NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN

AVRIM BLUM *, PRABHAKAR RAGHAVAN ', AND BARUCH SCHIEBER ¢

Abstract. Consider a robot that has to travel from a start location s to a target ¢ in an
environment with opaque obstacles that lie in its way. The robot always knows its current absolute
position and that of the target. It does not, however, know the positions and extents of the obstacles
in advance; rather, it finds out about obstacles as it encounters them. We compare the distance
walked by the robot in going from s to ¢t to the length of the shortest (obstacle-free) path between
s and t in the scene. We describe and analyze robot strategies that minimize this ratio for different
kinds of scenes. In particular, we consider the cases of rectangular obstacles aligned with the axes,
rectangular obstacles in more general orientations, and wider classes of convex bodies both in two and
three dimensions. For many of these situations, our algorithms are optimal up to constant factors.
We study scenes with non-convex obstacles, which are related to the study of maze-traversal. We
also show scenes where randomized algorithms are provably better than deterministic algorithms.
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1. Motivation and Results. Practical work on robot motion planning falls
into two categories: motion planning through a known scene, in which the robot has
a complete map of the environment, and motion planning through an unknown scene
in which an autonomous robot must find its way through a new environment (see, for
example, [9, 13, 15, 21, 24] and references therein). Virtually all previous theoretical
work ([32] and references therein) has focused on the former problem. Papadimitriou
and Yannakakis [26] studied the latter problem, which is also the subject of this paper:
the design and evaluation of strategies for navigation in an unknown environment. The
unfamiliar environment may be either a warehouse or a factory floor whose contents
are frequently moved, or a remote terrain such as Mars [30]. The design and evaluation
of algorithms for such navigation is a natural algorithmic problem that deserves more
theoretical study.

1.1. Model. A scene 8 is a region (of R? or R?) containing a start point s and a
target ¢, together with a set of opaque, impenetrable, non-overlapping obstacles none
of which contains s or t. Most of this paper will consider 2-dimensional scenes. The
target ¢ may be a point, or a polygon/polyhedron, or an infinite wall. To avoid certain
degeneracies, we assume that a unit diameter circle (unit cube in three dimensions)
can be inscribed in each obstacle; this guarantees that the obstacles have a certain
minimum “thickness”.

A point robot has to travel from s to ¢, and it knows both its current absolute
position and the position of ¢. In walking towards ¢ it must circumvent the obstacles
in 8. The robot does not know the positions and extents of these obstacles in advance;
rather, it finds out about obstacles as it encounters them. Where two obstacles touch,
we assume that the robot can “squeeze” between them. Thus a scene that consists
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only of convex obstacles cannot have a non-convex obstacle composed of abutting
convex obstacles.

The most natural mechanism for the robot to learn about a scene is vision: the
robot discovers obstacles as they come into its view, and uses this information to decide
how to proceed towards ¢. For simplicity of exposition we describe our algorithms
assuming that when the robot first sees an obstacle it is given the shape, size and
position of the obstacle (even though much of that obstacle may be invisible from
where it stands). However, we show how many of our algorithms can be made to work
with essentially the same upper bounds (up to a constant factor) under a considerably
weaker assumption — a tactile robot that learns about obstacles only by bumping into
them and moving along them. For this we use variants on the “doubling” strategies
of Baeza-Yates et al. [1].

Let R(S) be the total distance walked by a robot R in going from s to ¢ in scene
S, and let d(S) denote the length of the shortest (obstacle-free) path in the scene
between s and ¢ (because of the obstacles, this may be substantially larger than the
Fuclidean distance between s and ¢). Let S(n) denote the set of scenes in which the
Fuclidean distance between s and ¢ is n. Following the lead of [26], we use as the
figure of merit for the robot the ratio

p(R’n) B SESE)n) (S) ’

and study i1ts growth as a function of n.

For convenience, we put the scene in Cartesian coordinates, using “north” / “south”
to denote the direction of increasing/decreasing y value, “east” /“west” for the direc-
tion of increasing/decreasing x value, and “up”/“down” for the direction of increas-
ing/decreasing z value, respectively. In two dimensions, we also use “vertical” to
mean parallel to the y axis, and “horizontal” to mean parallel to the x axis. The start
point s is always assumed to be at the origin, and unless specified otherwise, we will
assume the current scene belongs to S(n). Finally, we use logn to denote log, n.

1.2. Summary of Results. For most of this paper we consider 2-dimensional
scenes where ¢ is a point and the obstacles are rectangles with sides parallel to the
axes (rather than squares as in [26]). Surprisingly, even this problem turns out to
be quite complicated. We solve this problem by breaking it into the following two
subproblems.

The Wall Problem

Scenes in which ¢ is an nfinite vertical line and the obstacles are oriented
rectangles. The goal is to reach a point on ¢ of the robot’s choosing.

The Room Problem

Scenes in which the obstacles are oriented rectangles that are confined to lie
within a square “room”. Here, s 1s a point on a wall of the room and ¢ is the
point at the center of the room. The robot can “squeeze” between any two
obstacles or between the walls and any obstacle. This intriguing special case
is of interest in its own right as a model for navigation in a bounded region
such as a warehouse.
Section 2 describes an optimal algorithm for the wall problem. The algorithm achieves
an upper bound of O(y/n) on the ratio p(R,n), matching the lower bound of [26]. To
devise this algorithm we develop a general “sweep” paradigm that is fairly natural: a
human lost in a strange city would probably do a similar search.
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Section 3 considers the room problem. The algorithm for this problem achieves

a ratio p(R,n) that is O(2V31°6"). Tollowing and building upon our result, Bar-Eli
et al. [2] have established a tight bound of ©(logn) on the ratio of deterministic al-
gorithms for the room problem. The approach taken by the room problem algorithm
is different from the one taken for the wall problem. Here, we develop a “caliper”
method that pins the target down to lie within a sequence of advancing paths. In-
triguingly, in the room problem the shortest path from s to ¢ has length O(n). To
see this, suppose that s is the south-west corner of the room. So, the greedy path
from the target ¢ that travels due south if possible and otherwise due west will reach
s and have length the L, distance between s and ¢. (If s is not in the corner, then by
traveling along the room boundaries one can reach s at an additional constant factor
cost.) In contrast, greedy paths from s are not guaranteed to go anywhere near t.
Thus getting out of a room is easy, but getting in towards a small target seems to be
hard.

Section 4 shows how to combine our solutions for the wall and room problems to
obtain a tight bound of ©(y/n) for point-to-point navigation in scenes consisting of
oriented rectangular obstacles.

Section 5 describes how our algorithms work (with at worst a constant factor
degradation in ratio) when the robot is tactile: it learns about obstacles by “feeling”
them. In this case, our algorithms bump into obstacles and slide along their edges, in
a manner reminiscent of compliant motion planning [7] in the context of navigation
with a map.

Section 6.1 considers the room problem with arbitrary rectangular obstacles. We
show that d(S) can now be Q(n?/?). Unlike the case of oriented rectangles the greedy
path 1s no longer guaranteed to find an inexpensive way out of the room. For these
scenes we give lower and upper bounds on p(R,n).

Section 6.2 extends our algorithms for the room problem to the case of more
general convex polygonal obstacles.

Section 7 gives extensions of our algorithm for the wall problem to three di-
mensions, and also for point-to-point navigation in three dimensions. Both of these
algorithms work provided the obstacles are oriented rectangular cuboids, achieving
optimal ratios. (A cuboid is a rectangular parallelepiped.)

In Section 8 we give a randomized algorithm for certain cases of the wall problem.

We show that the (expected) ratio of our algorithm is 20(lognloglogn) which is much
smaller than the corresponding deterministic lower bound. This demonstrates the
power of randomization in navigation.

Section 9 deals with non-convex obstacles (and therefore mazes). We give a lower
bound for randomized algorithms, and show that a deterministic algorithm of Rao
et al. [28] meets this bound. The algorithm is memory-intensive, and so we offer an
alternative algorithm that is very simple, memoryless, randomized and achieves the
same upper bound in the plane.

We conclude with a list of some open problems in Section 10.

