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Abstract. A constant rebalanced portfolio is an investment strategy which keeps the same
distribution of wealth among a set of stocks from period to period. Recently there has been work
on on-line investment strategies that are competitive with the best constant rebalanced portfolio
determined in hindsight (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996a; Cover
and Ordentlich, 1996b; Ordentlich and Cover, 1996; Cover, 1996). For the universal algorithm
of Cover (Cover, 1991), we provide a simple analysis which naturally extends to the case of
a fixed percentage transaction cost (commission), answering a question raised in (Cover, 1991;
Helmbold et al., 1996; Cover and Ordentlich, 1996a; Cover and Ordentlich, 1996b; Ordentlich and
Cover, 1996; Cover, 1996). In addition, we present a simple randomized implementation that is
significantly faster in practice. We conclude by explaining how these algorithms can be applied
to other problems, such as combining the predictions of statistical language models, where the
resulting guarantees are more striking.

1. Introduction

A constant rebalanced portfolio (CRP) is an investment strategy which keeps the
same distribution of wealth among a set of stocks from period to period. That
is, the proportion of total wealth in a given stock is the same at the beginning
of each period. Recently there has been work on on-line investment strategies
which are competitive with the best CRP determined in hindsight (Cover, 1991;
Helmbold et al., 1996; Cover and Ordentlich, 1996a; Cover and Ordentlich, 1996b;
Ordentlich and Cover, 1996; Cover, 1996). Specifically, the daily performance of
these algorithms on a market approaches that of the best CRP for that market,
chosen in hindsight, as the lengths of these markets increase without bound.

As an example of a useful CRP, consider the following market with just two stocks
(Helmbold et al., 1996; Ordentlich and Cover, 1996). The price of one stock remains
constant, and the price of the other stock alternately halves and doubles. Investing
in a single stock will not increase the wealth by more than a factor of two. However,
a (1

2 , 1
2 ) CRP will increase its wealth exponentially. At the end of each period it

trades stock so that it has an equal worth in each stock. On alternate periods the
total value will change by a factor of 1

2 (1) + 1
2 (1

2 ) = 3
4 and 1

2 (1) + 1
2 (2) = 3

2 , thus
increasing total worth by a factor of 9/8 every two periods.

We extend this model by adding a fixed percentage commission cost c < 1 to each
transaction, as is common in financial modeling (Davis and Norman, 1990). To fully
define the commission model, in addition to specifying the cost of each transaction,
we must also specify how a CRP pays this overhead. In Section 2, we give three
natural properties of such a specification which we will use for our analysis. These
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properties are satisfied by the optimal investor who must simultaneously rebalance
her portfolio and pay for these transaction costs from the sale of stock.

In Section 3 we present a new, simpler analysis and implementation for Cover’s
universal algorithm (Cover, 1991). It is along the same lines of reasoning as an
argument in (Foster and Vohra, 1995). We show how our argument extends to the
case of commission in Section 4. The previous bound for a market with m assets
and n periods was a performance ratio of at least

wealth of UNIVERSAL

wealth of best CRP
≥

1

(n + 1)m−1
.

In the presence of a commission c, this becomes

wealth of UNIVERSALc

wealth of best CRP
≥

1

((1 + c)n + 1)m−1
.

The above ratio is a decreasing function of n. However, the average per-period
ratio, (1/(n+1)m−1)1/n, increases to 1 as n increases without bound. For example,
if the best CRP makes one and a half times as much as we do over a period of
22 years, it is only making a factor of 1.51/22 ≈ 1.02 as much as we do per year.
Cover raises the question of of whether it is even possible to achieve the exponential
growth rate of the best CRP in the presence of commission (Cover and Ordentlich,
1996a), and our analysis answers this question. However, we do not consider the
Dirichelet(1/2, . . . , 1/2) Universal algorithm (Cover and Ordentlich, 1996a) which
has the better guaranteed ratio of 2

√

1/(n + 1)m−1.
Semi-constant-rebalanced portfolios, which may or may not rebalance during each

period, have been suggested as an investment strategy in the presence of commission
(Helmbold et al., 1996). In Section 5 we show that the exponential wealth of a
semi-constant-rebalanced portfolio cannot, in general, be achieved without future
knowledge of the market.

