimeters of all obstacles, with no restrictions on the aspect ratios or theconvexity of the obstacles. Their algorithm does not minimize the ratio �. Severalpapers (see [25, 28, 29] and references therein) give algorithms for building up a mapof a scene by exploring it entirely. Maze-traversal has received considerable attentionin the past in various papers [5, 19, 27], none of which considers the ratio metric. Thereader is referred to [20] for a comprehensive survey of the results in these papers.The ratio measure �(R;n) has close connections to the competitiveness measureused in the study of on-line algorithms [6, 23, 31]; indeed, our problem resemblesan on-line setting in which the obstacles encountered by the robot form a sequenceof \requests", and we compare its total cost R(S) to the \o�-line cost" d(S). It istherefore worth pointing out some key di�erences between the models: (a) In thenavigation problem the robot has a de�nite target towards which it moves, whilethere is no such notion in on-line paging [31], for example. (b) The robot can moveback and forth through the scene, re-visiting previously seen obstacles, thus havingsome control on the requests it encounters in the future. (c) Competitive analysisdeals with request sequences of arbitrary (possibly in�nite) length, whereas here wehave a �xed number of obstacles in the scene. Thus we cannot cast our navigationproblem in a standard on-line framework such as the server problem [23] or metricaltask systems [6]. Nevertheless, the analogy with on-line algorithms proves useful inthe study of randomized navigation (Section 8).2. TheWall Problem. In this section we consider scenes in which t is an in�nitevertical wall at distance n to the east of s, and the obstacles are rectangles whosesides are parallel to the axes. At the end of the section we show how to modify ouralgorithm to work also when t is not vertical. We call the width of an obstacle itslength in the x-direction, and the height of an obstacle its length in the y-direction.To make the presentation clearer, we assume below that pn is an integer. However,our algorithm and analysis can trivially be adapted to the general case.We present an algorithm that achieves ratio �(R;n) = O(pn). This matches thelower bound proven in [26], so our algorithm is optimal up to constant factors.The algorithm maintains four variables: the window size, W , a threshold, � , asweep direction, and a sweep counter. Initially, W is set to n, the sweep direction issouth, and the sweep counter is set to zero. The threshold � is always set to W=pn.We begin with a high-level view of the algorithm and its analysis. The algorithmmaintains a window of varying size around the x-axis. The robot makes pn sweeps indirections alternating between north and south for each window size. Upon completionof these pn sweeps the window size is doubled. Given a window of size W (whichranges from y = +W=2 to y = �W=2), the distance walked by the robot in sweepingis O(Wpn). We show that the shortest path that cuts through all the pn sweepshas length
(pn�) =
(W). Let Wf be the window size at the time the robotreaches t. We prove that the total distance walked by the robot is O(Wfpn), whiled(S) =
(Wf).We now describe the algorithm. Starting from point s, the robot travels due eastuntil it either reaches t or hits an obstacle, say at (x; y). Below, we assume that thecurrent sweep direction is south, the other case is symmetric. The next steps are

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 5determined by the following rules:Rule 1: If the distance to the nearest corner is less than � , then the robotjust goes \around" the obstacle. Speci�cally, it travels either south or northto the nearest corner, then east along the width of the obstacle to the oppositecorner, and �nally back along the height of the obstacle to the point (x+w;y),where w is the width of the obstacle. (See Fig. 1(a).) From this point itcontinues to travel due east until it hits the next obstacle (or reaches t andstops).
(a) (b) (c)

w
2Fig. 1. Going around an obstacle in the sweep algorithmRule 2: If the obstacle extends past both sides of the window (i.e., its northedge has y-coordinate greater than W=2 and its south edge has y-coordinateless than �W=2), then the robot doubles the window width W and threshold� , and resets the sweep counter to 0 and the sweep direction to south. Notethat the ratio W=� remains pn.Rule 3: Otherwise (i.e., the distance to the nearest corner is more than � ,and the obstacle does not extend past both sides of the window), the robottravels south along the obstacle until either it hits the obstacle's south-westcorner or it reaches the window boundary (y-coordinate �W=2). In the �rstcase, the robot just continues due east to the next obstacle (or t). (See Fig.1(b).) In the second case, the robot increments the sweep counter by 1 andips the sweep direction. If the counter is greater than pn, the robot resetsthe counter to zero and doubles the window size and the threshold. (See Fig.1(c).)Let Wf be the window size at the time the robot arrives at t.Theorem 2.1. The total distance walked by the robot is O(Wfpn).Proof. To prove that the distance is bounded by O(Wfpn), we divide the pathtaken by the robot into three components: (1) horizontal segments, (2) segmentswalked south and north \along" obstacles using Rule 1, and (3) segments walkedsouth and north using Rule 3.Notice that (i) the total distance walked east is n � Wfpn since Wf � n, and(ii) since the width of each obstacle is at least one unit, the total distance walkedsouth and north using Rule 1 is bounded by 2n�f � 2Wfpn, where �f is the �nal

6 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERthreshold. It su�ces to bound the third component as well. Fix a window size W .The distance walked by the robot using Rule 3 to complete one sweep is O(W). Sincethe robot makes at most pn+ 1 sweeps for each window size, the total distance fora �xed window size is O(Wpn). The window size is doubled each time it is changed,and thus the total distance traveled over all window sizes is also O(Wfpn).Theorem 2.2. The length of the shortest path from s to t, d(S), is
(Wf).Proof. Since we are just interested in the length of the shortest path up to aconstant factor, we may assume that the path consists only of horizontal and verticalsegments. The length of the horizontal segments is clearly at least n. If Wf = n thenwe are done. Also, if Wf is determined by rule 2 (there is an obstacle that extendedpast both sides of the previous window) we are done as well. So, assume neitherof these is the case, which means the robot has completed at least pn full sweepsfor some window size W � 12Wf . We now show that the vertical component of theshortest path has length
(W) =
(Wf).Consider a point on the shortest path with y-coordinate of maximum absolutevalue. If this absolute value is at least W=2 � � , then clearly the shortest path haslength at least W=2� � =
(W). Suppose that this is not the case. Given a shortestpath, for each of the pn sweeps, de�ne its �rst entry point to be the �rst point on theshortest path whose x-coordinate is the same as the x-coordinate of the starting pointof the sweep. Similarly, de�ne its �rst exit point to be the �rst point on the shortestpath whose x-coordinate is the same as that of the end point of the sweep. Note thatsince sweeps do not overlap in their x-coordinates, the exit point of sweep i appearsbefore the entry point of sweep i+1. Thus, to lower bound the length of the shortestpath we can add together for each sweep i the vertical components of the shortestpath from the ith entry point to the ith exit point. Consider the obstacles touchedby the robot during some sweep { let's say it is a \south" sweep { that require theuse of Rule 3. Each such obstacle extends at least � to the north of the southernmostpoint of the previous such obstacle. So, to travel from the entry point of the sweep(which is not between any two such obstacles) to the exit point of the sweep (alsonot between any two such obstacles) requires traveling a vertical distance at least � .Since there are pn sweeps, the total vertical component is at least �pn = W .Corollary 2.3. Our sweep algorithm achieves a ratio of O(pn) for the wallproblem, provided every obstacle is an oriented rectangle.A simple transformation of our algorithm allows it to achieve the same boundseven if the wall t is not vertical.Theorem 2.4. The modi�ed sweep algorithm below achieves a ratio of O(pn) forthe wall problem with oriented rectangular obstacles, even if the wall is not vertical.Proof. The algorithmdepends on the angle � that tmakes with the y-axis. Assumethat 0 � � < �=4 and that the wall runs from south-west to north-east. (The otherthree possibilities are analogous.) Here, n is the shortest Euclidean distance betweens and t. We distinguish between two cases:Case 1: sin � � 1=pn. In this case the robot walks to t using the greedy east-southpath from s (a path that travels due east if possible and otherwise due south). Observethat the length of this greedy path is the L1 distance between s and the point of tthat the path hits. The x-component of this L1 distance is no more than p2n. Sincesin � � 1=pn the y-component is bounded by O(n1:5), implying �(R;n) = O(pn).Case 2: sin � < 1=pn. We run the sweep algorithm exactly as described above, untilthe �rst time the robot reaches a point (x0; y0) such that the point (x0;�W=2) is onor below t, where W is the width of the current window. Then, the robot walks to t

