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Abstract

Given some arbitrary distributio® over {0, 1} and arbitrary target functioa®, the problem of
agnostic learning of disjunctions is to achieve an erroe @mparable to the errdPT;,; of
the best disjunction with respect {®, ¢*). Achieving errorO(n - OPTg;s;) + € is trivial, and
Winnow [13] achieves erraD(r - OPTy;s;) + €, wherer is the number of relevant variables in the
best disjunction. In recent work, Peleg [14] shows how tdeaha bound 0O (/7 - OPTgyis;)+e
in polynomial time. In this paper we improve on Peleg’s bougiding a polynomial-time algorithm
achieving a bound of

O(n1/3+0‘ . OPTdisj) + €
for any constana > 0. The heart of the algorithm is a method for weak-learningm@@T ;5; =

O(1/n'/3+*), which can then be fed into existing agnostic boosting piaces to achieve the
desired guarantee.

1 Introduction

Learning disjunctions (or conjunctions) ovf, 1}™ in the PAC model is a well-studied and easy problem.
The simple “list-and-cross-off” algorithm runs in lineane per example and requires orilyn /¢) examples

to achieve erroe (ignoring the logarithmic dependence on the confidence t§rnThe similarly efficient
Winnow algorithm [13] requires only((r logn)/¢) examples to learn well when the target function is a
disjunction of sizer.

However, when the data is only “mostly” consistent with gutistion, the problem becomes substan-
tially harder. In thisagnosticsetting, our goal is to produce a hypothekisvshose error raterrp(h) =
Prp (h(z) # c¢*(x)) satisfieserrp(h) < ¢ - OPTy;s; + €, whereOPT 4, is the error rate of théestdis-
junction and: is as small as possible. For example, while Winnow performié &g a function of the number
of attribute errorsof the best disjunctioh[12, 1], this can be a fact@?(r) worse than the number afistakes
of the best disjunction. Recently, Feldman [3] has showhftivany constant > 0, determining whether the
best disjunction for a given datas¢has error< € or error> % —eis NP-hard. Even more recently, Feldman
et al. [5] extend this hardness result to the problem of atiméearning disjunctions by the hypothesis class
of halfspaces. Thus, these results show that the problemdiffj a disjunction (or linear separator) of error
at most% — e given that the erroOP T y;,; of the best disjunction is at mosts computationally hard for any
constant > 0.

Given these hardness results, it is natural to consider Wihds of learning guaranteeanbe achieved.

If the errorOPT 4,5, of the best disjunction i©(1/n) then learning is essentially equivalent to the noise-free

case. Peleg [14] shows how to improve this to a boun@@fz\/ﬁ). In particular, on any given datasét
his algorithm produces a disjunction of error rate$at mostO(/n - OPTdZ-Sj(S)).2

1The minimum number of variables that would need to be flippeadrier to make the data perfectly consistent with
a disjunction. This is essentially the same as its hinge loss

2His results are for the “Red-Blue Set-Cover Problem” [2] gthis equivalent to the problem of approximating the
best disjunction, except that positive examples must tssiflad correctly (i.e., the goal is to approximate the mimim
number of mistakes on negatives subject to correctly didngithe positives). The extension to allowing for two-esid
error, however, is immediate.



In this work, we improve on the result of Peleg [14], achigvanbound ofO(n'/3T® - OPT ;) + €
for any constantv > 0, though our algorithm is not a “proper” learner (does notdarce a disjunction as its
output)® In particular, our main result is an algorithm for weak-lgiag under an arbitrary distributiof,
under the assumption that the optimal disjunction has eaterO(1/n'/3+*), which we can then feed into
boosting procedures of [7, 9] or the recéfBoost DI booster of [4], to achieve the claimed guarantee.

Note that our guarantee holds for any distribution ol&r1 } ™. In contrast, most recent work on agnostic
learning has been for the case of uniform or other “nicerdbstions [8, 10, 11].

1.1 Our Results

We present a learning algorithm whose error rate i©4n'/3+<) approximation to that of the best disjunc-
tion, for anya > 0. Formally, we prove the following theorem.