In Section 6, we present results of the universal algorithm with various commis-
sions on some real-world stock data. Finally, in Section 7, we explain how these
stock market algorithms can be used on other problems, such as combining the
predictions of language models almost as well as if we had prior knowledge of the
optimal mixture.

2. Notation and Definitions

We use mainly the notation of (Cover, 1991). A price relative for a given asset is
the nonnegative ratio of closing price to opening price during a given period. If the
market has m assets and trading takes place during n periods, then the market’s
performance can be expressed by n price relative vectors, xn = (x1,x2, . . . ,xn),xi ∈

ℜm
+ , where xij is the nonnegative price relative of the jth stock for the ith period.
A portfolio is simply a distribution of wealth among the stocks. We represent

a distribution of wealth by b ∈ ℜm
+ , where

∑

j bj = 1. So b is an element of the
(m − 1)-dimensional simplex β,
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β = {b = (b1, b2, . . . , bm) :
∑

j

bj = 1, ∀j bj ≥ 0}.

The CRP investment strategy for a particular portfolio b, CRPb, redistributes its

wealth at the end of each period so that the proportion of money in the jth stock
is bj . An investment using a portfolio b during a period with price relatives x
increases one’s wealth by a factor of b · x =

∑

bjxj . Therefore, over n periods, the
wealth achieved by CRPb is,

Sn(b,xn) =

n
∏

i=1

b · xi.

2.1. Commission

We now consider an extension of the above model to the case of a fixed percentage
commission 0 ≤ c ≤ 1. For simplicity, we will assume that the commission is
charged only for purchases and not for sales (we explain at the end of this section
why this can be assumed without loss of generality.) We now need to specify how
an investor, who has a target distribution of wealth, pays for these transaction
costs, each period. In our model, the investor must pay for all transaction costs
by selling stock. Since we are comparing ourselves to the best CRP, it is natural
to assume that the CRP investor makes the optimal trades so as to rebalance her
portfolio and pay for her transaction costs. For example, suppose there is a hefty
40% commission on each purchase. Say, at the end of a period, an investor has $200
in stock A, and $800 in stock B, and this investor wishes to rebalance to a (1/2, 1/2)
portfolio for the start of the next period. The optimal investor would first sell $100
of stock B to cover the upcoming transaction costs. She now has $200 in stock
A, $700 in stock B, and $100 in cash. When she trades $250 of stock B for stock
A to get $450 in each stock, she then pays her (40%)$250 = $100 in transaction
costs. This is better than someone who naively tries to rebalance to $500 in each
stock and then must sell $60 worth of each stock to pay his (40%)$300 = $120 in
transaction costs, leaving $440 in each stock.

For our analysis, we do not need to know the specifics of this optimal rebalancer.
But for the sake of completeness, let’s look at how to compute these optimal costs.
Say we start with one dollar distributed according to b and we would like to re-
balance to b′, optimally with respect to commission. If we know the the largest
amount that we can have after rebalancing, α, then it is easy. In order to achieve
α dollars distributed according to b′, we sell the difference of every stock for which
αb′j < bj and buy the others. Optimality requires that α is the solution of

α = 1 − c
∑

αb′
j
>bj

(αb′j − bj).

Algorithmically, to solve the above equation, we first determine which interval α is in
by checking the critical points, α = bj/b′j. Once we’ve determined the interval, the
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above reduces to a linear equation. For reasonable commission costs, we can easily
approximate the optimal rebalancer described above by paying for the transactions
proportionally from each stock, i.e.

α ≈ 1 − c
∑

b′
j
>bj

(b′j − bj).

This is not optimal rebalancing because some of the same stock is bought and then
sold during a single rebalance. However, our on-line guarantees also hold among this
class of CRP investors, who do not optimally rebalance with respect to commission.

In our analysis, we will only use the following natural properties of optimal re-
balancing:

1. The costs paid changing from distribution b1 to b3 is no more than the costs
paid changing from b1 to b2 and then from b2 to b3.

2. The cost, per dollar, of changing from a distribution b to a distribution (1 −
α)b + αb′ is no more than αc, simply because we are moving at most an α
fraction of our money.

3. An investment strategy I which invests an initial fraction α of its money ac-
cording to investment strategy I1 and an initial 1 − α of its money according
to I2, will achieve at least α times the wealth of I1 plus 1− α times the wealth
of I2. (In fact, I may do even better by occasionally saving in commission cost
if, for instance, strategy I1 says to sell stock A and strategy I2 says to buy it.)