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 7using the greedy east-south path. By Theorem 2.1 the distance walked by the robotuntil reaching (x0; y0) is O(Wpn), and it is clear that the length of the greedy pathfrom there to t is O(n + W). By an argument identical to the one in the proof ofTheorem 2.2, the shortest path from s to the vertical line x = x0 has length
(W).By the requirement on � the shortest path from s to t has length
(W) as well.3. The Room Problem. In this section we consider the room problem: scenesin which the obstacles are oriented rectangles con�ned to lie within a square roomsuch that no obstacle touches the room walls; the point s is on the border of the roomand t is in the center. (See Fig. 2.)Later, we extend our results to rectangular rooms. Since travel along the roomwalls is \cheap", we may assume s is in the south-west corner of the room, and forconvenience we let t have coordinates (n;n), so the distance from s to t is in fact np2.De�ne a greedy h+x;+yi path to be a path that travels due east if possible andotherwise due north. Similarly, de�ne greedy h+y;+xi paths, h+x;�yi paths, andso forth, to be ones that travel in the �rst direction if possible and otherwise thesecond direction. A brute-force h+xi path is one that travels due east, going aroundobstacles in its way along the shorter direction, but otherwise maintaining a constanty coordinate. A monotone path from (x1; y1) to (x2; y2) is a path that does not bothincrease and decrease in any coordinate. For example, if x2 > x1 and y2 < y1, thenthe x coordinate will never decrease and the y coordinate will never increase. Noticethat a greedy path is always monotone.We now describe an algorithm achieving R(S) = O(n3=2), and thus �(R;n) =O(pn). An improvement that uses this algorithm recursively achieves �(R;n) =O(2p3 logn).The algorithm maintains the following invariant at the start of each iteration:the robot knows of a monotone obstacle-free path from a point (x0; n) to a point(n; y0), where 0 � x0; y0 � n. Furthermore, the robot is positioned on a point of thismonotone path. We begin with x0 = y0 = 0, where the known path is just a pathalong the room borders. Each loop through the algorithm will increase either x0 ory0 by at least an amount pn, walking a distance of only O(n). (If the value increased(x0 or y0) is within pn of n, then it is increased only up to n.) Since each of x0 andy0 can be increased by this amount only dpne times, the total distance walked by therobot to reach t is O(n3=2).For this �rst version of the algorithm, let m = pn. We will describe the algorithmas if t were allowed to be inside an obstacle, in which case the goal is simply to reachthe obstacle containing t; this will allow for easier recursive application.Algorithm Oriented-Room-FindInitialization: Set x0 and y0 to 0. Set the monotone path to be the pathalong the room boundary from (x0; n) to (n; y0).Step 1: De�ne ~t to be the point with x-coordinate minfx0 + m;ng andy-coordinate minfy0 + m;ng. That is, unless we are close to t along somedimension, we have ~t = (x0+m; y0 +m). The goal of this step is to travel tosome point t0 not inside an obstacle that is to the northeast of ~t and southwestof t inclusive. If no such point exists, we wish to travel to some point on theobstacle containing both ~t and t.For this (nonrecursive) version of the algorithm, we may reach t0 as follows.First, traverse the monotone path to a point with y-coordinate equal to that

8 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER
t

s

A path from t to s.<−y,−x>Fig. 2. The Room Problemof ~t. Then, if this is to the west of ~t, travel in a brute-force h+xi path until ~tis reached or an obstacle containing ~t is �rst encountered. In the latter case,unless the obstacle contains both ~t and t (and we are done), we can just followthe obstacle boundary to a point in the desired region.Step 2: Make a greedy h+x;+yi path from t0 until either the x or y coordi-nate equals n. If we are at t then halt. Otherwise, without loss of generality,

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 9assume that the robot has traveled to the west of t, so the current coordinatesare (x̂; n) for x̂ < n. Notice that x̂ � x0 +m since the path was greedy.Step 3: Let x0 = x̂. Travel a greedy h+x;�yi path from (x̂; n) until eithera point (n; ŷ) is reached (in which case let y0 = ŷ), or the previous monotonepath is hit. In either case we have a new monotone path from (x0; n) to(n; y0) with x0 increased by at least m. If the greedy h+x;�yi path was suchthat it reached (n; y0) and in doing so followed the border of a single obstacle,then we must be at an obstacle containing t and so are done. (Similarly, therobot would travel a greedy h+y;�xi path if it had hit to the south of targett in step 2.)Now, go back to Step 1.
t~

t

x +m

y +mo

o
n

n

x

y

o

o Fig. 3. The algorithm for the room problem. Here ~t = t0.The distance walked performing Step 1 is O(n) for traversing the monotone pathand �nal obstacle, and O(m2) = O(n) for the brute-force path traveled, since thelower end of any obstacle encountered cannot extend below the monotone path (sothere is at most 2m cost for every unit of progress made). Steps 2 and 3 togetherrequire traveling at most a distance 3n since each consists of a single greedy path,and in the two paths together at least one coordinate is non-decreasing. Since these