Theorem 1 There exists an algorithm that for an arbitrary distributi® over{0, 1}™ and arbitrary target
functionc* : {0,1}™ — {1, -1}, for every constantx > 0 and everye,§ > 0, runs in time polynomial
in 1/¢,log(1/6), andn, usespoly(1/e,log(1/6), n) random examples fror®, and outputs a hypothesis
such that with probability> 1 — 9,

errp(h) < O(n%+aOPTdisj) +e
whereOPT ;55 = minyepissuncrions errp(f).

The proof of Theorem 1 is based on finding a weak-learner uhgeassumption th&@PT = OPT ;5 =
O(n~1/3+)) In particular, we show:

Theorem 2 There exists an algorithm with the following property. Feegy distributionD over{0, 1}"™ and
every target functiom* such thatOPT < n~3~2, for some constant > 0, for everys > 0, the algorithm
runs in timet(d, n), usesn(d, n) random samples drawn fro® and outputs a hypothesits such that with
probability > 1 — 9,

errp(h) < 57

wheret andm are polynomials im, 1/§, andy = Q(n~2).

The high-level idea of the algorithm and proof for Theorera @s follows. First, we can assume the target
function is balanced (nearly equal probability mass ontp@sand negative examples) and that similarly no
individual variable is noticeably correlated with the tergelse weak-learning is immediate. So, for each
variablei, the probability mass of positive examples with= 1 is approximately equal to the fraction of
negative examples with; = 1. Let c°?* denote the (unknown) optimal disjunction, which we may assu
is monotone by including negated variables as additioratiufes. Letr denote the number of relevant
variables; i.e., the number of variablesdt?!. Also, assume for this discussion that we know the value of
OPT = errp(c°?'). Call an exampler “good” if ¢*(z) = ¢°P*(z) and “bad” otherwise. Now, since the
only negative examples than can have a relexaset to 1 are the bad negatives, this means that for relevant
variablesi, Pr,.p(z; = 1|c¢*(z) = —1) = O(OPT). ThereforePr,.p(z; = 1|c*(z) = +1) = O(OPT)
and soPr,.p(z; = 1) = O(OPT) as well. This means that by estimatiRg,.p(z; = 1) for each variable
i, we can remove all variables of densityOPT) from the system, knowing they are irrelevant.

At this point, we have nearly all the ingredients for #1/,/n) bound of Peleg [14]. In particular,
since all variables have density(OPT), this means the average number of variables set to 1 per d&asnp
O(OPT - n). Let S’ be the set of examples whose density is at most twice the ge¢saPr(S’) > 1/2);
we now claim that ifOPT = o(1/y/n), then eitherS’ is unbalanced or else some variablemust have
noticeable correlation with the target over example$'inin particular, since positive examples must have
on average at least— O(OPT) relevant variables set to 1, and the good negative examaleszero relevant
variables set to 1, the only way f&¥ to be balanced and have no relevant variable with noticesstelation
is for the bad negative examples to on average §&le OPT) relevant variables set to 1. But this is not
possible since all examples i/ have onlyO(OPT - n) variables set to 1, and/OPT > OPT - n for
OPT = o(1/+/n). So, some hypothesis of the form: %if¢ S’ then flip a fair coin, else prediat;” must be
a weak-learner.

3 H H . 1/ : ; : _ loglog n
This bound hides a low-order term ¢fogn)*/“. Solving for equality yieldso = 1/—igi and a bound of
O(nl/BJro(l)).