Our model assumes commission on buying but not selling. Alternatively, one can
imagine having two commissions, cbuy and csell, for buying and selling, as we do in

our experiments. Our theoretical results will still hold for c = cbuy + csell because

one dollar in a single stock can be transferred to (1 − csell)/(1 + cbuy) ≥ (1 − c)

dollars in a different stock, which is all that is required for property 2.

3. Analysis Without Commission

In this section, we give a simple analysis of the universal algorithm of Cover, without
commission. To get our bearings, let’s first consider an easier question. Suppose
you just want a strategy that is competitive with respect to the best single stock.
In other words, you want to maximize the worst-case ratio of your wealth to that of
the best stock. In this case, a good strategy is simply to divide your money among
the m stocks and let it sit. You will always have at least 1

m times as much money as
the best stock. Note that this deterministic strategy achieves the expected wealth
of the randomized strategy that just places all its money in a random stock.

Now consider the problem of competing with the best CRP. Cover’s universal
portfolio algorithm is similar to the above. It splits its money evenly among all
CRPs and lets it sit in these CRP strategies. (It does not transfer money between
the strategies.) Likewise, it always achieves the expected wealth of the randomized
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strategy which invests all its money in a random CRP. In particular, the bookkeep-
ing works as follows:

Definition 1. (UNIVERSAL) The universal portfolio algorithm, UNIVERSAL,
at time i is specified by

b̂i =

∫

β bSi−1(b,xi−1)dµ(b)
∫

β Si−1(b,xi−1)dµ(b)
, i = 1, 2, . . .

with µ equal to the uniform distribution over portfolios b. (We do not consider the
Dirichelet(1/2, 1/2, . . .) distribution.)

This is the form in which Cover defines the algorithm. He also notes ((Cover and
Ordentlich, 1996a)) that

wealth of UNIVERSAL = Eb∈β [wealth of CRPb] (1)

Let the holdings of a portfolio represent the actual amount of wealth we have in
each stock, so that it is a vector whose elements do not necessarily add to 1. Then
equation (1) can be seen very easily if we rewrite Definition 1 as, during period i,

holdings of UNIVERSAL = Eb∈β [holdings of CRPb] .

Theorem 1 As in (Cover and Ordentlich, 1996a),

wealth of UNIVERSAL

wealth of best CRP
≥

(

n + m − 1
m − 1

)−1

≥
1

(n + 1)m−1
,

for all markets with m stocks and n periods.

Proof. As mentioned above, the wealth of UNIVERSAL is simply the expected
wealth of a random CRP. The idea behind our argument is that portfolios “near”
to each other perform similarly and that a large fraction of portfolios are “near”
the optimal portfolio.

Say, in hindsight, b∗ is an optimal CRP for the particular market. Here is what
we mean when we say that “near” portfolios perform nearly as well as b∗. If
b = (1−α)b∗ +αz for some z ∈ β, then a single period’s gain of CRPb must be at
least (1 − α) times as large as a single period’s gain of CRPb∗ . After all, a (1− α)
fraction of b is distributed exactly like b∗. Compiled over n periods,

wealth of CRPb ≥ (1 − α)n(wealth of CRPb∗). (2)

So, to prove the theorem, we will show that a sufficiently large volume of portfolios
is sufficiently near b∗. This is easy to compute because the set of near portfolios is
a shrunken simplex, αβ, translated from the origin to (1 − α)b∗.

Volm−1({(1 − α)b∗ + αz : z ∈ β}) = Volm−1({αz : z ∈ β})

= αm−1Volm−1(β). (3)
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In particular, for α = 1/(n+1), we get a ratio of αm−1(1−α)n > e−1/(n+1)m−1

for the wealth of universal compared to the best CRP, because at least an αm−1 =
1/(n + 1)m−1 fraction of portfolios perform at least (1 − α)n > e−1 as well as the
best CRP.

We can get a better bound if we consider α to be the random variable defined by
1 − α = minj{bj/b∗j}. Then, from equations (1) and (2),

wealth of UNIVERSAL

wealth of best CRP
≥ Eb∈β[(1 − α)n].

Now we’ll compute this quantity exactly, starting with the application of an identity
for non-negative random variables,

Eb∈β[(1 − α)n] =

∫ 1

0

Probb∈β [(1 − α)n ≥ x] dx.

