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1 Introduction

The standard PAC model focuses on learning a class of functions from labeled
examples, where the two critical resources are the number of examples needed
and running time. In many natural learning problems, however, unlabeled data
can be obtained much more cheaply than labeled data. This has motivated the
notion of semi-supervised learning, in which algorithms attempt to use this cheap
unlabeled data in a way that (hopefully) reduces the number of labeled examples
needed for learning [4]. For instance, semi-supervised and transductive SVM [2,
5] and co-training [3] are two examples of semi-supervised learning algorithms.
In [1], a semi-supervised PAC model is introduced that provides a common
framework for the kinds of assumptions these algorithms make; however, most
of the results in [1] deal with sample complexity rather than computational
efficiency, or are only computationally efficient under strong assumptions on the
underlying distribution. This note poses several questions related to developing
computationally efficient algorithms in this semi-supervised PAC model.

2 The model

The high-level idea of the semi-supervised PAC model of [1] is that rather than
talking of learning a concept class C, one talks of learning a class C under
a compatibility notion χ. Given a hypothesis h and distribution D, χ(h, D)
is a score in [0, 1] indicating how compatible h is with D. For example, if we
believe data should be separable by a large margin, then χ would give a low
score to separators that slice through dense regions under D and high score
to those that do not. Or, if data has two “views” and one believes that either
view should be sufficient for classification (as in co-training) then χ can give
a low score to hypothesis pairs that disagree on a large probability mass of
examples and a high score to those that tend to agree. Formally, in order to
ensure that compatibility can be estimated from a finite sample, one requires
that (overloading notation) χ(h, D) ≡ Ex∼D[χ(h, x)] where χ(h, x) ∈ [0, 1]. The
quantity 1 − χ(h, D) can be viewed as a notion of unlabeled error rate. For
example, if we define χ(h, x) = 0 if x is within distance γ of hyperplane h and
χ(h, x) = 1 otherwise, then the unlabeled error rate 1−χ(h, D) is the probability
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mass within distance γ of h. The analog to the standard PAC “realizable case”
assumption that the target function lies in C is an assumption that furthermore
the target is perfectly compatible (i.e., it has both zero true error and zero
unlabeled error). In such a case, unlabeled data from D can allow one to reduce
the space of plausible functions from the set of all functions in C (which are all
potential candidates before any unlabeled data is seen) to just those that happen
to be highly compatible with the distribution D (once enough unlabeled data
has been seen to uniformly estimate compatibilities of all functions in C).

3 The question

For a given class C, compatibility notion χ, and distribution D, define CD,χ(ε) =
{h ∈ C : 1 − χ(h, D) ≤ ε}. Under the assumption that the target belongs to C

and is fully compatible, then given enough unlabeled data we can in principle
reduce our search space from C down to CD,χ(ε). Thus, we should in principle
need at most O(1

ε
(log |CD,χ(ε)| + log 1

δ
)) labeled examples to learn well.1 Fur-

thermore, if the distribution D is helpful, then |CD,χ(ε)| may be much smaller
than |C|. The high-level question is whether for interesting classes C and notions
of compatibility χ, one can learn with this many (or polynomial in this many)
labeled examples by efficient algorithms. If so, we say that such an algorithm
is an efficient semi-supervised learning algorithm for the pair (C, χ). We now
instantiate this high-level question with a few specific classes and compatibility
notions.

3.1 A simple non-open problem

Before presenting open problems, here is a simple example from [1] of a (C, χ)
pair for which efficient semi-supervised learning is easy. Let C be the class of
monotone disjunctions over {0, 1}n. Now, suppose we say an example x is com-
patible with function h if either all variables set to 1 in x are relevant variables
of h or none of them are. This is a very strong notion of “margin”: it says, in
essence, that every variable is either a positive indicator or a negative indicator,
and no example should contain both positive and negative indicators.

In this case efficient semi-supervised learning is easy. Just draw a large set of
unlabeled examples and create a graph with n vertices, one for each variable. Put
an edge between two vertices if any example has both variables set to 1. Under
the compatibility assumption, all variables in the same connected component of
this graph must either all be positive indicators or all be negative indicators.
So, if we have k components, we only need O(1

ε
[k + log 1

δ
]) labeled examples to

achieve a PAC guarantee. Furthermore, as long as we created the graph using
enough unlabeled data we can be confident that k ≤ lg |CD,χ(ε)|. Note that in
this context, a “helpful” distribution is one that produces a small number of
components.

1 Or even less depending on the structure of C. For example, we would ideally use an

ε-cover bound here. Note that we have overloaded “ε” for both labeled and unlabeled

error bounds for simplicity.



3.2 Specific open problems

Two-sided disjunctions: This is a generalization of the example above where
we now allow variables to be positive indicators, negative indicators, or irrel-
evant. Specifically, define a “two-sided disjunction” h to be a pair of disjunc-
tions (h+, h−) where only h+ is used for classification, but h is compatible
with D iff for all examples x, h+(x) = −h−(x). That is, D is such that both
the positive and negative classes can be described by OR-functions.

Two-sided majority with margins: As a different generalization of the prob-
lem from Section 3.1, suppose that again every variable is either a positive
or negative indicator, but we relax the margin condition a bit. In particular,
say we require that x either contain at least 60% of the positive indicators
and at most 40% of the negative indicators (for positive examples) or vice
versa (for negative examples).

Co-training with disjunctions: This is the “inverse” of the two-sided dis-
junction problem. Let C be the class of disjunctions, but an example x is
a pair of points (x1, x2) in {0, 1}n. Define h(x) = h(x1) but say that h is
compatible with x iff h(x1) = h(x2). That is, under our compatibility as-
sumption, each unlabeled example is either a pair of positive examples or a
pair of negative examples. Note that D is now a distribution over pairs.

Co-training with linear separators: A generalization of the above problem
is the case that h is a linear separator. It is known that the consistency
problem is NP-hard [A. Flaxman, personal communication], however efficient
algorithms are known for the special case that the elements x1 and x2 of the
pair are drawn independently given their label [3, 1]. Even if one cannot solve
the problem efficiently in general, a natural question is whether one can at
least weaken the independence-given-the-label assumption in a nontrivial
way and still get an efficient algorithm for this class.

Monetary rewards: $300 for a positive solution to any of the above questions.
More generally, it would be interesting to consider other classes and notions of
compatibility as well.
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