1.3. Related Theoretical Work. The ratio p(R,n) is studied in Papadimitriou
and Yannakakis [26], and independently by Eades, Lin and Wormald [14]. Papadim-
itriou and Yannakakis proved that when s and ¢ are points in the plane, and all
obstacles are squares, p(R,n) is at least 1.5, and complement this with an algorithm
attaining p(R,n) < 1.5 4 o(1) for all n. Tt is also shown in [14, 26] that when ¢ is
an infinite wall at distance n from s and the obstacles are oriented rectangles, then
p(R,n) is 2(y/n). Coffman and Gilbert [12] study the performance of simple heuris-
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tics in the presence of randomly placed obstacles. Kalyanasundaram and Pruhs [16]
and Mei and Igarashi [22] consider scenes in which all obstacles have bounded aspect
ratios. Klein [18] has given a small constant upper bound on the ratio for scenes that
are streels, a class of simple polygons. Lumelsky and Stepanov [21] earlier gave a
simple navigation algorithm that guarantees R(S) to be bounded by d(S) plus the
sum of the perimeters of all obstacles, with no restrictions on the aspect ratios or the
convexity of the obstacles. Their algorithm does not minimize the ratio p. Several
papers (see [25, 28, 29] and references therein) give algorithms for building up a map
of a scene by exploring it entirely. Maze-traversal has received considerable attention
in the past in various papers [5, 19, 27], none of which considers the ratio metric. The
reader is referred to [20] for a comprehensive survey of the results in these papers.

The ratio measure p(R,n) has close connections to the competitiveness measure
used in the study of on-line algorithms [6, 23, 31]; indeed, our problem resembles
an on-line setting in which the obstacles encountered by the robot form a sequence
of “requests”, and we compare its total cost R(S) to the “off-line cost” d(S). Tt is
therefore worth pointing out some key differences between the models: (a) In the
navigation problem the robot has a definite target towards which it moves, while
there is no such notion in on-line paging [31], for example. (b) The robot can move
back and forth through the scene, re-visiting previously seen obstacles, thus having
some control on the requests it encounters in the future. (¢) Competitive analysis
deals with request sequences of arbitrary (possibly infinite) length, whereas here we
have a fixed number of obstacles in the scene. Thus we cannot cast our navigation
problem in a standard on-line framework such as the server problem [23] or metrical
task systems [6]. Nevertheless, the analogy with on-line algorithms proves useful in
the study of randomized navigation (Section 8).

2. The Wall Problem. In this section we consider scenes in which ¢ is an infinite
vertical wall at distance n to the east of s, and the obstacles are rectangles whose
sides are parallel to the axes. At the end of the section we show how to modify our
algorithm to work also when ¢ is not vertical. We call the width of an obstacle its
length in the z-direction, and the height of an obstacle its length in the y-direction.
To make the presentation clearer, we assume below that /n is an integer. However,
our algorithm and analysis can trivially be adapted to the general case.

We present an algorithm that achieves ratio p(R,n) = O(y/n). This matches the
lower bound proven in [26], so our algorithm is optimal up to constant factors.

The algorithm maintains four variables: the window size, W, a threshold, 7, a
sweep direction, and a sweep counter. Initially, W is set to n, the sweep direction is
south, and the sweep counter is set to zero. The threshold 7 is always set to W/+/n.

We begin with a high-level view of the algorithm and its analysis. The algorithm
maintains a window of varying size around the z-axis. The robot makes \/n sweeps in
directions alternating between north and south for each window size. Upon completion
of these \/n sweeps the window size is doubled. Given a window of size W (which
ranges from y = +W/2 to y = —1W/2), the distance walked by the robot in sweeping
is O(W+/n). We show that the shortest path that cuts through all the \/n sweeps
has length Q(v/n7) = Q(W). Let Wy be the window size at the time the robot
reaches t. We prove that the total distance walked by the robot is O(W;+/n), while
d(8) = Q(Wy).

We now describe the algorithm. Starting from point s, the robot travels due east
until it either reaches ¢ or hits an obstacle, say at (x,y). Below, we assume that the
current sweep direction is south, the other case is symmetric. The next steps are



NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 5

determined by the following rules:

Rule 1: If the distance to the nearest corner is less than 7, then the robot
just goes “around” the obstacle. Specifically, it travels either south or north
to the nearest corner, then east along the width of the obstacle to the opposite
corner, and finally back along the height of the obstacle to the point (z+w, y),
where w is the width of the obstacle. (See Fig. 1(a).) From this point it
continues to travel due east until it hits the next obstacle (or reaches ¢ and
stops).

N IS

(@) (b) ()

Fic. 1. Going around an obstacle in the sweep algorithm

Rule 2: If the obstacle extends past both sides of the window (i.e., its north
edge has y-coordinate greater than W/2 and its south edge has y-coordinate
less than —WW/2), then the robot doubles the window width W and threshold
7, and resets the sweep counter to 0 and the sweep direction to south. Note
that the ratio W/ remains \/n.

Rule 3: Otherwise (i.e., the distance to the nearest corner is more than 7,
and the obstacle does not extend past both sides of the window), the robot
travels south along the obstacle until either it hits the obstacle’s south-west
corner or it reaches the window boundary (y-coordinate —W/2). In the first
case, the robot just continues due east to the next obstacle (or ¢). (See Fig.
1(b).) In the second case, the robot increments the sweep counter by 1 and
flips the sweep direction. If the counter is greater than 1/n, the robot resets
the counter to zero and doubles the window size and the threshold. (See Fig.

1(c).)

Let W; be the window size at the time the robot arrives at ¢.

THEOREM 2.1. The total distance walked by the robot is O(Wyi+/n).

Proof. To prove that the distance is bounded by O(W;+/n), we divide the path
taken by the robot into three components: (1) horizontal segments, (2) segments
walked south and north “along” obstacles using Rule 1, and (3) segments walked
south and north using Rule 3.

Notice that (i) the total distance walked east is n < Wp+/n since Wy > n, and
(ii) since the width of each obstacle is at least one unit, the total distance walked
south and north using Rule 1 is bounded by 2n7y < 2W;+/n, where 74 is the final
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threshold. Tt suffices to bound the third component as well. Fix a window size W.
The distance walked by the robot using Rule 3 to complete one sweep is O(W). Since
the robot makes at most v/n + 1 sweeps for each window size, the total distance for
a fixed window size is O(W+/n). The window size is doubled each time it is changed,
and thus the total distance traveled over all window sizes is also O(W;+/n). O

THEOREM 2.2. The length of the shortest path from s to t, d(S), is Q(Wy).

Proof. Since we are just interested in the length of the shortest path up to a
constant factor, we may assume that the path consists only of horizontal and vertical
segments. The length of the horizontal segments is clearly at least n. If W; = n then
we are done. Also, if W; is determined by rule 2 (there is an obstacle that extended
past both sides of the previous window) we are done as well. So, assume neither
of these is the case, which means the robot has completed at least \/n full sweeps
for some window size W > %Wf. We now show that the vertical component of the
shortest path has length Q(W) = Q(WW;).

Consider a point on the shortest path with y-coordinate of maximum absolute
value. If this absolute value is at least W/2 — 7 then clearly the shortest path has
length at least W/2 — r = Q(W). Suppose that this is not the case. Given a shortest
path, for each of the \/n sweeps, define its first entry point to be the first point on the
shortest path whose z-coordinate is the same as the z-coordinate of the starting point
of the sweep. Similarly, define its first exit point to be the first point on the shortest
path whose z-coordinate is the same as that of the end point of the sweep. Note that
since sweeps do not overlap in their xz-coordinates, the exit point of sweep i appears
before the entry point of sweep ¢4 1. Thus, to lower bound the length of the shortest
path we can add together for each sweep ¢ the vertical components of the shortest
path from the ith entry point to the ith exit point. Consider the obstacles touched
by the robot during some sweep — let’s say it is a “south” sweep — that require the
use of Rule 3. Each such obstacle extends at least 7 to the north of the southernmost
point of the previous such obstacle. So, to travel from the entry point of the sweep
(which is not between any two such obstacles) to the exit point of the sweep (also
not between any two such obstacles) requires traveling a vertical distance at least 7.
Since there are \/n sweeps, the total vertical component is at least 7/n = W. [

COROLLARY 2.3. Our sweep algorithm achieves a ratio of O(y/n) for the wall
problem, provided every obstacle is an oriented rectangle.

A simple transformation of our algorithm allows it to achieve the same bounds
even if the wall ¢ is not vertical.

THEOREM 2.4. The modified sweep algorithm below achieves a ratio of O(\/n) for
the wall problem with oriented rectangular obstacles, even if the wall is not vertical.

Proof. The algorithm depends on the angle § that ¢ makes with the y-axis. Assume
that 0 < @ < 7/4 and that the wall runs from south-west to north-east. (The other
three possibilities are analogous.) Here, n is the shortest Euclidean distance between
s and . We distinguish between two cases:

Case 1: sinf > 1/4/n. In this case the robot walks to ¢ using the greedy east-south
path from s (a path that travels due east if possible and otherwise due south). Observe
that the length of this greedy path is the L; distance between s and the point of ¢
that the path hits. The z-component of this L; distance is no more than v/2n. Since
sin@ > 1/4/n the y-component is bounded by O(n!-%), implying p(R,n) = O(y/n).