Now, by (3), the probability in the above integral is exactly (1−x1/n)m−1. Making
the change of variable y = x1/n, and repeating integration by parts, this yields,

∫ 1

0

(1 − x1/n)m−1dx =

n

∫ 1

0

yn−1(1 − y)m−1dy =

n

(

yn(1 − y)m−1

n

∣

∣

∣

∣

1

0

+
m − 1

n

∫ 1

0

yn(1 − y)m−2dy

)

=

n

(

m − 1

n

∫ 1

0

yn(1 − y)m−2dy

)

=

n

(

m − 1

n

m − 2

n + 1

∫ 1

0

yn+1(1 − y)m−3dy

)

=

. . . =

n

(

(m − 1)!(n − 1)!

(n + m − 2)!

∫ 1

0

yn+m−2dy

)

=

1
(

n + m − 1
m − 1

) .

3.1. Randomized Approximation

The implementation presented in (Cover and Ordentlich, 1996a) has space and time
requirements which grow like nm−1. However, the universal algorithm is simply a
weighted average of all CRPs. This suggests an obvious randomized approximation.
First choose N portfolios uniformly at random. Then invest a 1/N fraction of
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the money in each of the N CRPs and let it sit within these CRPs. (Do not
transfer between them.) If the best constant rebalanced portfolio achieves a wealth
R times as large as the universal algorithm, Chebyshev’s inequality guarantees
that, using N = (R − 1)/ǫ2δ random portfolios, with probability at least 1 − δ,
the approximation achieves a wealth at least 1 − ǫ times as large as the universal
algorithm. For a given market with no commission, one can determine, in hindsight,
the optimal CRP (Helmbold et al., 1995) and then estimate R. In the worst case R
grows like nm−1. However, experiments on stock market data, presented in (Cover,
1991; Helmbold et al., 1996), all have a ratio R < 2 for various combinations of two
stocks, making this approach especially efficient.

This same observation can be used to implement the Dirichelet(1/2, . . . , 1/2) uni-
versal algorithm (Cover and Ordentlich, 1996a). In this case, it is an improvement
because R grows, at worst, like n(m−1)/2.

4. Analysis With Commission

In this section, we introduce a slight modification of UNIVERSAL, UNIVERSALc,
which is competitive in the presence of a fixed commission 0 ≤ c ≤ 1. The im-
portance of this section is not as much in introducing a new algorithm as it is in
showing that a trivial extension of UNIVERSAL is theoretically competitive in the
presence of commission.

At the start of the ith period, UNIVERSAL computes a weighted average of
CRPs, where the weight of a particular CRPb is proportional to the wealth it
has accumulated during the first i − 1 periods, Si−1(b,xi−1). UNIVERSALc is

similar. At the start of the ith period, UNIVERSALc computes a weighted average
of CRPs, where the weight of a particular CRPb is proportional to the wealth it has
accumulated during the first i−1 periods including commission costs, Sc

i−1(b,xi−1).
Formally,

Definition 2. (UNIVERSALc) The universal portfolio with commission algorithm
at time i is specified by

b̂c
i =

∫

β
bSc

i−1(b,xi−1)dµ(b)
∫

β
Sc

i−1(b,xi−1)dµ(b)
, i = 1, 2, . . .

with µ equal to the uniform distribution over portfolios b.

Notice here we are defining the distribution of wealth held each day. The exact
amount is determined by rebalancing optimally with respect to transaction costs.
Notice that the universal algorithm maintains, each period, the same distribution
of wealth as another algorithm which splits its money evenly among N independent
random CRP investors (and does not transfer money between them), in the limit
as N goes to infinity. Like the zero-commission case, this other algorithm achieves
the expected wealth of a random CRP. However, the universal algorithm may ac-
tually do better because of lower commission costs due to offsetting trades (in the
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same way that a collection of investors operating together can save on commission
by occasionally trading amongst themselves). This is an application of the third
property given in Section 2.1.

Theorem 2 In the presence of commission 0 ≤ c ≤ 1,

wealth of UNIVERSALc

wealth of best CRP
≥

(

(1 + c)n + m − 1
m − 1

)−1

≥
1

((1 + c)n + 1)m−1
,

for all markets with m stocks and n periods.