10 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERsteps are iterated at most 2 dme times, the total distance traveled is at most O(n3=2).We can reduce the distance traveled toO(n�2p3 logn) by using algorithmOriented-Room-Find recursively to reach ~t (or an obstacle containing ~t) in Step 1, and optimiz-ing the value of m. This works because to begin the algorithm needs only a monotonepath of the form mentioned in the invariant, and not a true \room." In particular,there need not be any boundary \above" the obstacles at all. De�ne T (n) to be thetotal distance traveled using this strategy to reach point t = (n; n) (or a point onthe boundary of the obstacle containing t if t is inside some obstacle), given that therobot is on a known monotone obstacle-free path from (0; n) to (n; 0). As a base case,if n � 8, say, we just use a brute-force path to reach t. So, the distance traveled ateach iteration of Step 1 is at most 2n for traversing the monotone path, T (m) for therecursive call, and 3n for following the boundary of the �nal obstacle encountered.1Since the number of iterations is at most 2 dn=me, we can bound the total cost T (n)by: T (n) � 2 dn=me [T (m) + 8n] ; for n > 8:By substituting m = n=(2p3 logn), and using the inequality px� kpx � px � k2for k > 0, we get T (n) � cn � 2p3 logn, for c = 16(2 +p2). We therefore have thefollowing theorem.Theorem 3.1. The algorithm for the room problem achieves �(R;n) = O(2p3 logn).If we consider a version of the room problem in which s and t are arbitrary pointsin the room, then the following strategy can be used to walk from s to t at a totalcost that is O(n2p3 logn): simply walk from s out to a corner of the room, then usethe above algorithm. Note, however, that in this case the length of the shortest pathbetween s and t may be o(n).A generalization that will be used for the general point-to-point problem is whenthe room is rectangular with dimensions 2N � 2n, for N � n, and t = (N;n). Weuse the same algorithm as for the square room, with one di�erence: we de�ne point~t = (minfx0+mr;Ng;minfy0+m;ng) for r = N=n. (Again, if n � 8 we can just use abrute-force strategy to reach t traveling distance O(N).) The value of m is optimizedas follows. De�ne T (n; r) to be the total distance traveled to reach point t = (nr; n),given that the robot is on a known monotone obstacle-free path from (0; n) to (nr;0).For a �xed value of m, the distance traveled at each iteration of Step 1 is at mostT (m; r)+5nr, while the distance traveled at each iteration of Steps 2 and 3 is at mostn+ 2N � 3nr. The number of iterations is at most 2 dn=me, so we have:T (n; r) � 2 dn=me [T (m; r) + 8nr] for n � 8:The substitution used above [m = n=(2p3 logn)] results in: T (n; r) = O(rn�2p3 logn).Because we only needed a monotone path to start with, and not an entire room,we in fact have the following theorem.Theorem 3.2. Given a monotone obstacle-free path between (0; n) and (N; 0),for N � n, the above algorithm will reach point (N;n) starting from that path withtotal cost O(N � 2p3 logn).1 The cost of traveling along the �nal obstacle can actually be amortized away at the expense ofadditional sentences of analysis.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 114. Point-to-point Navigation. We combine the algorithms for the wall androom problems to obtain an algorithm for navigation in scenes where t is a point at(n; n) and the obstacles are oriented rectangles with no upper bounds on their extents.The robot starts by taking a greedy h+x;+yi path from the start point s until itreaches a point s0 with either x or y coordinate equal to that of t. Suppose that s0and t have the same y-coordinate. The robot now uses the sweep algorithm for thewall problem to travel to a point (n; y0) with the same x coordinate as t. Withoutloss of generality assume y0 � n. Notice that the path from s0 to (n; y0) taken by therobot in the sweep algorithm never decreases in the x direction, and that y0 � n is atmost the �nal window width Wf . This path guarantees us that the greedy h�y;�xipath P from (n; y0) will reach a point (x0; n) with x0 � 0 (in fact, x0 is at least thex-coordinate of s0). Now we invoke the algorithm for the room problem (Theorem 3.2)to arrive at t using the monotone path P as the room walls.We analyze the distance walked by the robot. The distance traveled using thealgorithm for the wall problem is at most O(Wfpn), where Wf is the size of thelast window considered. The size of the (rectangular) room then created is at mostn �Wf . So, using the algorithm of Theorem 3.2, the distance walked to reach t isO(Wfpn). By Theorem 2.2, the length of the shortest path from s0 to t is at leastcWf for some constant c > 0. Now, if Wf � 4n=c then we have an O(pn) ratio sinced(S) � n. If Wf > 4n=c, then since the length of the shortest path from s0 to s is atmost 2n, d(S) � cWf � 2n � c2Wf , so we also have an O(pn) ratio. We thereforehave the following theorem.Theorem 4.1. For two dimensional scenes S in which s and t are points andevery obstacle is a rectangle whose sides are parallel to the axes our algorithm achievesa ratio of �(R;n) = O(pn).5. A tactile robot su�ces. In this section we use a technique due to Baeza-Yates et al. [1] to demonstrate that all our algorithms given so far can be modi�edto work with essentially the same ratio bounds even if the robot is tactile: it learnsabout obstacles on bumping into them, and can infer the size of an obstacle only bymoving along its boundary.Suppose that the robot hits a side of a rectangular obstacle. Let d be the distancefrom its present position p to the nearest corner of the obstacle; it does not know dor the direction in which this nearest corner lies. The robot can reach this cornertraveling a distance at most 9d + 2 by applying the following \doubling" proceduresuggested by Baeza-Yates et al. until a corner is reached. Walk along the side of theobstacle one unit in one direction, then turn back and walk two units past p in theother direction; turn back, and continue in this manner walking 2i�1 units past p onthe ith iteration. If desired, in case a corner is reached which the robot is not certainis the nearest to p, the robot can simply walk an equal distance from p in the oppositedirection to check. A simple analysis shows that the total length of the walk is atmost 9d+ 2.It remains to show that in each of the deterministic algorithms we have described,we can use this procedure to ensure that a tactile robot su�ces (with a constant factoroverhead in the ratio). In our sweep algorithm for the wall problem of Section 2, notethat in negotiating an obstacle our decision is essentially based on the distance to thenearest corner of the obstacle. By using the above doubling procedure, we thus travelat most 9 times the distance that the visual robot does, plus a low-order term for theadditive constant.Next, consider the room problem. In our algorithm Oriented-Room-Find, the

12 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERonly parts that required vision were the brute-force path, and �nding a point between~t and t if ~t was inside an obstacle in Step 1. Both can be handled with constant-factoroverhead by the Baeza-Yates et al. procedure.6. More general obstacle types.6.1. Arbitrary Rectangular Obstacles. What if rectangular obstacles withsides not parallel to the axes are allowed in the room problem? We begin by provingtwo theorems that demonstrate the di�erence between scenes containing only orientedrectangular obstacles, and scenes containing arbitrary rectangular obstacles.Theorem 6.1. For in�nitely many n, there exist scenes S for the room problemcontaining rectangular obstacles whose sides are at arbitrary angles for which d(S) ��n3=2=81.Thus, the length of the shortest path between s and t is not always boundedabove by the L1 distance as in the oriented case.Theorem 6.2. For any deterministic robot R, there exist scenes S for the roomproblem containing rectangular obstacles whose sides are at arbitrary angles for which�(R;n) =
(pn).Thus, the upper bound for oriented rectangles cannot be achieved in this case.Proof of Theorem 6.1. Consider bn=27c+1 circles centered at t, with radii dn=3e+1+9i, i = 0; . . . ; bn=27c. Inscribe in each a regular bpnc-gon, aligning all these polygons.Rotate all the polygons inscribed in circles of radii dn=3e+ 9i for even i by an angle�=pn. Each edge of each polygon can now be replaced by a rectangular obstacle ofunit width (in the radial direction) and length very nearly the length of that edge.The length of each obstacle is at least 2�pn=3. Now, any obstacle-avoiding pathbetween s and t has to walk a distance of at least 2�pn=3 going from a vertex of thepolygon (i.e., gap between the obstacles) on the circle with radius dn=3e + 18i to avertex on the circle with radius dn=3e+ 18i+ 18, for 0 � i < n=54. 2Proof of Theorem 6.2. Consider the scene described in the proof of Theorem 6.1. Weallow a (deterministic) robot to walk from s to t. We now remove from the sceneany obstacle not touched by the robot. Let T be the number of obstacles it touches.There is a constant c1 such that the distance walked by the robot between touchinga corner of every fourth new obstacle is at least c1pn. This sums to a distance ofat least c1Tpn=4. The total area of the obstacles touched by the robot is boundedfrom above by 2c1Tpn. Thus there exists an angle 2i�=pn, 1 � i � pn, such thatthe path from t to s, given by staying on the radius at this angle and going \around"obstacles encountered is of distance at most c2T , for some constant c2. This impliesthat �(R;n) =
(pn). Notice that the lower bound holds only if the robot is tactileand cannot use any visual information. To make the lower bound work in the case ofa robot that uses visual information we use a slightly di�erent construction togetherwith a technique given in [26].Again consider bn=27c + 1 circles centered at t, with radii dn=3e + 1 + 9i, i =0; . . . ; bn=27c, and inscribe in each a regular bpnc-gon, aligning the polygons. Thistime, however, rotate all the polygons inscribed in circles of radii dn=3e + 18i anddn=3e + 18i + 9 for even i by an angle �=pn. For each i call the polygons inscribedin circles of radii dn=3e + 18i and dn=3e + 18i + 9 a layer. Each edge of the innerpolygon of each layer is replaced by a rectangular obstacle as above, except that ithas thin openings spaced at unit distances. The outer polygon has similar obstaclesin all edges but one, which has a solid rectangular obstacle with no holes. The holesin each inner polygon are out of alignment with the corresponding holes in the outerpolygon; thus the robot cannot see through any layer.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 13
n
3−

n2
3

Fig. 4. The lower bound in Theorem 6.2. The obstacles touched by the robot are shaded.We run the robot algorithm layer by layer, and make the �rst obstacle seen bythe robot in each outer polygon a solid obstacle. By the same argument as above, itfollows that the robot walks
(pn) between every fourth layer. 2We now turn to upper bounds. De�ne the angle of a rectangle to be the angleof its longest edge with the x axis. We �rst describe a modi�cation of algorithmOriented-Room-Find to handle not just obstacles of angles of 0 and �=2, but obstaclesangled in the range [0; �=2] as well. Note that we do not allow obstacles angled inthe remaining range of (�=2; �). Then, we describe how this new algorithm can bemodi�ed for scenes S where there is a �xed known excluded range (d1; d2) of angles(for example, d1 = �=5 and d2 = �=4). Let ~n = n=�, where � = d2 � d1. Ouralgorithm achieves R(S) = (~n � 23plog ~n log log ~n). The length of the shortest pathin such scenes is O(n). We remark that for \practical" cases it may be enough toconsider scenes where there is a known excluded range, especially when the numberof di�erent angles is small. Finally, we give a randomized algorithm that achieves�(R;n) = pn � 2O(plogn log logn) regardless of the angles of the obstacles.Suppose that the obstacles are angled in the range [0;�=2]. We describe ouralgorithm for this case in two steps. We �rst show that we need only consider thecase where obstacles are zero-width line segments angled in the range [0; �=2] suchthat at most some constant number of obstacles cross any line of length one. We thengive an algorithm for that special case.The idea for translating into the zero-width case is to view each obstacle as either