Case 2: sin§ < 1/4/n. We run the sweep algorithm exactly as described above, until
the first time the robot reaches a point (zg,yo) such that the point (29, —W/2) is on
or below ¢, where W is the width of the current window. Then, the robot walks to ¢
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using the greedy east-south path. By Theorem 2.1 the distance walked by the robot
until reaching (zq, yo) is O(W+/n), and it is clear that the length of the greedy path
from there to ¢ is O(n + W). By an argument identical to the one in the proof of
Theorem 2.2, the shortest path from s to the vertical line # = 2y has length Q(W).
By the requirement on @ the shortest path from s to ¢ has length Q(17) as well. O

3. The Room Problem. In this section we consider the room problem: scenes
in which the obstacles are oriented rectangles confined to lie within a square room
such that no obstacle touches the room walls; the point s is on the border of the room
and t is in the center. (See Fig. 2.)

Later, we extend our results to rectangular rooms. Since travel along the room
walls i1s “cheap”, we may assume s is in the south-west corner of the room, and for
convenience we let ¢ have coordinates (n,n), so the distance from s to ¢ is in fact 2.

Define a greedy (+z,+y) path to be a path that travels due east if possible and
otherwise due north. Similarly, define greedy (+y,+x) paths, {(+#,—y) paths, and
so forth, to be ones that travel in the first direction if possible and otherwise the
second direction. A brute-force (+a) path is one that travels due east, going around
obstacles in its way along the shorter direction, but otherwise maintaining a constant
y coordinate. A monotone path from (#1,41) to (#2,y2) is a path that does not both
increase and decrease in any coordinate. For example, if 29 > x; and y» < yi, then
the x coordinate will never decrease and the y coordinate will never increase. Notice
that a greedy path is always monotone.

We now describe an algorithm achieving R(S) = O(n®/?), and thus p(R,n
O(y/n). An improvement that uses this algorithm recursively achieves p(R,n
O(2V31o8m),

The algorithm maintains the following invariant at the start of each iteration:
the robot knows of a monotone obstacle-free path from a point (x,n) to a point
(n, o), where 0 < xg, yo < n. Furthermore, the robot is positioned on a point of this
monotone path. We begin with zg = y9 = 0, where the known path is just a path
along the room borders. Each loop through the algorithm will increase either zy or
Yo by at least an amount y/n, walking a distance of only O(n). (If the value increased
(zg or yo) is within v/n of n, then it is increased only up to n.) Since each of zg and
Yo can be increased by this amount only [1/n] times, the total distance walked by the
robot to reach ¢ is O(n3/?).

For this first version of the algorithm, let m = /n. We will describe the algorithm
as if ¢ were allowed to be inside an obstacle, in which case the goal is simply to reach
the obstacle containing ¢; this will allow for easier recursive application.

)
)

Algorithm Oriented-Room-Find
Initialization: Set xg and yy to 0. Set the monotone path to be the path
along the room boundary from (g, n) to (n, yo).

Step 1: Define { to be the point with z-coordinate min{zq + m,n} and
y-coordinate min{yy + m,n}. That is, unless we are close to ¢ along some
dimension, we have { = (2o +m, yo +m). The goal of this step is to travel to
some point ¢’ not inside an obstacle that is to the northeast of  and southwest
of ¢ inclusive. If no such point exists, we wish to travel to some point on the
obstacle containing both ¢ and t.

For this (nonrecursive) version of the algorithm, we may reach ¢ as follows.
First, traverse the monotone path to a point with y-coordinate equal to that
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A <-y,—x> path fromttos.
Fic. 2. The Room Problem

of . Then, if this is to the west of ¢, travel in a brute-force (4+x) path until ¢
is reached or an obstacle containing # is first encountered. In the latter case,
unless the obstacle contains both £ and ¢ (and we are done), we can just follow
the obstacle boundary to a point in the desired region.

Step 2: Make a greedy {+z,+y) path from ¢ until either the z or y coordi-
nate equals n. If we are at ¢ then halt. Otherwise, without loss of generality,



NAVIGATING IN UNFAMILIAR GEOMETRIC TERRAIN 9

assume that the robot has traveled to the west of £, so the current coordinates
are (&,n) for & < n. Notice that & > x¢ 4+ m since the path was greedy.

Step 3: Let zg = . Travel a greedy (+#, —y) path from (2, n) until either
a point (n,g) is reached (in which case let yo = ¢), or the previous monotone
path is hit. In either case we have a new monotone path from (xg,n) to
(n,yo) with zp increased by at least m. If the greedy (+x, —y) path was such
that it reached (n,yo) and in doing so followed the border of a single obstacle,
then we must be at an obstacle containing ¢ and so are done. (Similarly, the
robot would travel a greedy (+y, —x) path if it had hit to the south of target
tin step 2.)

Now, go back to Step 1.

)i
T ...............
it
P S —— S — A—
Yo' i :
t
y0
n
X5 xo+m

F1G. 3. The algorithm for the room problem. Here t = t'.

The distance walked performing Step 1 is O(n) for traversing the monotone path
and final obstacle, and O(m?) = O(n) for the brute-force path traveled, since the
lower end of any obstacle encountered cannot extend below the monotone path (so
there is at most 2m cost for every unit of progress made). Steps 2 and 3 together
require traveling at most a distance 3n since each consists of a single greedy path,
and in the two paths together at least one coordinate is non-decreasing. Since these
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steps are iterated at most 2 [m] times, the total distance traveled is at most O(n?/?).

We can reduce the distance traveled to O(n-2V31°67) by using algorithm Oriented-
Room-Find recursively to reach ¢ (or an obstacle containing ¢) in Step 1, and optimiz-
ing the value of m. This works because to begin the algorithm needs only a monotone
path of the form mentioned in the invariant, and not a true “room.” In particular,
there need not be any boundary “above” the obstacles at all. Define T'(n) to be the
total distance traveled using this strategy to reach point ¢ = (n,n) (or a point on
the boundary of the obstacle containing ¢ if ¢ is inside some obstacle), given that the
robot is on a known monotone obstacle-free path from (0,7n) to (n,0). As a base case,
if n < 8, say, we just use a brute-force path to reach ¢. So, the distance traveled at
each iteration of Step 1 is at most 2n for traversing the monotone path, 7'(m) for the
recursive call, and 3n for following the boundary of the final obstacle encountered.!
Since the number of iterations is at most 2 [n/m], we can bound the total cost T'(n)

by:
T(n) < 2[n/m][T(m)+8n], forn >8.

By substituting m = n/(2V3!°6™) and using the inequality /z — kv < 2 — &
for k > 0, we get T(n) < en-2V31987 for ¢ = 16(2 ++/2). We therefore have the

following theorem.
THEOREM 3.1. The algorithm for the room problem achieves p(R,n) = O(2V31°8™),

If we consider a version of the room problem in which s and ¢ are arbitrary points
in the room, then the following strategy can be used to walk from s to ¢ at a total

cost that is O(n2V 31Og"): simply walk from s out to a corner of the room, then use
the above algorithm. Note, however, that in this case the length of the shortest path
between s and ¢ may be o(n).

A generalization that will be used for the general point-to-point problem is when
the room is rectangular with dimensions 2N x 2n, for N > n, and t = (N,n). We
use the same algorithm as for the square room, with one difference: we define point
{ = (min{zo+mr, N}, min{yo+m,n}) for r = N/n. (Again, if n < 8 we can just use a
brute-force strategy to reach ¢ traveling distance O(N).) The value of m is optimized
as follows. Define T'(n,r) to be the total distance traveled to reach point ¢ = (nr, n),
given that the robot is on a known monotone obstacle-free path from (0,n) to (nr,0).
For a fixed value of m, the distance traveled at each iteration of Step 1 is at most
T(m,r)+5bnr, while the distance traveled at each iteration of Steps 2 and 3 is at most
n—+ 2N < 3nr. The number of iterations is at most 2 [n/m], so we have:

T(n,r) < 2[n/m][T(m,r)+8nr] forn>8.

The substitution used above [m = n/(2V31°6™)] results in: T'(n,r) = O(rn-2V31en),
Because we only needed a monotone path to start with, and not an entire room,
we in fact have the following theorem.
THEOREM 3.2. Gliven a monotone obstacle-free path between (0,n) and (N,0),
for N > n, the above algorithm will reach point (N, n) starting from that path with

total cost O(N - 2\/310g”).

1 The cost of traveling along the final obstacle can actually be amortized away at the expense of
additional sentences of analysis.
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4. Point-to-point Navigation. We combine the algorithms for the wall and
room problems to obtain an algorithm for navigation in scenes where ¢ 1s a point at
(n,n) and the obstacles are oriented rectangles with no upper bounds on their extents.

