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Abstract

We consider the problem of revenue maximization in online auctions, that is, auctions in
which bids are received and dealt with one-by-one. In this note, we demonstrate that results
from online learning can be usefully applied in this context, and we derive a new auction for
digital goods that achieves a constant competitive ratio with respect to the best possible (offline)
fixed price revenue. This substantially improves upon the best previously known competitive
ratio [3] of O(exp(

√
log log h)) for this problem. We apply our techniques to the related problem

of online posted price mechanisms, where the auctioneer declares a price and a bidder only
communicates his acceptance/rejection of the price. For this problem we obtain results that are
(somewhat surprisingly) similar to the online auction problem.

We are primarily concerned with auctions for a single good available in unlimited supply,
often described as a digital good, though our techniques may also be useful for the case of limited
supply. The problem of designing online auctions for digital goods was first described by Bar-
Yossef et al. [3], one of a number of recent papers interested in analyzing revenue-maximizing
auctions without making statistical assumptions about the participating bidders [2, 6, 8, 10].

1 Introduction

While auctions are traditional and well-studied economic mechanisms, the popularity of internet
auctions has prompted wide interest in various aspects of auctions and related mechanisms,
including the question of optimizing the total revenue of an auction. A number of recent papers have
addressed the design of revenue-maximizing auctions without making any statistical assumptions
about the bidders who participate in the auction [2, 3, 6, 8, 10]. A particularly interesting case is
that of digital goods [8] — goods of which infinitely many copies can be generated at no cost —
considered in the online setting by Bar-Yossef et al. [3].

In the model of Bar-Yossef et al. [3], n bidders arrive in a sequence. Each bidder i is interested in
one copy of the good, and values this copy at vi. The valuations are normalized to the range [1, h],
so that h is the ratio between the highest and lowest valuations. Bidder i places bid bi, and the
auction must then determine whether to sell the good to bidder i, and if so, at what price si ≤ bi.
∗Portions of this work appeared as an extended abstract in Proceedings of SODA’03 [4]. This work was supported in part

by National Science Foundation grants CCR-0105488 and IIS-0121678.
†Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, Email: avrim@cs.cmu.edu
‡Strategic Planning and Optimization Team, Amazon.com, Seattle, WA, Email: vijayk@amazon.com
§Department of Computer Science, University of Texas at Austin, Austin, TX. This work was done while the author was at

IBM India Research Lab, New Delhi, India. Email: atri@cs.utexas.edu
¶Computer Science Division, University of California at Berkeley, Berkeley, CA, Email: felix@cs.berkeley.edu



This is equivalent to determining a sales price si, such that if si ≤ bi, bidder i wins the good and
pays si; otherwise, bidder i does not win the good and pays nothing.

The utility of a bidder is then given by vi − si if bidder i wins; 0 if bidder i does not win. As in
Bar-Yossef et al. [3], we are interested in auctions which are incentive-compatible, that is, auctions
in which each bidder’s utility is maximized by bidding truthfully and setting bi = vi. As shown in
that paper, this condition is equivalent to the condition that each si depends only on the first i− 1
bids, and not on the ith bid. Hence, the auction mechanism is essentially trying to guess the ith
valuation, based on the first i− 1 valuations.

As in previous papers [3, 8, 10], we will use competitive analysis to analyze the performance
of any given auction. That is, we are interested in the worst-case ratio (over all sequences of
valuations) between the revenue of the “optimal offline” auction and the revenue of the online
auction. Following previous papers [3, 8], we take the optimal offline auction to be the one which
optimally sets a single fixed price for all bidders. Thus, our goal is what is sometimes called “static
optimality”. The revenue of the optimal fixed price auction is given by F(v) = maxi∈[n] {vini},
where ni = |{j ∈ [n] | vj ≥ vi}|. An online auction A with revenue RA(v) is said to be c-competitive
if for any sequence v, RA(v) ≥ F(v)/c. We take RA to be the expected revenue if A is randomized.