In order to improve over thé)(l/\/ﬁ) bound of [14], we do the following. Assume all variables have
nearly the same density and all examples have nearly the dansity as well. This isot without loss of
generality (and the general case adds additional comjgitathat must be addressed), but simplifies the
picture for this high-level sketch. Now, if no individual Nable or its complement is a weak predictor, by
the above analysis it must be the case that the bad negativepdas on average have a substantial number
of variables set to 1 in the relevant region (essentiallyhso the total hinge-loss (attribute-errorsyigm)).
Suppose now that one “guesses” such a bad negative exarapké focuses on only thosé variables set
to 1 bye. The disjunctionc®P? restricted to this set may now make many mistakes on positieenples
(the “substantial number of variables set to 1 in the relevegion” in e may still be a small fraction of the
relevant region). On the other hand, because we have testiic a relatively small number of variable§
theaverage densitgf examples as a function ef has dropped significantf/As a result, suppose we again
discard all examples with a number of 1's in thesevariables substantially larger than the average. Then,
on the remainder, theinge-losqattribute-errors) caused by the bad negative examplesvissubstantially
reduced. This more than makes up for the additional errorasitipe examples. In particular, we show one
can argue that fosomebad negative example if one performs the above procedure, then with respect to
the remaining subset of examples, some variable must be lapvedictor. In the end, the final hypothesis
is defined by an example a threshold), and a variablé, and will be of the form “ifx - e & [1, 0] then flip
a coin, else predict;.” The algorithm then simply searches over all such tripleshe general case (when
the variables and the examples do not all have the same getisis$ is preceded by a preprocessing step that
groups variables and examples into a number of buckets @mdrtims the above algorithm on each bucket.

The rest of the paper is organized as follows. We start ofhiwibtation and definitions in Section 2.
In Section 3 we prove Theorem 1. We achieve this in two stepst \ie show how to get a weak learner
for the special case that the examples and variables ahg f@mogeneous (all variables set to 1 roughly
the same number of times, and all examples with roughly theesaumber of variables set to 1 (actually a
somewhat weaker condition than this)). We then show howdage a general instance to this special case.
In Section 3.3 we use existing boosting algorithms combimigld this weak-learner to prove our main result.
Finally, we discuss conclusions and future directions iotide 4.

2 Notation and Preliminaries

Let X = {0,1}" and letD be the data distribution ove¥. We have a labeling functiost : X — {1, -1},
and usec?’ to denote the disjunction of least error with respect’to Without loss of generality we may
assume°?* is monotone, and we denote the error rate®f asOPT,;,; or simply OPT. l.e.,OPT =
Pr.plc°Pt(x) # c¢*(z)]. For the rest of the paper, we will assume tB&T = Q(ﬁ) (otherwise we can
use Peleg’s algorithm described in the previous sectiong. vill also assume that we know the value of
OPT.® We user to denote the number of variablesdf?’ and we call these theslevantvariables. We will
call the examples on whick andc°Pt agree “good”, and those on whiet andc°?! disagree “bad”. The
examples causing the most difficulty will be the bad negagix@mples, which can potentially satisfy many
relevant variables, thus incurring up tattribute errors (hinge-loss) and yet be labeled negative.

We assume that the algorithm gets as inputexamples out of whichn™ are positive examples (their
label is1), andm ™ are negative (their label is-1). We can assume for the goal of weak-learning that
m*,m~ = m(1 £ o(1)), else we have an immediate weak predictor. 4, denote the number of bad
positive examples, i.e., positives that do not satishf, and letm,,, denote the number of bad negative
examples, i.e., negatives that do satisf/. For convenience of notation (losing at most a factor of 2tin o
guarantee) we assume that the error rate’®f on both positive and negative examples separately is at most
OPT. Given this, we may assume thaf. , < m - OPT(1 + o(1)) andm,,, < m - OPT(1 + o(1)).

Our algorithm will examine a set ab(mn?) hypotheses, of which we will prove that at least one has
training error at most /2 — (1/n?), under the assumption th@PT is O(1/n'/3+*). In the following
we assume that is sufficiently Iarge@(n‘*), so that with high probability this implies error at mdst2 —
Q(l/nQ) overD. In particular, each hypothesis is defined by a training gepa threshold and a variable,
and so by compression bounds [6](n?*) training examples are sufficient to produce a weak learngr wi

“E.g., given twaandomvectors withn’ = n?/ 1’s, their intersection would have expected sizé)*/2. Of course,
our dataset need not be uniform random examples of the giesity, but the fact that all variables have the same density
allows one to make a similar argument.

°If OPT is unknown, we can efficiently enumerate over possible gagefs OPT such that one such guess will be

within a 1/poly additive factor of the true value. For each guess, we can mlgorithm and test it on a fresh sample
to see if its output is a weak learner.



high probability.