The robot starts by taking a greedy (+,+y) path from the start point s until it
reaches a point s’ with either = or y coordinate equal to that of ¢. Suppose that s
and ¢ have the same y-coordinate. The robot now uses the sweep algorithm for the
wall problem to travel to a point (n,y) with the same z coordinate as t. Without
loss of generality assume yg > n. Notice that the path from s’ to (n, yo) taken by the
robot in the sweep algorithm never decreases in the & direction, and that yg — n is at
most the final window width W;. This path guarantees us that the greedy (—y, —z)
path P from (n,yo) will reach a point (zg,n) with 2y > 0 (in fact, zp is at least the
z-coordinate of s’). Now we invoke the algorithm for the room problem (Theorem 3.2)
to arrive at ¢ using the monotone path P as the room walls.

We analyze the distance walked by the robot. The distance traveled using the
algorithm for the wall problem is at most O(W;+/n), where Wy is the size of the
last window considered. The size of the (rectangular) room then created is at most
n x W¢. So, using the algorithm of Theorem 3.2, the distance walked to reach ¢ is
O(W¢+/n). By Theorem 2.2, the length of the shortest path from s’ to ¢ is at least
c¢Wy for some constant ¢ > 0. Now, if W; < 4n/c then we have an O(y/n) ratio since
d(8) > n. If W; > 4n/c, then since the length of the shortest path from s’ to s is at
most 2n, d(S) > Wy —2n > Wy, so we also have an O(,/n) ratio. We therefore
have the following theorem.

THEOREM 4.1. For two dimensional scenes 8 in which s and t are points and
every obstacle is a rectangle whose sides are parallel to the axes our algorithm achieves

a ratio of p(R,n) = O(y/n).

5. A tactile robot suffices. In this section we use a technique due to Baeza-
Yates et al. [1] to demonstrate that all our algorithms given so far can be modified
to work with essentially the same ratio bounds even if the robot is tactile: it learns
about obstacles on bumping into them, and can infer the size of an obstacle only by
moving along its boundary.

Suppose that the robot hits a side of a rectangular obstacle. Let d be the distance
from its present position p to the nearest corner of the obstacle; it does not know d
or the direction in which this nearest corner lies. The robot can reach this corner
traveling a distance at most 9d + 2 by applying the following “doubling” procedure
suggested by Baeza-Yates et al. until a corner is reached. Walk along the side of the
obstacle one unit in one direction, then turn back and walk two units past p in the
other direction; turn back, and continue in this manner walking 2°~! units past p on
the ith 1teration. If desired, in case a corner 1s reached which the robot is not certain
1s the nearest to p, the robot can simply walk an equal distance from p in the opposite
direction to check. A simple analysis shows that the total length of the walk 1s at
most 9d + 2.

It remains to show that in each of the deterministic algorithms we have described,
we can use this procedure to ensure that a tactile robot suffices (with a constant factor
overhead in the ratio). In our sweep algorithm for the wall problem of Section 2, note
that in negotiating an obstacle our decision is essentially based on the distance to the
nearest corner of the obstacle. By using the above doubling procedure, we thus travel
at most 9 times the distance that the visual robot does, plus a low-order term for the
additive constant.

Next, consider the room problem. In our algorithm Oriented-Room-Find, the
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only parts that required vision were the brute-force path, and finding a point between
t and ¢ if ¢ was inside an obstacle in Step 1. Both can be handled with constant-factor
overhead by the Baeza-Yates et al. procedure.

6. More general obstacle types.

6.1. Arbitrary Rectangular Obstacles. What if rectangular obstacles with
sides not parallel to the axes are allowed in the room problem? We begin by proving
two theorems that demonstrate the difference between scenes containing only oriented
rectangular obstacles, and scenes containing arbitrary rectangular obstacles.

THEOREM 6.1. For infinitely many n, there exist scenes S for the room problem
containing rectangular obstacles whose sides are at arbitrary angles for which d(8S) >
3% /81.

Thus, the length of the shortest path between s and ¢ is not always bounded
above by the Ly distance as in the oriented case.

THEOREM 6.2. For any determunistic robot R, there exist scenes & for the room
problem containing rectangular obstacles whose sides are at arbitrary angles for which
p(R,n) = Q(y).

Thus, the upper bound for oriented rectangles cannot be achieved in this case.
Proof of Theorem 6.1. Consider |n/27]+1 circles centered at ¢, with radii [n/3]+1+
9¢,7=0,...,|n/27]. Inscribe in each a regular |\/n]-gon, aligning all these polygons.
Rotate all the polygons inscribed in circles of radii [n/3] + 9¢ for even ¢ by an angle
7/+/n. Each edge of each polygon can now be replaced by a rectangular obstacle of
unit width (in the radial direction) and length very nearly the length of that edge.
The length of each obstacle is at least 27y/n/3. Now, any obstacle-avoiding path
between s and ¢ has to walk a distance of at least 2w+/n/3 going from a vertex of the
polygon (i.e., gap between the obstacles) on the circle with radius [n/3] + 187 to a
vertex on the circle with radius [n/3] + 18:+ 18, for 0 < i< n/b4d. O
Proof of Theorem 6.2. Consider the scene described in the proof of Theorem 6.1. We
allow a (deterministic) robot to walk from s to t. We now remove from the scene
any obstacle not touched by the robot. Let T" be the number of obstacles it touches.
There 1s a constant ¢; such that the distance walked by the robot between touching
a corner of every fourth new obstacle is at least c¢;4/n. This sums to a distance of
at least ¢;T\/n/4. The total area of the obstacles touched by the robot is bounded
from above by 2¢1T+/n. Thus there exists an angle 2iw/\/n, 1 < i < ./n, such that
the path from ¢ to s, given by staying on the radius at this angle and going “around”
obstacles encountered is of distance at most ¢37T', for some constant ¢5. This implies
that p(R,n) = Q(y/n). Notice that the lower bound holds only if the robot is tactile
and cannot use any visual information. To make the lower bound work in the case of
a robot that uses visual information we use a slightly different construction together
with a technique given in [26].

Again consider |n/27| 4+ 1 circles centered at ¢, with radii [n/3] +1 4 94, ¢ =
0,...,|n/27], and inscribe in each a regular |\/n]-gon, aligning the polygons. This
time, however, rotate all the polygons inscribed in circles of radii [n/3] + 18¢ and
[n/3] 4+ 18i + 9 for even i by an angle ©/y/n. For each i call the polygons inscribed
in circles of radii [n/3] + 187 and [n/3] 4+ 18i + 9 a layer. Fach edge of the inner
polygon of each layer is replaced by a rectangular obstacle as above, except that it
has thin openings spaced at unit distances. The outer polygon has similar obstacles
in all edges but one, which has a solid rectangular obstacle with no holes. The holes
in each inner polygon are out of alignment with the corresponding holes in the outer
polygon; thus the robot cannot see through any layer.
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2n
3

Fi1G. 4. The lower bound in Theorem 6.2. The obstacles touched by the robot are shaded.

We run the robot algorithm layer by layer, and make the first obstacle seen by
the robot in each outer polygon a solid obstacle. By the same argument as above, it
follows that the robot walks €(+/n) between every fourth layer. O

We now turn to upper bounds. Define the angle of a rectangle to be the angle
of its longest edge with the z axis. We first describe a modification of algorithm
Oriented-Room-Find to handle not just obstacles of angles of 0 and 7 /2, but obstacles
angled in the range [0,7/2] as well. Note that we do not allow obstacles angled in
the remaining range of (x/2,#). Then, we describe how this new algorithm can be
modified for scenes § where there is a fixed known excluded range (di,ds) of angles
(for example, dy = 7/5 and do = w/4). Let 7 = n/a, where a« = dy — d;. Our
algorithm achieves R(S) = (i - 23Vicgnloglogny - The length of the shortest path
in such scenes is O(n). We remark that for “practical” cases it may be enough to
consider scenes where there is a known excluded range, especially when the number
of different angles is small. Finally, we give a randomized algorithm that achieves

p(R,n) = /n-200/1e8nloglogn) yeardless of the angles of the obstacles.

Suppose that the obstacles are angled in the range [0,7/2]. We describe our
algorithm for this case in two steps. We first show that we need only consider the
case where obstacles are zero-width line segments angled in the range [0, 7/2] such
that at most some constant number of obstacles cross any line of length one. We then
give an algorithm for that special case.