In Section 2, we present an asymptotically constant-competitive online algorithm for this problem.1

In Section 3, we derive a similar result for the related problem of online posted-price auctioning.
In a posted-price auction [9], the auctioneer posts a price prior to each bidder, and the bidder
communicates an acceptance or rejection of the auctioneer’s offer. Compared to the standard
online auction, this mechanism provides much less information to the auctioneer about the bidders’
valuations. Surprisingly, we are still able to obtain results very similar to the full-information case.
The offline version of this problem is discussed in [9].

Our results are based on application of machine learning techniques to the the online auction
problem. Setting a single fixed price for the auction can be thought of as following the advice
of a single “expert” who predicts that fixed price for every bidder. Performing well relative to
the optimal fixed price is then equivalent to performing well relative to the best of these experts,
a problem well-studied in learning theory [1, 5, 7, 11]. The posted price setting, in which the
information received depends on the auctioneer’s current price, corresponds to a version of the
“bandit” problem [1]. Our algorithms are derived by adapting these techniques to the online
auction setting.

2 Online auction: the full information game

We use a variant of Littlestone and Warmuth’s weighted majority (WM) algorithm [11] given in
Auer et al. [1]. In our context, let X = {x1, . . . , x`} be a set of candidate fixed prices, corresponding
to a set of experts. Let rk(v) be the revenue obtained by setting the fixed price xk for the valuation
sequence v. Given a parameter α ∈ (0, 1], define weights

wk(i) = (1 + α)rk(v1,...,vi)/h

1Specifically, our algorithm is constant-competitive, but with an additive constant that is O(−h ln lnh). As F(v) gets large,

this additive term becomes negligible. We also present (Theorem 2.4) general lower bounds showing that our additive constants
are nearly optimal: in particular, that any constant-competitive algorithm must have an additive constant Ω(−h).



Clearly, the weights can be easily maintained using a multiplicative update. Then, for bidder i, the
auction chooses si ∈ X with probability:

pk(i) = Pr[si = xk] =
wk(i− 1)∑`
j=1wj(i− 1)

This algorithm is shown in Figure 1.

Algorithm WM
Parameters: Reals α ∈ (0, 1] and X ∈ [1, h]`.
Initialization: For each expert k, initialize rk() = 0, wk(0) = 1.
For each bidder i = 1, . . . , n:

Set the sales price si to be xk with probability pk(i) = wk(i−1)∑`

j=1
wj(i−1)

.

Observe bi = vi.
For each expert k, update rk(v1, . . . , vi) and wk(i) = (1 + α)rk(v1,...,vi)/h.

Figure 1: WM in our setting

From Auer et al., we now have:

Theorem 2.1. [1, Theorem 3.2] For any sequence of valuations v,

RWM(v) ≥ (1− α

2
)FX(v)− h ln `

α
,

where FX(v) = maxk rk(v) is the optimal fixed price revenue when restricted to fixed prices in X.

For completeness, we provide the proof here.

Proof. Let gk(i) denote the revenue gained by the kth expert from bidder i (gk(i) = xk if vi ≥ xk
and gk(i) = 0 otherwise). So, rk(v1, . . . , vi) = gk(i) + rk(v1, . . . , vi−1). Let W (i) =

∑
k wk(i) be the

sum of the weights after bidder i.

Then, the expected revenue of the auction from bidder i+ 1 is given by:

gWM(i+ 1) =
∑`
k=1wk(i)gk(i+ 1)

W (i)

We can then relate the change in W (i) to the expected revenue of the auction as follows:

W (i+ 1) =
∑̀
k=1

wk(i)(1 + α)gk(i+1)/h

≤
∑̀
k=1

wk(i)(1 + α(gk(i+ 1)/h))



= W (i) + α
∑̀
k=1

wk(i)(gk(i+ 1)/h)

= W (i)(1 + α(gWM(i+ 1)/h))

where for the inequality, we used the fact that for x ∈ [0, 1], (1 + α)x ≤ 1 + αx.