14 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERtwo or four line-segment obstacles consisting of its edges that are in the legal anglerange. (All four edges are in the legal range only if the obstacle is oriented.) Onecan easily verify that this implies a constant upper bound on the number of obstaclesthat cross any given line segment of length one. Let us �rst assume that when therobot touches an obstacle, it is given its entire description (as has been our standardmodel). So, the robot can simulate an algorithm for the zero-width case, and if thesimulated algorithm enters a real obstacle, the robot just waits until that algorithmexits and then meets it at the exit point and continues. By going around the obstaclein the shortest way, the (actual) robot travels at most twice as much as the simulatedalgorithm. To do the simulation with a tactile robot, notice that when an obstacleedge is touched, the robot can determine whether it should be treated as a zero-widthobstacle or as empty space, based on its angle. If the obstacle is to be treated asempty space, the robot can use the Baeza-Yates et al. technique to �nd the pointwhere the simulated algorithm would exit the (actual) obstacle with only a constantfactor additional cost. The key point here, and in the previous case, is that the longeredges of an obstacle are never treated as empty space.We now describe the algorithm for the zero-width case. The reason for reducingto this case is that since every obstacle edge now has angle in the range [0; �=2], we canperform greedy h+x;+yi and h+y;+xi paths. The reason we cannot immediately useAlgorithm Oriented-Room-Find, however, is that we can no longer make the greedyh+x;�yi and h+y;�xi paths required in Step 3. Instead, we will replace that portionof the algorithm with a less-e�cient binary search strategy.More precisely, let us say our start point is (x0; y0) and t is at (n; n). In contrastto Oriented-Room-Find, our invariant will be that we have two monotone paths: ah+y;+xi path from (x0; y0) to some point to the west of t (i.e., a point (x; n) wherex � n), and a h+x;+yi path from (x0; y0) to some point to the south of t. As inOriented-Room-Find, we begin by recursively (or using brute-force if the distance tot is su�ciently small) traveling to a temporary point t0 de�ned as in that algorithm,at distance O(m) from s. Now, in place of Steps 2 and 3 of that algorithm, we willinstead use a binary search (described below) to �nd a point with either the same xcoordinate or the same y coordinate as t0 (and to the northeast of (x0; y0)) with thefollowing property P : the greedy h+x;+yi and h+y;+xi paths from this point pass tothe south and west of t respectively. Thus we will maintain our invariant, increasingeither the x or y coordinate of the new \start point" as in Oriented-Room-Find.We now show how to �nd the desired point. First, if t0 is such a point we are done.Otherwise, suppose that both greedy h+x;+yi and greedy h+y;+xi paths starting att0 hit points to the south of t. (The other case is analogous.) Let s0 be a point withthe same y coordinate as t0 on the h+y;+xi path from (x0; y0) given by our invariant.Since the h+y;+xi path from s0 hits a point to the west of t, if the h+x;+yi path froms0 hits a point to the south of t, then we are done as well. Otherwise, we travel to apoint t00 halfway between s0 and t0|using the same procedure as that used to reacht0|and examine the h+x;+yi and h+y;+xi paths from t00. (If t00 as de�ned is insidean obstacle, we examine the two points to the west and east of t00 on that obstacleboundary.) Depending on the outcomes of these greedy paths, we either halt withsuccess or continue the binary search with a new t000 and so on. We stop the binarysearch when either success is discovered or the interval under consideration has lengthat most 1. So, at most dlogne iterations of the binary search will be made. If thebinary search stops because the interval remaining is too short, a point with propertyP can be found easily by traveling from the west endpoint to the east endpoint of the

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 15interval, and each time an obstacle is hit (this can happen at most a constant numberof times), testing it for property P before going around the obstacle, which costs onlyO(n). This strategy succeeds because if two points a and b have the same y-coordinateand there is either no obstacle between them or both are at the boundary of the sameobstacle then the h+x;+yi path from the leftmost point intersects the h+y;+xi pathfrom the rightmost point.We get that the total distance is given by:T (n) � d2n=me dlogne [T (m) + cn] ; for some constant c.Substituting m = ln=2plogn log lognm yieldsT (n) = O(n � 23plogn log logn):This strategy can be used for a smaller range (d1; d2) of excluded angles by justperforming a rotation and a coordinate transformation on the space. Essentially,instead of writing t as n~x + n~y for orthogonal unit vectors ~x and ~y, we may writet as (n0 ~d1 + n00 ~d2), where ~d1 and ~d2 are unit vectors in the d1 and d2 directions.It is not di�cult to see that both n0 and n00 are O(n=�), where � = d2 � d1. Let~n = n=�. The performance of the previous algorithm after the transformation isR(S) = O(~n � 23plog ~n log log ~n), since the lengths are changed by at most a factor of1=�.Theorem 6.3. There is a deterministic algorithm for the room problem withan excluded angular range of size � that achieves R(S) = O(~n23plog ~n log log ~n). Here~n = n=�.Consider now the general case where the angles of the obstacles may be in anyrange. A simple pigeonholing argument implies that a constant fraction of the ranges[i�=pn; (i + 1)�=pn], for 0 � i < pn have the property that the total perimeter ofthe obstacles angled in this range is no more than 2=pn of the total perimeter. Tobound the total perimeter note that from our assumption that a unit circle can beinscribed in each obstacle it follows that the perimeter of an obstacle is always lessthan four times its area. Since the total area of all obstacles is at most n2, the totalperimeter of obstacles in such a range is O(n3=2).Consider a randomized algorithm that �rst guesses such a range. It then appliesthe above algorithm assuming that there are no obstacles with angles in this range.On actually encountering any obstacle in this range, it just goes around the obstacleat cost at most the perimeter of the obstacle. From the de�nition of the \forbiddenangle range" it follows that on any given greedy path, the robot will go around anysuch obstacle at most once. Therefore, the expected total distance walked by thisalgorithm is given by the recursion given above where ~n = n3=2, and a constant timesn3=2 is added to the c~n term (which remains O(~n)). Thus, we obtain the solutionT (n) = n3=2 � 2O(plogn log logn).Theorem 6.4. There is a randomized algorithm achieving a ratio pn�2O(plogn log logn)for the room problem provided every obstacle is a rectangle within which a unit circlecan be inscribed.6.2. Arbitrary convex polygons. We now describe how our randomized al-gorithm for the room problem can be extended to handle arbitrary convex polygonsprovided that a unit circle can be inscribed in each obstacle, and that the entire de-scription of an obstacle is given to the robot when that obstacle is touched. (The