The 1dea for translating into the zero-width case is to view each obstacle as either
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two or four line-segment obstacles consisting of its edges that are in the legal angle
range. (All four edges are in the legal range only if the obstacle is oriented.) One
can easily verify that this implies a constant upper bound on the number of obstacles
that cross any given line segment of length one. Let us first assume that when the
robot touches an obstacle, it is given its entire description (as has been our standard
model). So, the robot can simulate an algorithm for the zero-width case, and if the
simulated algorithm enters a real obstacle, the robot just waits until that algorithm
exits and then meets it at the exit point and continues. By going around the obstacle
in the shortest way, the (actual) robot travels at most twice as much as the simulated
algorithm. To do the simulation with a tactile robot, notice that when an obstacle
edge is touched, the robot can determine whether it should be treated as a zero-width
obstacle or as empty space, based on its angle. If the obstacle is to be treated as
empty space, the robot can use the Baeza-Yates ef al. technique to find the point
where the simulated algorithm would exit the (actual) obstacle with only a constant
factor additional cost. The key point here, and in the previous case, is that the longer
edges of an obstacle are never treated as empty space.

We now describe the algorithm for the zero-width case. The reason for reducing
to this case is that since every obstacle edge now has angle in the range [0, 7/2], we can
perform greedy {(+,+y) and {(+y, +) paths. The reason we cannot immediately use
Algorithm Oriented-Room-Find, however, is that we can no longer make the greedy
(+x,—y) and {+y, —z) paths required in Step 3. Instead, we will replace that portion
of the algorithm with a less-efficient binary search strategy.

More precisely, let us say our start point is (#g, yo) and ¢ is at (n,n). In contrast
to Oriented-Room-Find, our invariant will be that we have two monotone paths: a
(4+y, +x) path from (zg,yo) to some point to the west of ¢ (i.e., a point (z,n) where
z < n), and a (+x,+y) path from (xg,y9) to some point to the south of . As in
Oriented-Room-Find, we begin by recursively (or using brute-force if the distance to
t is sufficiently small) traveling to a temporary point ¢’ defined as in that algorithm,
at distance O(m) from s. Now, in place of Steps 2 and 3 of that algorithm, we will
instead use a binary search (described below) to find a point with either the same x
coordinate or the same y coordinate as ¢ (and to the northeast of (xg, yo)) with the
following property P: the greedy (4, 4+y) and (+y, +«) paths from this point pass to
the south and west of ¢ respectively. Thus we will maintain our invariant, increasing
either the « or y coordinate of the new “start point” as in Oriented-Room-Find.

We now show how to find the desired point. First, if ¢’ is such a point we are done.
Otherwise, suppose that both greedy (+,+y) and greedy (+y, +) paths starting at
t' hit points to the south of ¢t. (The other case is analogous.) Let s’ be a point with
the same y coordinate as ¢/ on the (+y, +z) path from (zg, yo) given by our invariant.
Since the (+y,+x) path from s’ hits a point to the west of ¢, if the {(+, +y) path from
s’ hits a point to the south of ¢, then we are done as well. Otherwise, we travel to a
point ¢ halfway between s’ and #'—using the same procedure as that used to reach
t'—and examine the {(+#,+y) and {4y, +z) paths from ¢". (If ¢ as defined is inside
an obstacle, we examine the two points to the west and east of ¢ on that obstacle
boundary.) Depending on the outcomes of these greedy paths, we either halt with
success or continue the binary search with a new "/ and so on. We stop the binary
search when either success is discovered or the interval under consideration has length
at most 1. So, at most [logn] iterations of the binary search will be made. If the
binary search stops because the interval remaining is too short, a point with property
P can be found easily by traveling from the west endpoint to the east endpoint of the
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interval, and each time an obstacle is hit (this can happen at most a constant number
of times), testing it for property P before going around the obstacle, which costs only
O(n). This strategy succeeds because if two points a and b have the same y-coordinate
and there 1s either no obstacle between them or both are at the boundary of the same
obstacle then the (+,4y) path from the leftmost point intersects the {(+y,+x) path
from the rightmost point.

We get that the total distance is given by:

T(n) < [2n/m] [logn] [T(m)+ en], for some constant c.

Substituting m = [n/?v IOg"IOgIOg”W yields
T(n) — O(n . 23\/lognloglogn).

This strategy can be used for a smaller range (dy, ds) of excluded angles by just
performing a rotation and a coordinate transformation on the space. FEssentially,
instead of writing ¢ as nZ + ny for orthogonal unit vectors # and ¥, we may write
t as (n’d_i + n’'ds), where d; and d are unit vectors in the d; and d- directions.
It is not difficult to see that both n’ and n” are O(n/«), where o« = do — d;. Let
n = n/a. The performance of the previous algorithm after the transformation is

R(S) = O(n - 23VIesnloglog ) "gince the lengths are changed by at most a factor of
1/

THEOREM 6.3. There is a deterministic algorithm for the room problem with
an excluded angular range of size o that achieves R(S) = O(n23VI087 181087 - [lepe
n=n/a.

Consider now the general case where the angles of the obstacles may be in any
range. A simple pigeonholing argument implies that a constant fraction of the ranges
[im/\/n, (i + )x/+/n], for 0 < i < 4/n have the property that the total perimeter of
the obstacles angled in this range is no more than 2//n of the total perimeter. To
bound the total perimeter note that from our assumption that a unit circle can be
inscribed in each obstacle it follows that the perimeter of an obstacle is always less
than four times its area. Since the total area of all obstacles is at most n?, the total
perimeter of obstacles in such a range is O(n%/?).

Consider a randomized algorithm that first guesses such a range. It then applies
the above algorithm assuming that there are no obstacles with angles in this range.
On actually encountering any obstacle in this range, it just goes around the obstacle
at cost at most the perimeter of the obstacle. From the definition of the “forbidden
angle range” 1t follows that on any given greedy path, the robot will go around any
such obstacle at most once. Therefore, the expected total distance walked by this
algorithm is given by the recursion given above where 72 = n®/2 and a constant times
n3/? is added to the ci term (which remains O(#)). Thus, we obtain the solution

T(n) — n3/2 . 20(\/lognloglogn).
THEOREM 6.4. There is a randomized algorithm achieving a ratio \/ﬁ?O(\/ lognloglogn)

for the room problem provided every obstacle is a rectangle within which a unit circle
can be inscribed.

6.2. Arbitrary convex polygons. We now describe how our randomized al-
gorithm for the room problem can be extended to handle arbitrary convex polygons
provided that a unit circle can be inscribed in each obstacle, and that the entire de-
scription of an obstacle is given to the robot when that obstacle is touched. (The
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only part of the description of the obstacle that is required is the angle its longest
diagonal makes with the z-axis.) We do not have a solution for the wall problem with
arbitrary convex obstacles, and thus no solution for point-to-point navigation with
convex obstacles.

Define the angle of a convex polygonal obstacle to be the angle its longest diagonal
makes with the z-axis. The idea for the conversion is that each time the robot
encounters an obstacle, it picks a longest diagonal D and treats that obstacle as a
collection of line segments parallel to D. In particular, it imagines a line segment at
D, and then additional segments (if any) parallel to and at distance 1,2,3, etc. from
D, each as long as possible to be still contained within the obstacle. It then feeds
this collection of line segments to the algorithm for rectangular obstacles. As in the
case for unoriented rectangular obstacles, suppose the line-segment algorithm wishes
to travel a path along line segments that leads through one of the convex obstacles:
say the path is between points @ and b on some obstacle’s border. The robot then
simply travels the shortest path from a to b along the obstacle boundary. Since the
line segments are parallel to the longest diagonal of the obstacle and the obstacle is
convex, we are guaranteed that the shortest path along the obstacle between a and b
is at most a constant multiple of the straight-line path.

We note that in case there is a fixed known excluded range of angles, then the
algorithm of Theorem 6.3 can be extended as well.

7. Extensions to three dimensions. This section summarizes extensions of
our techniques to three dimensions. We begin by extending our study of the wall
problem to three dimensions, and then extend our optimal algorithm for point-to-
point navigation to three dimensions.

7.1. The wall problem in three dimensions. Suppose that ¢ is an infinite
plane perpendicular to the z-axis at distance n from the origin s. We begin by
extending the lower bound of [26] to three dimensions, showing a lower bound of
Q(nz/?’). We then give a generalization of the two-dimensional sweep algorithm that
achieves a matching upper bound.

THEOREM T.1. For any deterministic robot, there are scenes § of the three-
dimensional wall problem for which p(R,n) = Q(n*/3).

Proof. To prove the lower bound, it will be convenient to assume a tactile robot.
Using the technique of [26] used in Section 6.1, this proof can be extended to robots
with visual capabilities.