Finally, it will be convenient to think of algorithms that ke predictions on only a subset of the domain.
If an algorithm predicts on a subset of probability masand has error rate/2 — 4/ on that subset, then by
flipping a fair coin on the remainder, the overall error ratél e 1/2 — ~ for v = py'.

3 Proof of Theorem 1

We first build a weak agnostic learner for the best disjumcpicoblem. Our weak learner has the guarantee
given in Theorem 2, which we restate below.

Theorem 2There exists an algorithm with the following property. Feegy distributionD over{0, 1}" and
every target functiom* such thatOPT < n~3~, for some constant > 0, for everys > 0, the algorithm
runs in timet (9, n), usesn(d, n) random samples drawn fro® and outputs a hypothesis such that with
probability > 1 — 9,

errp(h) < 57

wheret andm are polynomials im, 1/§, andy = Q(n=2).

Our algorithm has two stages: a preprocessing step (whichresent later in Section 3.2) that ensures
that all variables are set to 1 roughly the same number ofstiarel that the bad and good examples have
roughly the same number 1s, and a core algorithm (which wsepitefirst in Section 3.1) that operates on
data of this form. One aspect of the preprocessing steptigthddition to partitioning examples into buckets,
it may involve discarding some relevant variables, yiefgdndataset in which only somie > m/polylog(n)
positive examples satisfy’?’ over the variables remaining. Thus, our assumption in 8edil is that
while the dataset has the “homogeneity” properties desaredl the fraction of bad negative examples is
OPT(1 + o(1)), the fraction of bagositiveexamples may be as large Bs- 1/polylog(n). Nonetheless,
this will still allow for weak learning.

3.1 (B,a,m)-Sparse Instances

As mentioned above, in this section we give a weak learniggridhm for a dataset that has certain “nice”
homogeneity properties. We call such a datas@Bax, m)-sparse instanceWe begin by describing what
these properties are.

The first property is that there exists a positive inte@esuch that for each variable;, the number of
positive examples in the instance with = 1 is betweenB/2 and B, and the number of negative examples
with z; = 1 is betweenZ (1 — o(1)) andB(1 + o(1)).

The first property implies that in this case the overall nundfels in all examples is at mo&nB(1 +
o(1)), and therefore, an average example has no moreltﬁél-lg\rt"(—l)) variables set td. If the bad negatives
were typical examples, we would expect them to contain at#8sm,_ ,(1+0(1)) < nB-OPT(1+0(1))
ones in total. While in general this may not necessarily leeciise, we assume for this section that at least
they are notoo atypical on average. In particular, the second property sgeii@e this instance satisfies is
that the overall number of ones present in all the bad negmis/at most'+* BOPT.

Denote bym the number of positive examples th&p! classifies correctly. The third property is that
m > m/n°®). If this dataset were our given training set then this woddéddundant, as we already assume
the stronger condition that the fraction of good positivaraples isl — O(OPT).6 However,m will be of
use in later sections, when we call this algorithm as a sulmewon instances defined by only a subset of all
the variables. In other words, we show here that even if wvanatP?* to make more mistakes on the positive
examples (and in particular, to label almost all positiveirectly!) yet make at mostOPT mistakes on
the negatives, we are still able to weak-learn. As our amabfsows, the condition we require of is that
the ratio% dominates the ratig?,%. Furthermore, the rati(% will play a role in the definition ofy, our
advantage over a random guess.

An instance satisfying all the above three properties ieda (B, «, m)-sparseinstance. Next, we show
how to get a weak learner for such sparse instances. We firstlince the following definitions.

Definition 3 Given an example and a positive integer thresholl] we define thée, 6)-restricted domaito
be the set of all examples whose intersection with strictly smaller tharf. That is, the set of examples
such thatz - e < . For any hypothesis, we define thée, #)-restricted hypothesi® beh over any example

®Indeed, if the original instance was sparse, we would hiave m (1 — o(1)).



that belongs to th¢e, 0) restricted domain, and “I don’t know” (flipping a fair coin)wer any other example.
In particular, we consider the

e (e,0)-restricted(+1)-hypothesis — predict 1 if the given example intersecton less thar variables.
e (e, 0)-restricted(—1)-hypothesis — predict 1 if the given example intersecton less tham variables.

e (e, 0)-restrictedz;-hypothesis — predict 1 if the given example intersect®n less thar variablesand
hasz; = 1.

