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This problem has been around for a while but is one of my favorites. I will
state it here in three forms, discuss a number of known results (some easy
and some more intricate), and finally end with small financial incentives for
various kinds of partial progress. This problem appears in various guises in
[BFKL93,Blu94,MOS03]. To begin we need the following standard definition:
a boolean function f over {0, 1}n has (at most) r relevant variables if there exist
r indices i1, . . . , ir such that f(x) = g(xi1 , . . . , xir

) for some boolean function g
over {0, 1}r. In other words, the value of f is determined by only a subset of r
of its n input variables. For instance, the function f(x) = x1x̄2 ∨ x2x̄5 ∨ x5x̄1

has three relevant variables. The “class of boolean functions with r relevant vari-
ables” is the set of all such functions, over all possible g and sets {i1, . . . , ir}.
The problems are:

(a) Does there exist a polynomial time algorithm for learning the class of boolean
functions that have lg(n) relevant variables, over the uniform distribution
on {0, 1}n?

(b) Does there exist a polynomial time algorithm for learning the class of boolean
functions that have lg lg(n) relevant variables, over the uniform distribution

on {0, 1}n? Notice that since there are only 22
lg lg n

possible g’s, we can as-
sume the function g is known, and the only difficulty is determining which
are the relevant variables.

(c) Does there exist an algorithm for learning the class of boolean functions that
have r relevant variables, over the uniform distribution on {0, 1}n, in time
“substantially” better than nr?

Motivation: These problems are all a special case of the question of whether DNF
or Decision Trees can be learned in polynomial time. In particular, any function
of r relevant variables can be written as a decision tree of depth r (branching on
a different variable at each level) or as a DNF formula with at most 2r terms (one
for each positive entry in the truth-table for g). These both have polynomial size
for r = O(log n), and so progress on the relevant-variable problem is necessary
for any positive answers to those questions. Furthermore, the relevant-variable
problem is arguably more basic than the DNF or Decision-Tree questions, since
the target class is defined semantically rather than syntactically. Lastly, these
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problems suggest specific “challenge” distributions on target functions that could
be used to test heuristics (see below).

Current status: A recent and very nice result of Mossel, O’Donnell, and Serve-
dio [MOS03], building on ideas of Kalai and Mansour [KM01], achieves roughly
O(n0.7r) for problem (c). In the other direction, there exists a specific function g
for which (if the set of relevant variables is chosen at random), all current tech-
niques appear to break down at O(nr/3) [BFKL93]. In addition to the question
of whether [MOS03] can be improved, a natural question is whether this specific
case can be learned more efficiently, and whether one can construct “harder”
functions g for which, say, beating nr/2 appears hard. See below for rewards
related to these statements.

Some observations:

1. If membership queries are allowed, then learning is easy. (This makes a good
homework question). Given a positive and negative example, one can “walk”
them together to identify one relevant bit, put that at the top of a decision
tree, and then recursively learn each subtree. Or, one can apply the more
general algorithms of Bshouty [Bsh93] or Jackson [Jac94].

2. If the target function is unbiased, then weak learning, strong learning, and
exact identification are equivalent. (This also makes a good homework prob-
lem.) In particular, if A is a weak-learning algorithm, then one can identify a
relevant variable by running A on data in which the first i bits of every exam-
ple are replaced by new, truly random bits. If we do this for i = 0, 1, . . . , n,
then at some point A must fail to perform better than random guessing, and
this will occur at one of the relevant variables. If f is a biased function, then
for this to work we need to change the definition of “weak learning” to mean
an algorithm that performs noticeably better than the underlying bias of the
target function.

3. We can assume without loss of generality that the relevant variables are
chosen at random (since the algorithm can always randomly permute the
indices if it so chooses).

4. Here is a specific function g proposed in [BFKL93] as a candidate hard case.
Split the relevant variables into two sets A and B. On input x, compute the
Parity function over A, and the Majority function over B, and then XOR
the two results together.1 This class can be easily learned in time O(n|A|)
(by guessing the set A and reducing to majority) or in time O(n|B|/2) (by
guessing half of B and examining only the examples in which those bits are
all 0, reducing to parity). The worst case is when |A| = r/3, |B| = 2r/3,
yielding an algorithm that runs in time O(nr/3), but no better algorithm is
known.

1 For instance, if A = {1, 2, 3} and B = {4, 5, 6} then the classification of the example
011101001010 would be positive, since the first three bits have an even number of
ones (making their parity 0), and the next three bits have more ones than zeros (so
the majority function is 1), and the XOR of those two quantities is 1.



Notice that this specific function g gives a samplable distribution on target
functions f (pick a random subset of r variables, split into A and B, and
feed it into g). Thus one can test proposed heuristics.

5. Problems (a) and (b) are not solvable by SQ algorithms [Kea98,BFJ+94].
This holds even for the specific g above. However, learning is easy for “most”
functions g (e.g., if the truth table is picked at random). The difficult cases
seem to be the functions g that are “similar to parity functions, but not
exactly.”

6. The theory of fixed-parameter tractability [DF95,DF99] has been used to
analyze the complexity of problems as a function of the size of the solution.
For example, suppose we want to determine if an instance of the set-cover
problem has a cover of size r. If there are n sets total, then it is easy to do
this in time O(nr), but the results of [DF95] suggest that achieving running
time of f(r)poly(n) for any function f (e.g., f(r) = 22

r

) may be hard. This
has immediate consequences for the “proper learning” problem, if we allow
examples to be arbitrary. For instance, it implies that determining if the
data is consistent with a conjunction of size r is likely to be hard even if
r = O(log n). However it is unclear whether this theory can be used to show
(or suggest) hardness for the prediction problem.

Monetary rewards:

$100: Improve the results of [MOS03] to O(n0.666r).
$200: Improve the results of [MOS03] to O(n0.499r).
$100: Find an algorithm to learn the class described in Observation (4) in time

O(nr/4).
$500: Find an algorithm to learn the class described in (4) in polynomial time,

for r = O(log n).
$50: Find a function g as in (4) but for which achieving O(nr/2) appears hard.
$1000: Give a positive solution to open problem (a) or (b).
$50+: Give a convincing argument why nobody will ever be able to solve the

above $1000 problem. (Prize depends on how convincing.)
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