As the robot walks in the direction of ¢, the adversary places obstacles as follows.
Each obstacle is a cuboid whose cross-section parallel to the yz plane 1s a square of
side n?/3, and whose width in the # direction is one. Whenever the robot first reaches
z-coordinate i, for each i € {0,1,...,n — 1}, a cuboid is placed directly in front of it.
Thus the robot must travel a distance at least %nz/?’ perpendicular to the z-axis in

order to advance one unit parallel to the z-axis. Thus R(S) > %n‘r’/?’.

We now show that d(S) < 3n. Since the cross-sectional area of each cuboid is n/3,

by the pigeonhole principle there is a line £ parallel to the z-axis with the following
properties: (a) its distance from the z-axis is at most n; (b) it cuts at most n'/3
cuboids. Consider a path that starts from s and first goes to the leftmost point of /.
It then goes along ¢ parallel to the z-axis, traveling around each cuboid it encounters.

The distance from s to the leftmost point of £ is at most n. The distance traveled
parallel to the x-axis is also n. The total perpendicular distance traveled in circum-
venting the cuboids cut by £ is at most n'’? x n*3 =n. So, d(S) < 3n and the ratio
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p(R,n) = Q(n*3). 0

We now give an algorithm that matches this lower bound to within a constant.
At a high level, the algorithm can be viewed as an extension of the two-dimensional
sweep algorithm. The window, which in the plane was the region between two lines
parallel to the z-axis, now becomes a cylinder whose axis is the z-axis. The radius of
this cylinder is initially n, and 1s subsequently increased at certain points. The sweep
used in the plane is now replaced by a spiral about the z-axis.

For simplicity, we first describe the algorithm as if every obstacle were a cylinder
of circular cross-section, its axis parallel to the z-axis, and its center placed directly
in front of the robot. The radii and lengths of these obstacles could vary. Following
the analysis of this simple case, we outline the extension of the algorithm to more
general obstacles.

Consider a point orbiting around a fixed point, with the radius of the orbit in-
creasing linearly with angular position at a rate of D units for every 27 radians of
angular position. We call the path of the moving point a spiral, and D the spacing of
this spiral. (See Fig. 5.)

Our algorithm begins with W = n; at all times, 7 = W/nl/?’. Consider a spiral
whose center is on the z-axis and whose orbits lie in a plane perpendicular to the
z-axis. The spacing will be 7/3. Thus there are at most 3n'/? orbits in the spiral
within the current window.

The y and z coordinates of the robot will always lie on such a spiral. Analogous
to the sweep direction in the plane (north or south), the robot now maintains a spiral
direction that is either “outwards” or “inwards” along the spiral. On encountering
a (cylinder) obstacle directly in front of it, the robot first checks if the radius of the
cylinder exceeds 7. If not, the robot “goes around” the cylinder, retaining its current
yz coordinates. If on the other hand the radius does exceed 7, the robot proceeds
to the nearest point p on the spiral along its current spiral direction (outwards or
inwards) that is not covered by the cylinder, proceeding as far along the  direction
as 1t can in the process. If this nearest point lies at a distance W’ from the z-axis
that exceeds W, the robot increases W to 2W | resets the sweep counter to zero, and
proceeds to begin a new spiral inwards from this point. Whenever the robot completes
an inward spiral by reaching the z-axis or an outward spiral by reaching a point at
distance W from the z-axis, it increments the sweep counter. Whenever the sweep
counter reaches n'/3, the robot doubles W (and 7), resets the sweep counter to zero
and continues.

THEOREM 7.2. The spiral algorithm achieves a ratio of O(nz/?’), provided every
obstacle is a cylinder whose center is directly in front of the robot when it is first
encountered.

Proof. The analysis 1s essentially identical to that in Theorems 2.1 and 2.2. Let
W; be the final window radius. Since there are at most 3n!/? orbits in each spiral,
the distance walked by the robot in the last completed spiral is O(nl/?’Wf). Since
there are at most {nl/?’] complete spirals in each window the total distance walked
by the robot is O(nZ/BWf).

We show that the length of the shortest path is Q(W). First, we may assume
that the robot has completed {nl/?’] spirals for some window size W > %Wf, or else
we are immediately done (this is by the same reasoning used for the two-dimensional
wall problem). Consider a point on the shortest path that is farthest from the # axis.
If the distance of this point to the z axis i1s at least W, then clearly the shortest path
has length at least WW; so, we may assume that this is not the case.
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Fic. 5. A projection of a spiral with radius 20 and spacing 2, overlaid with a projection of
a cylinder of radius 6. The point s is the projection of the point where the robot encountered the
obstacle, and point t is the projection of the nearest point on the outward spiral that 1s not covered.

Given a shortest path, for each of the completed spirals, define its first entry
point to be the first point on the shortest path whose z-coordinate is the same as the
z-coordinate of the starting point of the spiral. Similarly, define its first exit point to
be the first point on the shortest path whose z-coordinate is the same as that of the
end point of the spiral. As in the two-dimensional problem, the exit point of spiral
¢ appears before the entry point of spiral i + 1. So, we need only show that for each
spiral in some window size W, the yz plane component of the shortest path from the
entry point to the exit point of the spiral is (7). This will imply that the total yz
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plane component of the shortest path is Q(rn'/3) = Q(W). So, imagine projecting
the completed spiral onto the yz plane, projecting all the cylinders encountered in
that spiral onto circles in the yz plane. Observe that every point on the spiral is at
distance at most 7/2 from the center of one such circle of radius at least 7. Since the
orbits of the spiral are at distance 7/3 from one another, for any point of distance at
most W from the origin there exists a circle such that the distance of this point from
the periphery of the circle is (7). In particular, this also holds for the projection
of the entry point of the sweep. Thus the yz component of any path from the entry
point to the exit point must be Q(7). O

The extension to the case of general cylindrical obstacles is similar. We define a
general cylindrical obstacle to be one for which there is a simple closed curve C' in
the yz-plane such that the obstacle’s intersection with any plane perpendicular to the
z-axis, when translated to the yz-plane is either empty or it is C' and its interior. As
long as the robot moves in the positive z-direction, 1t will hit an obstacle only at some
point of its unique “west face” in the yz-plane. On encountering such an obstacle,
the robot measures the shortest distance from its present position to a point p on the
spiral not touched by the obstacle. If this quantity is less than 7 it uses this shortest
path to circumvent the obstacle and retain its yz coordinates. Otherwise, it goes to
p and proceeds as far along the x direction as it can. The analysis is very similar to
the case of unit-height cylinders.

THEOREM 7.3. For three dimensional scenes S with general cylindrical obstacles
and in which s and t are points our spiral algorithm achieves a ratio of p(R,n) =
O(n*3) for the wall problem.

7.2. Point-to-point navigation in three dimensions. We now give an upper
bound for point-to-point navigation in three dimensions that matches the lower bound
to within a constant factor provided every obstacle is a cuboid whose sides are parallel
to the axes. As in two dimensions, our upper bound for point-to-point navigation
comes from combining an algorithm for point-to-plane navigation and another for
the room problem. However, in the three dimensional case it suffices to combine the
three dimensional wall algorithm with the two-dimensional room algorithm to obtain
a three-dimensional point-to-point navigation algorithm. For simplicity of analysis,
we assume all obstacles have vertices at integral coordinates. However, our algorithm
would still work provided a unit cube can be inscribed within every cuboid in the
scene.

Suppose without loss of generality that the z, y, and z coordinates of s are less
than those of t. The algorithm consists of three stages. In the first stage the robot
reaches a point s, such that at least two of its coordinates are the same as t. This
is done as follows. The robot starts by taking a greedy (+z,+y,+z) path until one
of the three coordinates is the same as t. Call this point s’ and w.l.o.g. say the y-
coordinates of s’ and ¢ are the same. Next, fixing the y-coordinate (i.e., staying in
the zz-plane of point s'), the robot takes a greedy (+, +z) path from s’ until one of
the other two coordinates is the same as t. The endpoint of this path is the desired
point s/. W.l.o.g. assume that the y and z coordinates of s” are the same as ¢ and
let n, < n be the distance between s” and t. The total distance walked in the first
stage is O(n).

In the second stage the robot uses the three dimensional wall algorithm from s’
to reach a point ¢’ with the same z-coordinate as t. See Fig. 6. The total distance
walked in this step is at most O(n*/3) times d(S). Let n,, be the distance between ¢’
and t.



20 A. BLUM, P. RAGHAVAN, AND B. SCHIEBER

F1G. 6. The plane that contains the points s", t' and t.

Assume that ¢ is not ¢ (otherwise we are done). Consider the plane that contains
the three points s”, ¢ and . (See Fig. 6.) In the third stage the robot will stay in this
plane. Notice that since all the obstacles are cuboids, the intersections of all obstacles
with this plane are oriented rectangles. Define w to be a linear combination of y and
z directions so that points on this plane can be written in (#,w) coordinates, and
translate these so that s = (0,ny), ' = (n;,0), and ¢ = (ny, ny) in this system.