16 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERonly part of the description of the obstacle that is required is the angle its longestdiagonal makes with the x-axis.) We do not have a solution for the wall problem witharbitrary convex obstacles, and thus no solution for point-to-point navigation withconvex obstacles.De�ne the angle of a convex polygonal obstacle to be the angle its longest diagonalmakes with the x-axis. The idea for the conversion is that each time the robotencounters an obstacle, it picks a longest diagonal D and treats that obstacle as acollection of line segments parallel to D. In particular, it imagines a line segment atD, and then additional segments (if any) parallel to and at distance 1,2,3, etc. fromD, each as long as possible to be still contained within the obstacle. It then feedsthis collection of line segments to the algorithm for rectangular obstacles. As in thecase for unoriented rectangular obstacles, suppose the line-segment algorithm wishesto travel a path along line segments that leads through one of the convex obstacles:say the path is between points a and b on some obstacle's border. The robot thensimply travels the shortest path from a to b along the obstacle boundary. Since theline segments are parallel to the longest diagonal of the obstacle and the obstacle isconvex, we are guaranteed that the shortest path along the obstacle between a and bis at most a constant multiple of the straight-line path.We note that in case there is a �xed known excluded range of angles, then thealgorithm of Theorem 6.3 can be extended as well.7. Extensions to three dimensions. This section summarizes extensions ofour techniques to three dimensions. We begin by extending our study of the wallproblem to three dimensions, and then extend our optimal algorithm for point-to-point navigation to three dimensions.7.1. The wall problem in three dimensions. Suppose that t is an in�niteplane perpendicular to the x-axis at distance n from the origin s. We begin byextending the lower bound of [26] to three dimensions, showing a lower bound of
(n2=3). We then give a generalization of the two-dimensional sweep algorithm thatachieves a matching upper bound.Theorem 7.1. For any deterministic robot, there are scenes S of the three-dimensional wall problem for which �(R;n) =
(n2=3).Proof. To prove the lower bound, it will be convenient to assume a tactile robot.Using the technique of [26] used in Section 6.1, this proof can be extended to robotswith visual capabilities.As the robot walks in the direction of t, the adversary places obstacles as follows.Each obstacle is a cuboid whose cross-section parallel to the yz plane is a square ofside n2=3, and whose width in the x direction is one. Whenever the robot �rst reachesx-coordinate i, for each i 2 f0;1; . . . ; n� 1g, a cuboid is placed directly in front of it.Thus the robot must travel a distance at least 12n2=3 perpendicular to the x-axis inorder to advance one unit parallel to the x-axis. Thus R(S) � 12n5=3.We now show that d(S) � 3n. Since the cross-sectional area of each cuboid is n4=3,by the pigeonhole principle there is a line ` parallel to the x-axis with the followingproperties: (a) its distance from the x-axis is at most n; (b) it cuts at most n1=3cuboids. Consider a path that starts from s and �rst goes to the leftmost point of `.It then goes along ` parallel to the x-axis, traveling around each cuboid it encounters.The distance from s to the leftmost point of ` is at most n. The distance traveledparallel to the x-axis is also n. The total perpendicular distance traveled in circum-venting the cuboids cut by ` is at most n1=3 � n2=3 = n. So, d(S) � 3n and the ratio

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 17�(R;n) =
(n2=3).We now give an algorithm that matches this lower bound to within a constant.At a high level, the algorithm can be viewed as an extension of the two-dimensionalsweep algorithm. The window, which in the plane was the region between two linesparallel to the x-axis, now becomes a cylinder whose axis is the x-axis. The radius ofthis cylinder is initially n, and is subsequently increased at certain points. The sweepused in the plane is now replaced by a spiral about the x-axis.For simplicity, we �rst describe the algorithm as if every obstacle were a cylinderof circular cross-section, its axis parallel to the x-axis, and its center placed directlyin front of the robot. The radii and lengths of these obstacles could vary. Followingthe analysis of this simple case, we outline the extension of the algorithm to moregeneral obstacles.Consider a point orbiting around a �xed point, with the radius of the orbit in-creasing linearly with angular position at a rate of D units for every 2� radians ofangular position. We call the path of the moving point a spiral, and D the spacing ofthis spiral. (See Fig. 5.)Our algorithm begins with W = n; at all times, � = W=n1=3. Consider a spiralwhose center is on the x-axis and whose orbits lie in a plane perpendicular to thex-axis. The spacing will be �=3. Thus there are at most 3n1=3 orbits in the spiralwithin the current window.The y and z coordinates of the robot will always lie on such a spiral. Analogousto the sweep direction in the plane (north or south), the robot now maintains a spiraldirection that is either \outwards" or \inwards" along the spiral. On encounteringa (cylinder) obstacle directly in front of it, the robot �rst checks if the radius of thecylinder exceeds � . If not, the robot \goes around" the cylinder, retaining its currentyz coordinates. If on the other hand the radius does exceed � , the robot proceedsto the nearest point p on the spiral along its current spiral direction (outwards orinwards) that is not covered by the cylinder, proceeding as far along the x directionas it can in the process. If this nearest point lies at a distance W 0 from the x-axisthat exceeds W , the robot increases W to 2W , resets the sweep counter to zero, andproceeds to begin a new spiral inwards from this point. Whenever the robot completesan inward spiral by reaching the x-axis or an outward spiral by reaching a point atdistance W from the x-axis, it increments the sweep counter. Whenever the sweepcounter reaches n1=3, the robot doubles W (and �), resets the sweep counter to zeroand continues.Theorem 7.2. The spiral algorithm achieves a ratio of O(n2=3), provided everyobstacle is a cylinder whose center is directly in front of the robot when it is �rstencountered.Proof. The analysis is essentially identical to that in Theorems 2.1 and 2.2. LetWf be the �nal window radius. Since there are at most 3n1=3 orbits in each spiral,the distance walked by the robot in the last completed spiral is O(n1=3Wf). Sincethere are at most �n1=3� complete spirals in each window the total distance walkedby the robot is O(n2=3Wf).We show that the length of the shortest path is
(Wf). First, we may assumethat the robot has completed �n1=3� spirals for some window size W � 12Wf , or elsewe are immediately done (this is by the same reasoning used for the two-dimensionalwall problem). Consider a point on the shortest path that is farthest from the x axis.If the distance of this point to the x axis is at least W , then clearly the shortest pathhas length at least W ; so, we may assume that this is not the case.

18 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER
-20 -15 -10 -5 5 10 15

-10

10

20

s

t

Fig. 5. A projection of a spiral with radius 20 and spacing 2, overlaid with a projection ofa cylinder of radius 6. The point s is the projection of the point where the robot encountered theobstacle, and point t is the projection of the nearest point on the outward spiral that is not covered.Given a shortest path, for each of the completed spirals, de�ne its �rst entrypoint to be the �rst point on the shortest path whose x-coordinate is the same as thex-coordinate of the starting point of the spiral. Similarly, de�ne its �rst exit point tobe the �rst point on the shortest path whose x-coordinate is the same as that of theend point of the spiral. As in the two-dimensional problem, the exit point of spirali appears before the entry point of spiral i + 1. So, we need only show that for eachspiral in some window size W , the yz plane component of the shortest path from theentry point to the exit point of the spiral is
(�). This will imply that the total yz

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 19plane component of the shortest path is
(�n1=3) =
(W). So, imagine projectingthe completed spiral onto the yz plane, projecting all the cylinders encountered inthat spiral onto circles in the yz plane. Observe that every point on the spiral is atdistance at most �=2 from the center of one such circle of radius at least � . Since theorbits of the spiral are at distance �=3 from one another, for any point of distance atmost W from the origin there exists a circle such that the distance of this point fromthe periphery of the circle is
(�). In particular, this also holds for the projectionof the entry point of the sweep. Thus the yz component of any path from the entrypoint to the exit point must be
(�).The extension to the case of general cylindrical obstacles is similar. We de�ne ageneral cylindrical obstacle to be one for which there is a simple closed curve C inthe yz-plane such that the obstacle's intersection with any plane perpendicular to thex-axis, when translated to the yz-plane is either empty or it is C and its interior. Aslong as the robot moves in the positive x-direction, it will hit an obstacle only at somepoint of its unique \west face" in the yz-plane. On encountering such an obstacle,the robot measures the shortest distance from its present position to a point p on thespiral not touched by the obstacle. If this quantity is less than � it uses this shortestpath to circumvent the obstacle and retain its yz coordinates. Otherwise, it goes top and proceeds as far along the x direction as it can. The analysis is very similar tothe case of unit-height cylinders.Theorem 7.3. For three dimensional scenes S with general cylindrical obstaclesand in which s and t are points our spiral algorithm achieves a ratio of �(R;n) =O(n2=3) for the wall problem.7.2. Point-to-point navigation in three dimensions. We now give an upperbound for point-to-point navigation in three dimensions that matches the lower boundto within a constant factor provided every obstacle is a cuboid whose sides are parallelto the axes. As in two dimensions, our upper bound for point-to-point navigationcomes from combining an algorithm for point-to-plane navigation and another forthe room problem. However, in the three dimensional case it su�ces to combine thethree dimensional wall algorithm with the two-dimensional room algorithm to obtaina three-dimensional point-to-point navigation algorithm. For simplicity of analysis,we assume all obstacles have vertices at integral coordinates. However, our algorithmwould still work provided a unit cube can be inscribed within every cuboid in thescene.Suppose without loss of generality that the x, y, and z coordinates of s are lessthan those of t. The algorithm consists of three stages. In the �rst stage the robotreaches a point s00, such that at least two of its coordinates are the same as t. Thisis done as follows. The robot starts by taking a greedy h+x;+y;+zi path until oneof the three coordinates is the same as t. Call this point s0 and w.l.o.g. say the y-coordinates of s0 and t are the same. Next, �xing the y-coordinate (i.e., staying inthe xz-plane of point s0), the robot takes a greedy h+x;+zi path from s0 until one ofthe other two coordinates is the same as t. The endpoint of this path is the desiredpoint s00. W.l.o.g. assume that the y and z coordinates of s00 are the same as t andlet nx � n be the distance between s00 and t. The total distance walked in the �rststage is O(n).In the second stage the robot uses the three dimensional wall algorithm from s00to reach a point t0 with the same x-coordinate as t. See Fig. 6. The total distancewalked in this step is at most O(n2=3) times d(S). Let nw be the distance between t0and t.