Proof. We need only modify equations (1) and (2) of the previous proof. As
discussed above, equation (1) changes from an equality to an inequality,

wealth of UNIVERSALc ≥ Eb∈β [wealth of CRPb] ,

which only helps.
Based on the three properties given in Section 2.1, if bj ≥ (1−α)b∗j for all j, then

(single-period profit of CRPb)

(single-period profit of CRP
b∗)

≥ (1 − α)(1 − cα). (4)

To see this, note first that CRPb starts with at least (1 − α) of CRPb∗ ’s wealth,
both pay some cost to rebalance to b∗, and CRPb pays at most an additional cα
fraction to rebalance from b∗ to CRPb. In terms of our stated properties, the third
property implies that CRPb earns at least as much as an investor who only has
(1 − α) times as much money, but begins with it distributed according to b∗ and
ends with it distributed according to b. In other words, the extra stock beyond
(1−α)b∗j cannot hurt. Secondly, note that this investor pays no more in commission
than a naive investor who first rebalances to b∗ and then to b, by the first property.
Finally, the second property implies that the commission cost for changing from b∗

to b is no more than cα, since it involves moving an α fraction of your portfolio.
Thus, CRPb does no worse than (1 − α)(1 − cα) times an investor who starts and
ends the period with distribution b∗. This is (4).

It is easy to establish that 1 − cα ≥ (1 − α)c for 0 ≤ c, α ≤ 1 (see, e.g. Lemma
3.4.1 of (Littlestone, 1989)). Combining this with (4),

wealth of CRPb ≥ (1 − α)(1+c)n(wealth of CRPb∗).

Since (2) is the only use of n in the previous proof, we can replace n by (1 + c)n in
the final guarantee.

This algorithm can be implemented in the same randomized way as UNIVERSAL.

5. Semi-constant-rebalanced Portfolios

In (Helmbold et al., 1996), the idea of a semi-constant-rebalanced portfolio (SCRP)
is proposed as a good strategy in the presence of transaction costs. An SCRP is
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a portfolio which may be rebalanced on any subset of the periods. For instance,
one may prefer not to rebalance if the transaction costs outweigh the benefits of
rebalancing. We show that no strategy can guarantee the exponential growth rate
of the best SCRP in hindsight, even without commission.

As in (Cover and Ordentlich, 1996b), consider the set of all market sequences of
length n over two stocks, where each period one of the stock relatives is 1 and the
other is ǫ for some small ǫ ≥ 0,

K = {xn : xi = (1, ǫ) or xi = (ǫ, 1), for all i ≤ n}.

In these markets, each period one of the stocks crashes and the other stays the
same.

Clearly, if we choose a random element of K, every non-anticipating investment
strategy (a strategy which has no knowledge of the future) will achieve an expected
wealth of (1+ǫ

2 )n.
However, a SCRP chosen in hindsight can do much better. A good SCRP( 1

2
, 1
2
)

strategy would initially divide its money into two parts, and then rebalance only
when the market is about to switch (when xi 6= xi+1). If the market switches k
times, this strategy achieves wealth ≥ 1/2k+1. Thus, if we choose a random market
from K, in hindsight we can make at least

(1/2)n
n−1
∑

k=0

2

(

n − 1
k

)

(1/2)k+1 = (1/2)n(1 + 1/2)n−1.

Thus the hindsight strategy’s expected performance is at least ( 1
1+ǫ )

n(3/2)n−1 times
as large as the expected performance of any non-anticipating strategy.

6. Experiments with NYSE data

In this section, we present results that show examples of the performance of the
universal algorithm as commission is varied, on 22 years of NYSE data. For more
thorough experiments, see (Cover, 1991; Helmbold et al., 1996). We tried the
universal algorithm with various transaction costs. As was the case without com-
mission, we found that with commission it performed well on some sets of stocks
and not as well on others. The performance, of course, was better with smaller
transaction costs. Rebalancing less often was very beneficial, especially with larger
commissions. We chose to rebalance monthly. In practice, one way to select how
often to rebalance is to choose the period length which gives the best result on past
data. As an aside, the EG(η) algorithm of (Helmbold et al., 1996) usually outper-
formed the universal algorithm, even though there are no theoretical guarantees of
its performance with commission.