We call these: + 2 restricted hypotheses thie, 6)-restricted base hypotheses

Our weak-learning algorithm enumerates over all pair$eo®), wheree is a negative example in our
training set and is an integer betweehandn. For every such pair, our algorithm checks whether any of
the n + 2 restricted hypothesis is Q(% . %)—weak-learner (see Algorithm 1 below). Our next lemma
proves that fol B, a, 7)-sparse instances, this algorithm indeed finds a weak4deaimfact, we show that

for every negative example it suffices to consider a particular valuetf

Algorithm 1 A weak learner for sparse instances.

Input: A (B, «,m) sparse instance.

Step 1: For every negative examptein the set and ever§ € {1,2,...,n}

Step la: Check if any of the(e, 6)-restricted hypotheses from Definition 3 is a weak learnehwiror at
mosti — Q(n=?).

Step 1b: If Yes, then output the corresponding hypothesis and halt.

Step 2: If no restricted hypothesis is a weak learner, output failur

Lemma 4 Suppose we are given(#, «, 7 )-sparse instance, and that”* makes no more thanma(3+)
fraction of errors on the negative examples. Then therdegidbad negative exampteand a threshold)
such that one of thge, 0)-restricted base hypotheses mentioned in Definition 3 hras at mostl /2 — ~ for
v =Q(2 . 9FT) Since we may assum@T > 1/./n, this impliesy = Q(n~2). Thus Algorithm 1 outputs

a hypothesis of error at mo%t— Qn=2).

Proof: Letm* andm ™~ be the number of positive and negative examples in this spassance, where we
reservemn to refer to the size of the original dataset of which this spanstance is a subset. As before, call
examples “good” if they are classified correctly %", else call them “bad”. We know = O(mOPT),
because relevant variables have no more hanOPT) occurrences of over the negative examples. Since
each good positive example has to have at least one relesdable set tal, it must also hold thaB =
Q(m/r). It follows thatrOPT = Q(m/m). We now show how to find a weak learner givei, o, m)-
sparse instance, based on a bad negative example.

Consider any bad negative examplewith ¢, variables set td. If we sum the intersection (i.e. the dot-
product) ofe; with each of the positive examples in the instance, we sirgphthe total number of ones in
the positive examples over thegesariables. As each variable is setltbetweenB /2 and B times, this sum
is B't; for someB’ € [B/2, B]. Therefore, the expected intersectiorepfvith a random positive example

is # -t;B’. Setf; = (3 - tmfi , wherei > 1 will be chosen later suitably. Throw out any example which ha
more thard; intersection withe;. Using Markov’s inequality, we deduce that we retain atieas (1 — %)
positive examples.

The key point of the above is that focusing on the exampletsréraain, none of them can contribute
more thary; hinge-loss (attribute errors), restricting’ to thet; variables set to 1 by;. On the other hand,
it is possible that the number attualerrors over positives has increased substantially: part@pfew of
the remaining positive examples share relevant variablés &y in order for any of the(e;, 6;) restricted
hypotheses to be a weak learner. We now argue that this chappen simultaneously for al.

Specifically, assume for contradiction that none of thg6;)-restricted base hypotheses yields a weak
learner. Consider the total number tf contributed by the remaining negative examples over tlevant
variables of; (the relevant variables that are setitby e;). As each bad negative contributes at nthsuch
ones, the overall contribution on the negative sidg i8;, - mOPT(1 + o(1)) = ﬁ%—ﬁ’ -mOPT(1 + o(1)).
Since none of relevant variables setltby e; gives a weak learner, it holds that the numbei ®fover the
positive side of these relevant variables is no more thag:- - ¢; B - OPT (see below, at the specification of
the value ofy). So even if each occurrence bEomes from a unique positive example, we still have no more




than23-- - t; B - OPT positive examples from the;, ¢;) restricted domain intersecting over the relevant
variables. Therefore, adding back in the positive exampteérom the restricted domain, we have no more
than28- - ;B - OPT + m™ /3 positive examples that intersegtover the relevant variables.