20 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER
. t

. t’

s’’.

Fig. 6. The plane that contains the points s00, t0 and t.Assume that t0 is not t (otherwise we are done). Consider the plane that containsthe three points s00, t0 and t. (See Fig. 6.) In the third stage the robot will stay in thisplane. Notice that since all the obstacles are cuboids, the intersections of all obstacleswith this plane are oriented rectangles. De�ne w to be a linear combination of y andz directions so that points on this plane can be written in (x;w) coordinates, andtranslate these so that s00 = (0; nw), t0 = (nx; 0), and t = (nx; nw) in this system.From t0 do a greedy h+w;�xi path until either the w-coordinate is nw or else thex-coordinate is 0, whichever comes �rst. If the �rst case occurs, then the greedy path isa monotone boundary and we can apply the room problem algorithm of Theorem 3.2.(The 2-dimensional slice may technically violate our conditions for the room problemby having obstacles that are too \thin". However, because a unit cube can be inscribedin each of the 3-dimensional obstacles, there is su�cient separation for the room-problem algorithm to work.) If the second case occurs, (we reached a point withx-coordinate 0), then go back to s00, retracing all our steps if we have to, and performa greedy h+x;�wi greedy path from there. This is guaranteed to hit a point with x-coordinate of nx and w-coordinate at least 0 since it cannot cross our previous greedypath. So, we again have a room and can run the room algorithm. The distancewalked in this stage is O(pn �d(S)) since nw � d(S). We therefore have the followingtheorem.Theorem 7.4. For three dimensional scenes S in which s and t are points andevery obstacle is a cuboid whose sides are parallel to the axes our algorithm achievesa ratio of �(R;n) = O(n2=3).To extend this result to a tactile robot we again use the technique due to Baeza-Yates et al. [1]. Their strategy allows one to start from a face of a cuboid and travelto the nearest edge (at distance d) walking distance O(d) in the process, without priorknowledge of d or the direction to the nearest edge. As in Section 5, this allows ouralgorithm for point-to-point navigation in three dimensions to work for tactile robotswith the same asymptotic ratio bounds.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 218. The Power of Randomization. We now consider randomized robots thattoss coins as they walk from s to t. The scene S is �xed in advance by an obliviousadversary [3] who knows the randomized algorithm, but not the coin tosses made bythe robot during a walk. The cost of robot R on scene S is now a random variable; wethus de�ne the ratio �(R;n) to be supS2S(n)E[R(S)]=d(S). The main result of thissection is a randomized algorithm for the 2-dimensional wall problem that achieves aratio that is 2O(plogn log logn) provided the obstacles are all vertical line segments withendpoints at integral x-coordinates and the robot is allowed vision. Notice that forthis situation, the robot can see the entire \column" of obstacles directly in front ofit; that is, if the robot is at a point with x-coordinate in the range (i�1; i) for integeri, it can see all obstacles of x-coordinate i. To keep with our previous conventions onthe thickness of obstacles, we could equivalently consider obstacles of width betweenone and two having their left walls only at even x-coordinates; this would still allowthe robot to see an entire \column" at once.The Papadimitriou-Yannakakis lower bound of
(pn) still holds for deterministicalgorithms for this restricted class of scenes [26]. So, for such scenes, a randomizedalgorithm is provably better than a deterministic one. We leave as an open questionwhether one can achieve similar bounds for the more general wall problem.The idea for the randomized algorithm is to view the problem as a k-server prob-lem on (k + 1) equally-spaced points on a line, and then use as a subroutine knownrandomized strategies [4] for that server problem. For the bene�t of the reader, wenow de�ne the k-server problem, �rst de�ned in [23]. An on-line algorithm managesk mobile servers located at the vertices of a graph G whose edges have positive reallengths. The algorithm has to satisfy on-line a sequence of requests, each of which issome vertex v of G, by moving a server to v unless it already has a server there. Eachtime it moves a server, it pays a cost equal to the distance moved by that server. Wecompare the cost of such an algorithm to the cost of an adversary that, in additionto moving its servers, also generates the sequence of requests. In fact, our problemcan be better described as a metrical task system of [6], but we will use the languageof servers here. In the lower bound direction, a recent result of Karlo� et al. forthe server problem shows that even for the special case of scenes we consider, norandomized algorithm can achieve a constant ratio [17].We now present our randomized algorithm. There is a randomized strategy fork servers on k + 1 equally-spaced points on the line that achieves a competitiveness2O(plog k log logk) against the oblivious adversary [4] (for completeness, details aregiven in the Appendix). We map the navigation problem to this k-server problem asfollows. Let k = n� 1 and de�ne the spacing between adjacent points on the line tobe W=n, where W is the width of a window of y-coordinates currently considered bythe robot; the value of W will be speci�ed below. Each point in the server problemcorresponds to a range of W=n y-coordinates for the navigation problem. The \hole"(the point without a server) represents the range currently inhabited by the robot.We begin with W = n and start the hole at the center of the line. Each timethe robot sees a column of obstacles, the robot notes all points in the server problemcorresponding to ranges that are completely blocked by obstacles. It then makesenough requests to the server algorithmon those points so that for the server algorithmof [4], the hole no longer resides on such points. Note that this request sequence isdetermined by the scene and thus obeys the de�nition of an oblivious adversary. Therobot then moves to the range occupied by the hole (if it is not already there) andthen moves a vertical distance at mostW=n to �nd a point where it can go forward in

22 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERthe +x direction to the next column. So, the distance moved by the robot is at mostthe on-line server cost, plus W=n+ 1 for each unit moved in the +x direction. If theo�-line server cost reaches W , the robot doubles the window width and restarts theserver algorithm, each point now corresponds to a larger range of y values.Theorem 8.1. The randomized algorithm above achieves a ratio that is 2O(plogn log logn)for the wall problem in the plane where the robot uses vision and the obstacles are ver-tical line segments at integral x-coordinates.Proof. For a �xed window width, the o�-line server cost in the above transfor-mation is a lower bound on the length of the shortest path for the robot problem(assuming the o�-line hole is started also at the center of the line). The o�-line servercost could be a bit lower than the length of the shortest path since we do not makerequests to points corresponding to y-value ranges only partially blocked by obsta-cles. Note that when the o�-line cost exceeds W , the shortest path might escape thewindow, which is why W is doubled.As mentioned previously, the on-line cost for the robot is a most the on-line costfor the server problem, plus W=n+ 1 for each unit advance in the x direction. So, ifWf is the �nal window width used, the total distance traveled by the robot is at most(Wf + n) +Wf2O(plogn log logn) = d(S)2O(plogn log logn).9. Non-convex Obstacles and Mazes. When the obstacles are non-convex,the scene can be a maze. In this case it is easy to see that �(R;n) cannot be boundedby any function of n (the Euclidean distance between s and t). Instead, we prove aratio between R(S) and d(S) as a function of the total number of vertices in all theobstacles, jV j.Theorem 9.1. No randomized algorithm achieves a ratio better than (jV j �10)=6.Proof. Consider the maze in Fig. 7 and its obvious generalization.The maze has (jV j � 10)=6 passages that could lead from s to t. An algorithmattempts various passages in turn, until it �nds the sole passage open to t. For anyrandomized algorithm, there is one passage whose expected \time to attempt" is atleast (Number of passages � 1)=2; this passage is left open to t. The robot walks2d(S) on every failure before that attempt, and d(S) on that attempt.The bound applies a fortiori to deterministic algorithms. Rao et al. [28] give adeterministic algorithm that explores a maze by building a map of the scene, proceed-ing at each step to that unexplored vertex of the maze nearest to the vertices thathave already been visited. It is easy to show that this algorithm achieves a ratio ofat most 2jV j, matching the above lower bound to within a constant. This algorithmis memory intensive, and this may be a handicap when space is limited or the scenechanges quickly enough that a map is not worth building. We now give a simple,memoryless randomized alternative based on a random walk that works for scenes inthe plane. We �rst de�ne a graph G(S) on the vertices of the polygons in S, andprove a simple geometric property of this graph. We then describe how the robot canperform a random walk on this graph, and invoke a result on random walks to provethat the robot's ratio is O(jV j).The graphG(S) is de�ned as follows: each vertex of a polygon in S is a node in thegraph. A node v in G(S) chooses up to twelve neighbors, de�ned as follows. Considerthe twelve cones de�ned by angular intervals [�i=6; �(i+ 1)=6), i = 1;2; . . . ; 12 aboutv. There is an edge joining v to the nearest visible vertex (if any) in each cone.Thus G(S) has at most 12jV j edges. A construction similar to G(S) appears in