From ¢’ do a greedy (+w, —z) path until either the w-coordinate is ny, or else the
z-coordinate is 0, whichever comes first. If the first case occurs, then the greedy path is
a monotone boundary and we can apply the room problem algorithm of Theorem 3.2.
(The 2-dimensional slice may technically violate our conditions for the room problem
by having obstacles that are too “thin”. However, because a unit cube can be inscribed
in each of the 3-dimensional obstacles, there is sufficient separation for the room-
problem algorithm to work.) If the second case occurs, (we reached a point with
z-coordinate 0), then go back to s”, retracing all our steps if we have to, and perform
a greedy (+x,—w) greedy path from there. This is guaranteed to hit a point with z-
coordinate of n, and w-coordinate at least 0 since it cannot cross our previous greedy
path. So, we again have a room and can run the room algorithm. The distance
walked in this stage is O(y/n - d(8)) since n,, < d(8). We therefore have the following
theorem.

THEOREM 7.4. For three dimensional scenes & in which s and t are points and
every obstacle 1s a cuboid whose sides are parallel to the axes our algorithm achieves
a ratio of p(R,n) = O(nz/?’).

To extend this result to a tactile robot we again use the technique due to Baeza-
Yates et al. [1]. Their strategy allows one to start from a face of a cuboid and travel
to the nearest edge (at distance d) walking distance O(d) in the process, without prior
knowledge of d or the direction to the nearest edge. As in Section 5, this allows our
algorithm for point-to-point navigation in three dimensions to work for tactile robots
with the same asymptotic ratio bounds.
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8. The Power of Randomization. We now consider randomized robots that
toss coins as they walk from s to ¢. The scene § is fixed in advance by an oblivious
adversary [3] who knows the randomized algorithm, but not the coin tosses made by
the robot during a walk. The cost of robot R on scene § is now a random variable; we
thus define the ratio p(R, n) to be supges(,) E[R(S)]/d(S). The main result of this

section i1s a randomized algorithm for the 2-dimensional wall problem that achieves a

ratio that is 20(V1egn10glogn) rovided the obstacles are all vertical line segments with
endpoints at integral z-coordinates and the robot is allowed wvision. Notice that for
this situation, the robot can see the entire “column” of obstacles directly in front of
it; that is, if the robot is at a point with @z-coordinate in the range (i — 1,4) for integer
t, 1t can see all obstacles of z-coordinate 7. To keep with our previous conventions on
the thickness of obstacles, we could equivalently consider obstacles of width between
one and two having their left walls only at even z-coordinates; this would still allow
the robot to see an entire “column” at once.

The Papadimitriou-Yannakakis lower bound of £2(1/n) still holds for deterministic
algorithms for this restricted class of scenes [26]. So, for such scenes, a randomized
algorithm is provably better than a deterministic one. We leave as an open question
whether one can achieve similar bounds for the more general wall problem.

The idea for the randomized algorithm is to view the problem as a k-server prob-
lem on (k 4 1) equally-spaced points on a line, and then use as a subroutine known
randomized strategies [4] for that server problem. For the benefit of the reader, we
now define the k-server problem, first defined in [23]. An on-line algorithm manages
k mobile servers located at the vertices of a graph GG whose edges have positive real
lengths. The algorithm has to satisfy on-line a sequence of requests, each of which is
some vertex v of G, by moving a server to v unless it already has a server there. Each
time it moves a server, it pays a cost equal to the distance moved by that server. We
compare the cost of such an algorithm to the cost of an adversary that, in addition
to moving its servers, also generates the sequence of requests. In fact, our problem
can be better described as a metrical task system of [6], but we will use the language
of servers here. In the lower bound direction, a recent result of Karloff et al. for
the server problem shows that even for the special case of scenes we consider, no
randomized algorithm can achieve a constant ratio [17].

We now present our randomized algorithm. There is a randomized strategy for
k servers on k + 1 equally-spaced points on the line that achieves a competitiveness

90(Vlogkloglogk) aoainst the oblivious adversary [4] (for completeness, details are
given in the Appendix). We map the navigation problem to this k-server problem as
follows. Let &k = n — 1 and define the spacing between adjacent points on the line to
be W/n, where W is the width of a window of y-coordinates currently considered by
the robot; the value of W will be specified below. Each point in the server problem
corresponds to a range of W/n y-coordinates for the navigation problem. The “hole”
(the point without a server) represents the range currently inhabited by the robot.
We begin with W = n and start the hole at the center of the line. Each time
the robot sees a column of obstacles, the robot notes all points in the server problem
corresponding to ranges that are completely blocked by obstacles. It then makes
enough requests to the server algorithm on those points so that for the server algorithm
of [4], the hole no longer resides on such points. Note that this request sequence is
determined by the scene and thus obeys the definition of an oblivious adversary. The
robot then moves to the range occupied by the hole (if it is not already there) and
then moves a vertical distance at most 1¥/n to find a point where it can go forward in
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the 4+ direction to the next column. So, the distance moved by the robot is at most
the on-line server cost, plus W/n + 1 for each unit moved in the +a direction. If the
off-line server cost reaches W, the robot doubles the window width and restarts the
server algorithm, each point now corresponds to a larger range of y values.

THEOREM 8.1. The randomized algorithm above achieves a ratio that is 20(V/10gn 1loglogn)
for the wall problem in the plane where the robot uses vision and the obstacles are ver-
tical line segments at integral x-coordinates.

Proof. For a fixed window width, the off-line server cost in the above transfor-
mation is a lower bound on the length of the shortest path for the robot problem
(assuming the off-line hole is started also at the center of the line). The off-line server
cost could be a bit lower than the length of the shortest path since we do not make
requests to points corresponding to y-value ranges only partially blocked by obsta-
cles. Note that when the off-line cost exceeds W, the shortest path might escape the
window, which is why W is doubled.

As mentioned previously, the on-line cost for the robot 1s a most the on-line cost
for the server problem, plus W/n + 1 for each unit advance in the z direction. So, if
W; is the final window width used, the total distance traveled by the robot is at most

(Wf + 77,) + WfQO(\/lognloglogn) — d(s)QO(\/lognloglogn). 0

9. Non-convex Obstacles and Mazes. When the obstacles are non-convex,
the scene can be a maze. In this case it is easy to see that p(R, n) cannot be bounded
by any function of n (the Euclidean distance between s and t). Instead, we prove a
ratio between R(S) and d(S) as a function of the total number of vertices in all the
obstacles, |V].

THEOREM 9.1. No randomized algorithm achieves a ratio better than (|V] —
10)/6.

Proof. Consider the maze in Fig. 7 and its obvious generalization.

The maze has (|[V| — 10)/6 passages that could lead from s to ¢. An algorithm
attempts various passages in turn, until 1t finds the sole passage open to ¢. For any
randomized algorithm, there is one passage whose expected “time to attempt” is at
least (Number of passages — 1)/2; this passage is left open to t. The robot walks
2d(8) on every failure before that attempt, and d(8) on that attempt. O

The bound applies a fortiori to deterministic algorithms. Rao et al. [28] give a
deterministic algorithm that explores a maze by building a map of the scene, proceed-
ing at each step to that unexplored vertex of the maze nearest to the vertices that
have already been visited. It is easy to show that this algorithm achieves a ratio of
at most 2|V, matching the above lower bound to within a constant. This algorithm
1s memory intensive, and this may be a handicap when space is limited or the scene
changes quickly enough that a map is not worth building. We now give a simple,
memoryless randomized alternative based on a random walk that works for scenes in
the plane. We first define a graph G(S) on the vertices of the polygons in &, and
prove a simple geometric property of this graph. We then describe how the robot can
perform a random walk on this graph, and invoke a result on random walks to prove
that the robot’s ratio is O(|V]).

The graph G(S) is defined as follows: each vertex of a polygon in § is a node in the
graph. A node v in G(8) chooses up to twelve neighbors, defined as follows. Consider
the twelve cones defined by angular intervals [7i/6,7(i 4+ 1)/6),¢=1,2,...,12 about
v. There is an edge joining v to the nearest visible vertex (if any) in each cone.
Thus G(S) has at most 12|V] edges. A construction similar to G(S) appears in
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im

Fic. 7. A maze achieving the lower bound. FEach line segment corresponds to an obstacle with
four vertices.

Clarkson [11], where a result similar to the following lemma was given:

LEMMA 9.2. Let ds:(S) be the distance between two vertices s and t in the scene
S. There is a path in G(S) between s and t of length at most 2.1ds(S).