Since W (0) = `, we have

W (n) ≤ ` ·
n∏
i=1

(1 + α(gWM(i)/h))

On the other hand, the sum of the final weights is at least the value of the maximum final weight.
Hence,

W (n) ≥ (1 + α)FX/h

Taking logs, we have
FX
h

ln(1 + α) ≤ ln `+
n∑
i=1

ln(1 + α(gWM(i)/h))

Since for x ∈ [0, 1], x− x2

2 ≤ ln(1 + x) ≤ x,

FX
h

(α− α2

2
) ≤ ln `+

α

h
RWM

Rearranging this inequality yields the theorem.

Now let X contain all powers of (1 + β) between 1 and h. Taking α = β = ε
3 yields the following:

Theorem 2.2. Restricting to valuation sequences with F(v) ≥ 18h
ε2

(ln lnh+ ln(4
ε )), auction WM is

(1 + ε)-competitive relative to the optimal fixed price revenue.

The proof follows from the theorem of Auer et al. above by analyzing the choice of parameters,
and by noting that F(v) ≤ (1 + β)FX(v), since rounding down to a power of (1 + β) loses at most
a factor of (1 + β) in the revenue.

For any moderately large auction, the performance guarantee of the weighted majority auction
mechanism is dramatically better than that of previous auction mechanisms. As a comparison,
Bar-Yossef et al. show that their weighted buckets auction is O(exp(

√
log log h))-competitive [3].

However, in that case, the competitive ratio is achieved for valuation sequences with F(v) ≥ 4h.
The following theorem (Theorem 2.3) shows that WM fails on such small valuation sequences, and
indeed, the theorem provides a fairly tight lower bound on the sequences for which WM succeeds in
achieving a constant competitive ratio. In Theorem 2.4, we then prove that any algorithm achieving
a constant competitive ratio must have an additive constant Ω(−h) (equivalently, it is not possible
to achieve a constant competitive ratio for the case F(v) = o(h)). Thus there is an O(log log h)
gap between the performance of WM (Theorem 2.2 above) and our general lower bound.



Theorem 2.3. For any function f(h) = o(h log log h), even when restricting to valuation sequences
with F(v) ≥ f(h), WM is ω(1)-competitive. Furthermore, this holds even if we allow WM to begin
with unequal initial weights.

Proof. Let us first prove the claim under the assumption that the xi are all distinct and the initial
weights are all equal (as in the algorithm of Theorem 2.2). For this, note that if the competitive
ratio is at most some constant c, then for every value x ∈ [1, h], there must be some xi ∈ X such
that xi ≤ x ≤ cxi. Otherwise, a sequence of bids of value x would lead to a competitive ratio more
than c. Hence, ` ≥ logc h = Ω(log h).

Now consider a bid sequence consisting entirely of bids of value x1 = 1. If there are n bids, clearly
F = n. For k 6= 1, for all i, wk(i) = 1, while w1(i) = (1 + α)i/h. Hence, the expected revenue from
the ith bidder is no more than 1

` (1 + α)i/h. Summing over the n bidders, we get a total revenue
of at most n

` (1 + α)n/h. If the competitive ratio is at most c, then we need (1 + α)n/h ≥ `
c , which

implies n = Ω(h log `) = Ω(h log log h), from which the result follows.

The above argument implicitly assumes all xi are distinct (or, equivalently, that WM begins with
all experts having the same weight). We can generalize the lower bound to hold even when experts
begin with different weights as follows. As before, suppose the competitive ratio is at most c. Then,
for any value x ∈ [1, h], let qx be the fraction of initial weight on experts xi ∈ [ x2c , x]. Consider
a sequence of n bids at the value x for which qx is smallest. In this case, F = nx. The online
algorithm makes at most nx

2c from experts below this window, and at most nxqx(1 + α)nx/h from
experts inside this window. Since qx ≤ 1/ log2c h and since c-competitiveness implies an online
revenue of at least nx

c , it must be that (1 +α)nx/h ≥ (log2c h)/2c and therefore nx = Ω(h log log h).
Thus, the result again follows.