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 23
S

tFig. 7. A maze achieving the lower bound. Each line segment corresponds to an obstacle withfour vertices.Clarkson [11], where a result similar to the following lemma was given:Lemma 9.2. Let dst(S) be the distance between two vertices s and t in the sceneS. There is a path in G(S) between s and t of length at most 2:1dst(S).Proof. For two vertices u; v in the scene that are mutually visible, denote by duvthe distance between them. The shortest path in S between s and t is a path in thevisibility graph of S [32]: a graph whose nodes are the vertices of obstacles in S, withtwo nodes being joined by an edge if they are visible from each other. We now showthat given this shortest path (of length dst(S)) in the visibility graph, we can �nd apath in G(S) between s and t whose length is at most 2:1dst(S). Note that we cana�ord to �nd this path \o�-line": we only wish to exhibit the existence of a shortpath in G(S) from s to t.We use an iterative strategy: we take the �rst edge of the visibility graph on theshortest path, say (s; a). If (s; a) is an edge in G(S) we proceed to a and continuefrom there. Otherwise, we show that there is an edge (s; b) in G(S) with the followingproperty: dbt(S) � dst(S) � 0:48dsb (note that s and b are mutually visible). Wetherefore go from s to b in the �rst step of our path in G(S) from s to t, havingensured that (1) we move to a node whose distance to t in S is less than from s, and(2) the distance we have walked is proportional to the reduction in the remainingdistance. We now continue the iteration from b, with b playing the role of s. In fact,since our distance to t diminishes at each iteration, we will have at most jV j � 1iterations before arriving at t.

24 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERIt remains for us to bound the �rst step (s; b) when (s; a) is not an edge in G(S).Since s and a are mutually visible, the only reason that segment sa is not an edgein G(S) is that the cone containing the line segment sa has a node b in it such that(s; b) is an edge in G(S), i.e., dsb � dsa. Consider the sector of the circle with centers and radius dsb that lies in the cone containing the segment sa. Let c be the pointwhere this sector cuts segment sa. Since b is the closest vertex to s in the cone, noobstacle vertex lies in this sector. Further, since both a and b are visible from s, noportion of any obstacle lies in this sector. Therefore b and c are mutually visible, asare a and c. Fig. 8 illustrates these facts. Thusdbt(S) � dbc + dca + dat(S):On the other hand, dst(S) = dsc + dca + dat(S):Using some elementary trigonometry and the fact that the angle between segmentssa and sb is at most �=6, we havedbt(S) � dst(S)� dsc + dbc � dst(S) � 0:48dsb:
s a

b

cFig. 8. dbc < 0:52dsc and dsb = dscWe now describe the random walk that the robot executes in going from s tot. At each node, it looks out to see the nearest node in each of the twelve cones, ifsuch exists; let them be v1; v2; . . . ; vk, at distances d1; d2; . . . ; dk respectively. Then itchooses to go to vi with probability 1=diPkj=1 1=dj :Note that this probabilistic decision is a local choice that does not need knowledgeof G(S) in advance; at each vertex, the robot measures the distance to the nearestvisible node in each cone and chooses each with probability inversely proportional toits distance. The robot stops the process on arriving at t.Theorem 9.3. The expected distance traveled by the robot is at most 50:4jV jdst(S).Thus it achieves a ratio of at most 50:4jV j.

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 25Proof. Chandra et al. [8] have studied the following general walk in a graph withpositive real edge lengths: at each node, the walk chooses the next edge to walk alongwith probability inversely proportional to its length. They show that the expecteddistance traversed by the walk in going from a node a to a node b is at most 2m`ab,where m is the number of edges and `ab is the length of the shortest path in the graphbetween a and b.In our case, m � 12jV j, and `st � 2:1dst(S) by Lemma 9.2; combining these factswith the result in [8] yields the theorem. Clearly there is a tradeo� between thenumber of cones in the graph G(S) that we de�ne and the factor 2:1 in Lemma 9.2;had we used 36 cones each of angle �=18, we could have got a tighter factor there butthe number of edges in the graph (which �gures in the ratio achieved by the randomwalk) goes up. Our choice of 12 cones optimizes this tradeo�.10. Open Problems. We conclude with some open problems.� What are the tight bounds (deterministic as well as randomized) for the roomproblem with general obstacles?� Can a randomized algorithm for the room problem beat deterministic algo-rithms?� Extend the sweep algorithm for the wall problem to handle arbitrary polygo-nal obstacles, and hence or otherwise obtain an algorithm for point-to-pointnavigation with such obstacles.� Extend all of the above to three dimensions.� Give an algorithm that achieves a provably good ratio for three-dimensionalscenes with non-convex obstacles (three-dimensional mazes).� Blum and Kozen [5] show that a planar maze can be traversed in a numberof steps polynomial in the number of vertices in the maze, by a deterministicautomaton using two pebbles. We have seen that the deterministic algorithmof Rao et al. achieves an optimal ratio but is memory-intensive, whereas therandom walk achieves a similar ratio without using memory to build a map.Is there a deterministic automaton using few pebbles (small memory) thatachieves a good ratio? It seems reasonable to expect that the automatonwould need a distance counter as well.Acknowledgements. We thank Alok Aggarwal, Allan Borodin, Don Copper-smith, Leo Guibas, Sandy Irani, Ming Kao, Howard Karlo�, Samir Khuller and YishayMansour for comments and suggestions. We also thank the referees for many valuablecomments.Appendix. We outline the randomized k-server algorithm invoked in Section 8,and the proof of its competitiveness.Theorem 10.1 ([4]). There is a randomized algorithm for k = n � 1 serverson n equally-spaced points on a line that achieves an expected competitiveness ratio of2O(plogn log logn) against an oblivious adversary.Proof: Without loss of generality assume that the points are spaced at unitdistance. For convenience, we call the point without any server the \hole" and thinkof the algorithm as being on the hole position, and having to move when it is \hit"by a request. The idea of the algorithm is to break up the line into a collection ofequal-sized intervals and then to stay within some interval until the adversary hasmade \enough" requests inside it. Once the adversary has made enough requests,the algorithm moves the hole to a di�erent interval, choosing at random from thoseintervals into which \not too many" requests have been made.