Proof. For two vertices u,v in the scene that are mutually visible, denote by dy.
the distance between them. The shortest path in & between s and ¢ is a path in the
visibility graph of 8 [32]: a graph whose nodes are the vertices of obstacles in &, with
two nodes being joined by an edge if they are visible from each other. We now show
that given this shortest path (of length dg:(S)) in the visibility graph, we can find a
path in G(S8) between s and ¢ whose length is at most 2.1ds4(S). Note that we can
afford to find this path “off-line”: we only wish to exhibit the existence of a short
path in G(8) from s to ¢.

We use an iterative strategy: we take the first edge of the visibility graph on the
shortest path, say (s,a). If (s,a) is an edge in G(S) we proceed to a and continue
from there. Otherwise, we show that there is an edge (s, ) in G(S) with the following
property: dp(S) < dg:(S) — 0.48d,; (note that s and b are mutually visible). We
therefore go from s to b in the first step of our path in G(S) from s to ¢, having
ensured that (1) we move to a node whose distance to ¢ in S is less than from s, and
(2) the distance we have walked is proportional to the reduction in the remaining
distance. We now continue the iteration from b, with b playing the role of s. In fact,
since our distance to ¢ diminishes at each iteration, we will have at most |V]| — 1
iterations before arriving at ¢.
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It remains for us to bound the first step (s, b) when (s, a) is not an edge in G(S).
Since s and @ are mutually visible, the only reason that segment sa 1s not an edge
in G(8) is that the cone containing the line segment sa has a node b in it such that
(s,b) is an edge in G(8), i.e., dsp < dgq. Consider the sector of the circle with center
s and radius ds; that lies in the cone containing the segment sa. Let ¢ be the point
where this sector cuts segment sa. Since b is the closest vertex to s in the cone, no
obstacle vertex lies in this sector. Further, since both a and & are visible from s, no
portion of any obstacle lies in this sector. Therefore b and ¢ are mutually visible, as
are ¢ and c¢. Fig. 8 illustrates these facts. Thus

dpi(8) < dpe + dea + dar(S).
On the other hand,
dsi(8) = dse + dog + dut(S).

Using some elementary trigonometry and the fact that the angle between segments
sa and sb is at most w/6, we have

dbt(s) S dst(s) - dsc + dbc S dst(s) - 048d5b

S
| c a
FIG. 8. dy. < 0.52dec and dgp = dec

We now describe the random walk that the robot executes in going from s to
t. At each node, it looks out to see the nearest node in each of the twelve cones, if
such exists; let them be vy, vs,..., vy, at distances dy,ds, ..., d; respectively. Then it
chooses to go to v; with probability

1/d;
-
Zj:l 1/d.7

Note that this probabilistic decision is a local choice that does not need knowledge
of G(8S) in advance; at each vertex, the robot measures the distance to the nearest
visible node in each cone and chooses each with probability inversely proportional to
its distance. The robot stops the process on arriving at ¢.

THEOREM 9.3. The expected distance traveled by the robot is at most 50.4|V]d(S).
Thus it achieves a ratio of at most 50.4|V].
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Proof. Chandra et al. [8] have studied the following general walk in a graph with
positive real edge lengths: at each node, the walk chooses the next edge to walk along
with probability inversely proportional to its length. They show that the expected
distance traversed by the walk in going from a node a to a node b is at most 2m/f,;,
where m is the number of edges and £, is the length of the shortest path in the graph
between a and b.

In our case, m < 12|V, and £5; < 2.1d+(S) by Lemma 9.2; combining these facts
with the result in [8] yields the theorem. O Clearly there is a tradeoff between the
number of cones in the graph G(8) that we define and the factor 2.1 in Lemma 9.2;
had we used 36 cones each of angle 7/18, we could have got a tighter factor there but
the number of edges in the graph (which figures in the ratio achieved by the random
walk) goes up. Our choice of 12 cones optimizes this tradeoff.

10. Open Problems. We conclude with some open problems.

e What are the tight bounds (deterministic as well as randomized) for the room
problem with general obstacles?

e Can a randomized algorithm for the room problem beat deterministic algo-
rithms?

e Extend the sweep algorithm for the wall problem to handle arbitrary polygo-
nal obstacles, and hence or otherwise obtain an algorithm for point-to-point
navigation with such obstacles.

e Extend all of the above to three dimensions.

e Give an algorithm that achieves a provably good ratio for three-dimensional
scenes with non-convex obstacles (three-dimensional mazes).

e Blum and Kozen [5] show that a planar maze can be traversed in a number
of steps polynomial in the number of vertices in the maze, by a deterministic
automaton using two pebbles. We have seen that the deterministic algorithm
of Rao et al achieves an optimal ratio but is memory-intensive, whereas the
random walk achieves a similar ratio without using memory to build a map.
Is there a deterministic automaton using few pebbles (small memory) that
achieves a good ratio? It seems reasonable to expect that the automaton
would need a distance counter as well.
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Appendix. We outline the randomized k-server algorithm invoked in Section &,
and the proof of its competitiveness.

THEOREM 10.1 ([4]). There is a randomized algorithm for k = n — 1 servers
on n equally-spaced points on a line that achieves an expected competitiveness ratio of

90(lognloglogn) qoqinst an oblivious adversary.

Proof: Without loss of generality assume that the points are spaced at unit
distance. For convenience, we call the point without any server the “hole” and think
of the algorithm as being on the hole position, and having to move when 1t is “hit”
by a request. The idea of the algorithm is to break up the line into a collection of
equal-sized intervals and then to stay within some interval until the adversary has
made “enough” requests inside it. Once the adversary has made enough requests,
the algorithm moves the hole to a different interval, choosing at random from those
intervals into which “not too many” requests have been made.
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More specifically, the algorithm proceeds as follows. Let m = [n/?v logn log IOg”w .

Algorithm Randomized-Line

Step 1: Break the line into [n/m] intervals, each of m points except possibly
the last. We label these intervals Iy, ..., Iy, Initialize each interval to be
“unmarked.”

Step 2: For each point ¢ (1 < ¢ < n), initialize a variable C'(7) to zero. Each
C'(7) represents the minimum possible off-line cost of ending at point ¢ given
the sequence of requests seen since the last initialization (and assuming the
off-line server may start at any point). Updating C() is easy: after a request
is made at point ¢, C(¥) «— min{C(i — 1)+ 1,C(¢ + 1) + 1}. To handle the
endpoints, initialize C'(0) and C'(n + 1) to infinity.

Step 3: Randomly choose one unmarked interval I;. Stay inside the larger
interval I;_; U I; U I; 41 running Randomized-Line recursively within that
region, until the minimum cost C(¢) for 7 € I; has risen to be greater than
m/2. As a base case, for a small enough interval, any deterministic algorithm
will do (e.g., the deterministic algorithm given in [10]). For consistency at
the endpoints, define Iy and If,/;m141 to be empty and always marked.
Remark: The reason for staying within a larger interval of size 3m is a tech-
nical one to handle the “edge effects” that occur at the boundaries of the
intervals [;, as discussed in the analysis.

Step 4: Mark all intervals I; such that the minimum cost C(7) for all ¢ € I;
is at least m/2. If there is some unmarked interval left, then go back to Step
3.

Step 5: All intervals are now marked, so the off-line cost since the last
initialization of the C'()’s is at least m/2. Go back to Step 2 and reinitialize.

Analysis: Let T(n) be the expected cost of algorithm Randomized-Line for n — 1
servers on a line of n unit-spaced points, for a sequence of requests yielding a minimum
off-line cost of [n/6].

Fach application of Step 3 costs the algorithm at most an expected n 4+ T'(3m); n
for moving to the chosen interval and 7'(3m) for the cost inside that interval. Notice
that the cost function C(7), for ¢ € I;_1 U I; U I;41, may not yield values as high
as those computed by the recursive application. The reason is the “edge effects”:
in the recursive application the off-line costs of the endpoints of the range are not
constrained by the costs of points outside it. However, the range is large enough so
that for all 1 in the middle region I;, the cost C(i) is at least that computed by the
recursive application as long as C'(i) < [m/2].

Each application of Step 3 results in half of the unmarked intervals becoming
marked in Step 4 on average, since the central interval [; inhabited by the hole is
chosen randomly from the unmarked intervals. So, after O(logn) applications of Step
3 with high probability all intervals have been marked. Once we repeat [n/(3m)]
times steps 2 — 5, the off-line cost has increased by at least n/6.

So, we get the following recurrence:

T(n) < [n/3m] |O(logn)[T(3m) + n]|, for,say, n > 16

1
< clnlogn) [T(3m)+n], for some constant c.
m
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Substituting m = [n/QVIOg”IOgIOg"W yields
T(n) — O(n . 23\/lognloglogn). O
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