A bid sequence consisting entirely of bids of one value may seem somewhat anomalous; in particular,
h does not represent the true ratio between the highest and lowest valuations, and most of the
weights remain at their initial value. However, the example does not depend on these properties.
To see this, one can prepend to the sequence above a set of bids, including a bid at h, such that the
revenue obtained from the prefix by using any fixed price xi ∈ X falls in the range [h, 2h]. Since in
the prefix F = O(h), for any auction, the bids in the prefix can be ordered in such a way that the
auction achieves revenue at most O(h) from these bids.

Can one do much better by some other algorithm? We show here that any constant-competitive
algorithm must have an additive term Ω(−h), using analysis similar to that used for one-way
trading.

Theorem 2.4. There is no constant-competitive algorithm for all valuation sequences with F(v) ≥
f(h) when f(h) = o(h). Stated another way, suppose A is an online algorithm such that for all
valuation sequences v, RA(v) ≥ F(v)/c− f(h), where c is constant. Then f(h) = Ω(h).2

2In the proof below, we will prove the second statement. This implies the first statement because if there was an algorithm

that was constant-competitive for f(h) = o(h) with no additive term, then we could just include an additive term of −f(h) to
make it trivially work on the smaller sequences too.



Proof. Let A be an online algorithm with constant competitive ratio c and additive term −f(h).
Let k = 2c and α = 2kk−1. We will show that f(h) ≥ h/(kα).

Consider the very first bid, and let Pr[a, b] denote the probability that A’s sales price is in the range
[a, b]. Suppose it is the case that Pr[1, h/α] ≤ 1/k. Then, if the bid comes in at h/α, the online
algorithm’s expected gain is at most h/(kα) but F(v) = h/α. Thus, f(h) ≥ F(v)/c − RA(v) ≥
h/(kα). So, we can assume that Pr[1, h/α] > 1/k.

We now argue the general case. Define the series Lt as follows: L0 = 0 and Lt+1 = h/α+ kLt. So,
Lt+1 = h/α + hk/α + . . . + hkt/α. By definition of α, Lk ≤ h. So, there must be some interval
(Lt, Lt+1] ⊆ [1, h] such that Pr(Lt, Lt+1] ≤ 1/k. As above, suppose the bid comes in at Lt+1.
In this case, the online algorithm’s expected gain is at most Lt + Lt+1/k, but F(v) = Lt+1. So,
cf(h) ≥ F(v)− cRA(v) ≥ Lt+1− c(Lt+Lt+1/k) = Lt+1/2− cLt. Plugging in the definition of Lt+1,
this is at least h/(2α), and thus f(h) ≥ h/(kα).

3 Posted price mechanisms: the partial information game

As noted in Section 1, the seller using an online posted price mechanism is at a considerable
disadvantage compared to a seller using an online auction, since with a posted price mechanism,
the seller receives much less information about the buyers’ valuations. Nevertheless, as described
below, it is still possible to design an online algorithm which achieves an asymptotically constant
competitive ratio with respect to the optimal fixed price revenue.

To do this, we use a version of the algorithm Exp3 of Auer et al. [1]. As with an online auction,
the choice of a sales price corresponds to the choice of an expert. However, in an online auction, the
subsequent bid reveals exactly how well each expert would have done. In a posted price mechanism,
at each step, we will know what would have happened with some, but not all, of the possible sales
prices. The only sales price whose performance we are guaranteed to know about is the one chosen:
this corresponds to an online learning algorithm which uses only information about the gain of the
chosen expert at each step.

The algorithm Exp3 essentially contains algorithm WM, described in Section 2, as a subroutine.
At each step, we take the probability distribution p used by WM and mix it with the uniform
distribution to obtain a modified probability distribution p, which is then used to select an expert.
Following each buyer’s accept/reject decision, we use the information obtained about the gain of
the chosen expert to formulate a simulated gain vector, which is then used to update the weights
maintained by WM.

Figure 2 describes the algorithm Exp3 in our setting.

Using Theorem 4.1 in Auer et al. [1] and given an appropriate choice of parameters α, γ, and X as
above, the following theorem results.