Figure 1 shows the wealths achieved by the universal algorithm on two different
sets of stocks, where rebalancing occurs monthly. We compare this to the best
CRP and to the average value of the stocks. With a 2% commission charged on
both purchases and sales, we did not get the amazing gains in wealth that were
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Figure 1. Performance of universal on two different sets of stocks. Compare with best CRP
in hindsight and average stock price. 2% commission charged on all transactions, rebalancing
monthly. This corresponds to c = 0.04 in our model.
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Figure 2. Performance of universal with varying commission rates. Commission charged on all
transactions. Notice that with large enough commissions, we would be better off rebalancing less
often than monthly.
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found in the no-commission setting, but in the first set of stocks we were still doing
significantly better than average.

Figure 2 shows the same stocks as we vary the commission costs. Since the
strategy of investing in the best stock is a form of a CRP, the best CRP always
does at least as well as the best stock and thus, of course, the average stock. And
indeed, once the commission costs get prohibitively large, the best CRP is exactly
the no-commission strategy of investing in a single stock. That is why the best
CRP’s performance plateaus. The universal algorithm, on the other hand, initially
divides its money among all CRPs. As the commission increases, many of these
CRPs do poorly. Over time, the investments in these worse CRPs become less
valuable. As a result, the universal algorithm thus has an increasing fraction of its
total holdings in CRPs that rebalance a smaller percentage of their holdings.

7. Application to Statistical Language Modeling

Analogies between universal compression and the UNIVERSAL algorithm have
been made by Cover (Cover, 1996). The EG(η) portfolio algorithm of (Helmbold
et al., 1996) has also been used for finding the best mixture of predictive models
(Kivanen and Warmuth, 1994; Helmbold et al., 1995). We present the analogy
between stocks and language models which shows how the UNIVERSAL algorithm
can be applied to language models and other predictors. This analogy is more
general than Kelly’s racehorse analogy (Kelly, 1956) because it covers price relatives
and probabilities other than just {0, 1}.

A statistical language model is a probability distribution over sequences of words.
A language model is generally represented as a conditional probability distribution
for the next word to be seen, given the previous words, i.e.,

P (wi|hi−1), hi−1 = w1, w2, . . . , wi−1.

The most common way to combine various language models is to linearly inter-
polate them. A mixture of three language models, for example a unigram model
P1, a bigram model P2, and a trigram model P3 might be,

P (w|hi) = λ1P1(w|hi) + λ2P2(w|hi) + λ3P3(w|hi),

where λ1 + λ2 + λ3 = 1, λi ≥ 0.

This is similar to a CRP. Consider an analogy between language models and stocks.
A price relative xij corresponds to a conditional probability Pj(wi|hi−1) and a
portfolio b corresponds to a daily mixture of language models. In other words, feed
the probabilities into a portfolio algorithm as if they were price relatives, and predict
the next word as a linear combination of the predictions of the models where the
coefficients are the weights recommended by the portfolio algorithm. Then we have
the nice property that the probability that a combined language model algorithm
assigns to a sequence hn = w1, . . . , wn is simply the value of the holdings of the
corresponding portfolio algorithm.
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Now, the log of the probability assigned to the observed sequence is a com-
mon measure of a language model’s performance. This leads us to the follow-
ing algorithm. Given language models P1, P2, . . . , Pm and a sequence of words
hn = w1, . . . , wn, if UNIVERSAL invests its money based on portfolios b̂i when
observing price relatives xij = Pj(wi|hi−1), then the universal language model P
predicts

P (wi|hi−1) =

m
∑

j=1

b̂ijPj(wi|hi−1).

Theorem 3 For any sequence of n words hn = w1, . . . , wn and any m language
models, the log probability assigned to hn by the universal algorithm P is at least
the log probability assigned to hn by the best mixture, minus (m − 1) log n.

This follows directly from the observation that the wealth of a portfolio algorithm
is exactly the probability it assigns to the word sequence. It is impressive because
it shows how these mixture parameters can be “learned” on the fly with on-line
guarantees. Furthermore, the amortized cost of (m − 1) log n/n bits per word is
a small overhead as n gets large. It also helps to explain a relationship between
portfolios and weighted-average-type algorithms for making predictions from expert
advice (Cesa-Bianchi et al., 1993; DeSantis et al., 1988; Foster and Vohra, 1993;
Haussler et al., 1994; Kivanen and Warmuth, 1994; Vovk, 1990; Vovk, 1995).
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