26 A. BLUM, P. RAGHAVAN, AND B. SCHIEBERMore speci�cally, the algorithm proceeds as follows. Let m = ln=2plogn log lognm.Algorithm Randomized-LineStep 1: Break the line into dn=me intervals, each of m points except possiblythe last. We label these intervals I1; . . . ; Idn=me. Initialize each interval to be\unmarked."Step 2: For each point i (1 � i � n), initialize a variable C(i) to zero. EachC(i) represents the minimum possible o�-line cost of ending at point i giventhe sequence of requests seen since the last initialization (and assuming theo�-line server may start at any point). Updating C(i) is easy: after a requestis made at point i, C(i) minfC(i � 1) + 1;C(i + 1) + 1g. To handle theendpoints, initialize C(0) and C(n+ 1) to in�nity.Step 3: Randomly choose one unmarked interval Ij. Stay inside the largerinterval Ij�1 [Ij [Ij+1 running Randomized-Line recursively within thatregion, until the minimum cost C(i) for i 2 Ij has risen to be greater thanm=2. As a base case, for a small enough interval, any deterministic algorithmwill do (e.g., the deterministic algorithm given in [10]). For consistency atthe endpoints, de�ne I0 and Idn=me+1 to be empty and always marked.Remark: The reason for staying within a larger interval of size 3m is a tech-nical one to handle the \edge e�ects" that occur at the boundaries of theintervals Ij , as discussed in the analysis.Step 4: Mark all intervals Ij such that the minimum cost C(i) for all i 2 Ijis at least m=2. If there is some unmarked interval left, then go back to Step3.Step 5: All intervals are now marked, so the o�-line cost since the lastinitialization of the C(i)'s is at least m=2. Go back to Step 2 and reinitialize.Analysis: Let T (n) be the expected cost of algorithm Randomized-Line for n � 1servers on a line of n unit-spaced points, for a sequence of requests yielding a minimumo�-line cost of dn=6e.Each application of Step 3 costs the algorithm at most an expected n+T (3m); nfor moving to the chosen interval and T (3m) for the cost inside that interval. Noticethat the cost function C(i), for i 2 Ij�1 [Ij [Ij+1, may not yield values as highas those computed by the recursive application. The reason is the \edge e�ects":in the recursive application the o�-line costs of the endpoints of the range are notconstrained by the costs of points outside it. However, the range is large enough sothat for all i in the middle region Ij , the cost C(i) is at least that computed by therecursive application as long as C(i) � dm=2e.Each application of Step 3 results in half of the unmarked intervals becomingmarked in Step 4 on average, since the central interval Ij inhabited by the hole ischosen randomly from the unmarked intervals. So, after O(logn) applications of Step3 with high probability all intervals have been marked. Once we repeat dn=(3m)etimes steps 2 { 5, the o�-line cost has increased by at least n=6.So, we get the following recurrence:T (n) � dn=3me hO(logn)[T (3m) + n]i; for, say, n � 16� c(n logn)m [T (3m) + n] ; for some constant c:

NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 27Substituting m = ln=2plogn log lognm yieldsT (n) = O(n � 23plogn log logn): 2REFERENCES[1] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins, Searching in the plane, Informa-tion and Computation, vol. 106, no. 2, pp. 234{252, October 1993.[2] E. Bar-Eli, P. Berman, A. Fiat, and P. Yan, On-line navigation in a room, Journal ofAlgorithms, 17:319{341, 1994.[3] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson, On the power ofrandomization in on-line algorithms, Proceedings of the 22nd Annual ACM Symposiumon Theory of Computing, pp. 379{388, 1990.[4] A. Blum, A. Borodin, D. Foster, H.J. Karloff, Y. Mansour, P. Raghavan, M. Saks, andB. Schieber, Randomized on-line algorithms for graph closures, Personal communication,1990.[5] M. Blum and D. Kozen, On the power of the compass (or, why mazes are easier to searchthan graphs), Proceedings of the 19th Annual Symposium on Foundations of ComputerScience, pp. 132{142, October 1978.[6] A. Borodin, N. Linial, and M. Saks, An optimal online algorithm for metrical task systems,Proceedingsof the NineteenthAnnual ACM Symposiumon Theory of Computing, pp. 373{382, 1987.[7] S.J. Buckley, Planning compliant motion strategies, International Journal of Robotics Re-search, 8:28{44, October 1989.[8] A. K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari, The electricalresistance of a graph captures its commute and cover times, Proceedings of the 21st AnnualACM Symposium on Theory of Computing, pp. 574{586, Seattle, May 1989.[9] L. Cheng and J.D. McKendrick, Autonomous knowledge based navigation in an unknowntwo dimensional environment with convex polygonal obstacles, Proceedings of the Int. Soc.Opt. Eng., volume 1095, pp. 752{759, 1989.[10] M. Chrobak, H.J. Karloff, T. Payne, and S. Vishwanathan, New results on server prob-lems, Proceedings of the First ACM-SIAM Symposium on Discrete Algorithms, pp. 291{300, 1990.[11] K.L. Clarkson, Approximation algorithms for shortest path motion planning, Proceedings ofthe 19th ACM Symposium on Theory of Computing, pp. 56{65, May 1987.[12] E.G. Coffman and E.N. Gilbert, Paths through a maze of rectangles, Networks, vol. 22,no. 4, pp. 349{367, July 1992.[13] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser, J. Rosenblatt, D. Tseng,and V. Wong, Autonomous cross-country navigation with the ALV, Proceedings of theIEEE International Conference on Robotics and Automation, volume 2, pp. 718{726, 1988.[14] P. Eades, X. Lin, and N.C. Wormald, Performance guarantees for motion planning withtemporal uncertainty, Aust. Comput. Journal, 25(1):21{28, February 1993.[15] J. Hallam, P. Forster, and J. Howe, Map free localization in a partially moving 3-D world:the Edinburgh feature based navigator, Proc. Intl. Conf. Intelligent Autonomous Systems,volume 2, pp. 726{736, 1989.[16] B. Kalyanasundaram and K. Pruhs, A competitive analysis of algorithms for searching un-known scenes, Computational Geometry: Theory and Applications, 3:139{155, 1993.[17] H.J. Karloff, Y. Rabani, and Y. Ravid, Lower bounds for randomized server algorithms,Proc. 23rd ACM Symposium on Theory of Computing, pp. 278{288, 1991.[18] R. Klein, Walking an unknown street with bounded detour, 32nd Annual IEEE Symposium onFoundations of Computer Science, pp. 303{313, 1991.[19] V. Lumelsky, Algorithmic issues of sensor-based robot motion planning, 26th IEEE Conferenceon Decision and Control, pp. 1796{1801, 1987.[20] Algorithmic and complexity issues of robot motion in an uncertain environment, Journalof Complexity, 3:146{182, 1987.[21] V.J. Lumelsky and A.A. Stepanov, Dynamic path planning for a mobile automaton withlimited information on the environment, IEEE Transactions on Automatic Control, AC-31:1058{1063, 1986.[22] A. Mei and Y. Igarashi, An e�cient strategy for robot navigation in unknown environment,Information Processing Letters, 52:51{56, 1994.

28 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER[23] M.S. Manasse, L.A. McGeoch, and D.D. Sleator, Competitive algorithms for on-line prob-lems, Journal of Algorithms, 11:208{230, 1990.[24] H. Moravec, The Stanford cart and the CMU rover, Proceedings of the IEEE, 71:872{874,1983.[25] B.J. Oomen, S.S. Iyengar, N.S.V., Rao, and R.L. Kashyap, Robot navigation in unknownterrains using learned visibility graphs. Part I: The disjoint convex obstacle case, IEEEJournal of Robotics and Automation, 3:672{681, 1987.[26] C.H. Papadimitriou and M. Yannakakis, Shortest paths without a map, Proc. 16th ICALP,pp. 610{620, July 1989.[27] N.S.V. Rao, Algorithmic framework for learned robot navigation in unknown terrains, IEEECOMPUTER, 22:37{43, 1989.[28] N.S.V. Rao, S.S. Iyengar, and G. deSaussure, The visit problem: visibility graph basedsolution, IEEE International Conference on Robotics and Automation, pp. 1650{1655,1988.[29] N.S.V. Rao, S.S. Iyengar, B.J. Oomen, and R.L. Kashyap, On terrain model acquisitionby a point robot amid polyhedral obstacles, IEEE Journal of Robotics and Automation,4:450{455, 1988.[30] C.N. Shen and G. Nagy, Autonomous navigation to provide long distance surface traverses forMars rover sample return mission, IEEE International Symposium on Intelligent Control,pp. 362{367, 1989.[31] D.D. Sleator and R.E. Tarjan, Amortized e�ciency of list update and paging rules, Com-munications of the ACM, 28:202{208, February 1985.[32] C-K. Yap, Algorithmic motion planning, In J.T. Schwartz and C.K. Yap, editors, Advances inRobotics, pp. 95{144. Lawrence Erlbaum Associated, Hillsdale, NJ, 1987.