Theorem 3.1. There exists a constant c(ε) such that for all valuation sequences with F(v) ≥
ch log h log log h, mechanism Exp3 is (1+ ε)-competitive relative to the optimal fixed price revenue.

Again, we can show that this mechanism is not constant-competitive on valuation sequences with
small fixed price revenue.



Algorithm Exp3
Parameters: Reals α ∈ (0, 1], γ ∈ (0, 1], and X ∈ [1, h]`.
Initialization: For each expert k, initialize rk(0) = 0, wk(0) = 1.
For each buyer i = 1, . . . , n:

Set the posted price si to be xk with probability pk(i) = (1− γ)pk(i) + γ
` , where

pk(i) = wk(i−1)∑`

j=1
wj(i−1)

.

For the chosen price si = xk∗ , if buyer i accepts, set gk∗(i) = si, else set gk∗(i) = 0. Set
gk∗(i) = γ

`
gk∗ (i)
pk∗ (i) .

For all other experts k, set gk(i) = 0.
For all experts k, update rk(i) = rk(i− 1) + gk(i) and wk(i) = (1 + α)rk(i)/h.

Figure 2: Exp3 in our setting

Theorem 3.2. For any function f(h) = o(h log h), when restricted to valuation sequences with
F(v) ≥ f(h), Exp3 is ω(1)-competitive.

Proof. Suppose the competitive ratio is at most some constant c. As before, we must have
` = Ω(log h). Again, consider a valuation sequence consisting entirely of valuations at x1 = 1,
and let n denote the number of buyers, so that F = n.

For k 6= 1, wk(i) = 1 for all i. Hence, because r1(i) is nondecreasing, w1(i), p1(i), and p1(i) are all
nondecreasing in i. Furthermore, the expected revenue from buyer i is given by p1(i). Therefore,
in order for the competitive ratio to be c, we must have p1(n) ≥ 1/c.

From the definition of p, this implies that p1(n) ≥ 1/c. But, p1(n) is at most 1
` (1 +α)r1(n)/h, so we

must have r1(n) ≥ h log `
c .

Now, let I denote the set of buyers i such that r1(i− 1) ∈ [h log `
2c , h log `

c ]. For i ∈ I,

p1(i) =
w1(i− 1)

(`− 1) + w1(i− 1)
≥ (`/2c)

2`
=

1
4c

and hence,

g1(i) ≤ (
γ

`
)

1
p1(i)

≤ 4cγ
1− γ

(
1
`

)

Therefore, n ≥ |I| ≥ (1/g1(i))h(log `
c − log `

2c) ≥ Ω(h`) = Ω(h log h), and the theorem follows.

4 Extensions and Conclusions

Note that given any two auction mechanisms, we can achieve performance which is within a factor
of two of the best of the two auctions by simply assigning probability 1/2 to each. By combining
the weighted majority and weighted buckets auctions of [3], we can achieve a constant competitive
ratio for valuation sequences with large F , while maintaining the O(exp(

√
log log h)) competitive

ratio for sequences with smaller F .



Also note that our techniques can be applied to the limited supply case, so long as the sequence of
bids can be truncated as soon as we run out of items to sell. While this is not a standard notion in
competitive analysis, it does suggest that the weighted majority auction could perform well when
the supply is not too small and the bids are generated in some unknown, but non-adversarial,
manner. Using the standard notion of competitive ratio, Lavi and Nisan give a lower bound of
Ω(log h) for the limited supply case [10].

In this note, we have demonstrated the power of online learning techniques in the context of online
auction problems by giving a (1 + ε)-competitive online auction for digital goods. This auction
requires valuation sequences with slightly larger, but still quite reasonable, optimal fixed price
revenues. We have demonstrated that such a condition is necessary for our weighted majority-
based auction. We have also devised a (1 + ε)-competitive online posted-price auction under a
similar assumption. This result is somewhat surprising since the amount of information available
to the algorithm to earn from is much smaller in a posted-price scenario than in the standard online
algorithm setting.
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