Consider now a bipartite graph with thé good positive examples on one side and th®PT bad
negative examples on the other side, with an edge betwedtivpes and negative; if e; intersects:; over
the relevant variables. Since eagthas degree at most} . - ¢; B - OPT +m™ /3, the total number of edges
is at mos2 - BOPT ), t;4+m™-mOPT/ (3, and therefore some good positive examples must have degree
at mostOPT[fgﬁT Dot + “% - ]. On the other hand, since we are giveffa «, m)-sparse instance, we
know that every good positive example intersentﬂ;eastw negative examples, and moreover that
> ti < n'T*BOPT. Putting this together we have:

26B*n't*0OPTm m_+ m
mmt 8 m

B/2 < (1+0(1))OPT

Settings = / % to equalize the two terms in the sum above, we derive
B < 4V2(1+0(1)B-m . p(i+a)/20pT3/2,

Thus we havey !t . ﬁ—z -OPT? > 1’%1) Recall thatin/m > n~°(*), so we derive a contradiction, as for

sufficiently largen it must hold that
1/3
OPT > <—1 +3‘2’(1)> pm o) 5 p1/3e

In order to complete the proof, we need to verify that indged- 1. Recall B = O(mOPT) and
m* >, som™ /m > n=°). Thusp? = Q(—raratmgers) = Q(n?*°(*)) by our assumption 0@PT.

The last detall is to check what advantage do we get over abrargliess. Our analysis shows that for
some bad negative examplg the number of ones over the relevant variables on the peside is at least
23-% - ;B - OPT, whereas on the negative side, there can be at st - ¢, 3 - OPT(1 + o(1)) ones.
We deduce that at least one of the at mest(r, ¢;) relevant variables set to 1 by must give a gap of

at Ieastﬁ'“iﬁ'g':(il;)"(l)) > B-OPT(1 — o(1)) since > 1. Finally, using the fact thaB = Q(r/r)
we get a gap of2(29FT) or equivalently an advantage of = Q(22L . ) This advantage is trivially
Q(n—20+(@)) or, using the assumpti@®PT > 1/,/n (for otherwise, we can apply Peleg’s algorithm [14]),

we gety = Q(n—21+o(@), [ |

3.2 General Instances

Section 3.1 dealt with nicely behaved (homogeneous) isstarin order to complete the proof of Theorem 2,
we need to show how to reduce a general instance to syéh @ m)-sparse instance. What we show is a
(simple) algorithm that partitions a given instance intb-sustances, based on the number of 1s of each ex-
ample over certain variables (but without looking at theelalof the examples). It outputgalylog(n)-long

list of sub-instances, each containing a noticeable fsaadf the domain, and has the following guarantee:
either some sub-instance has a trivial weak-learner (hatieeably different number of positive versus neg-
ative examples or there is a variable with noticeable cati@h), or some sub-instance(i8, «, m)-sparse.
Formally, we prove this next lemma.

Lemma 5 There exists aoly((logn)°/*) n,m)-time algorithm, that gets as an inp2i» labeled exam-
plesin{0,1}", and output a list of subsets, each containingpolylog(n) examples, s.t. either some subset
has a trivial weak-learner, or some subse{ i3, «, m/polylog(n))-sparse.

Combining the algorithm from Lemma 5 with the algorithm peted in Section 3.1, we get our weak-
learning algorithm (see Algorithm 2). We first run the alglonh of Lemma 5, traverse all sub-instances, and
check whether any has a trivial weak-learner. If not, we hendlgorithm for( B, «, 7 )-sparse instances over
each sub-instance. Obviously, given the one sub-instahadws sparse, we find a restricted hypothesis with
(n~?) advantage over a random guess.

Proof: We start by repeating the argument presented in the inttamiu¢Section 1.1). For any relevant
variable, no more tham,, < m - OPT(1 + o(1)) bad examples set it tb. Therefore, as an initial step,
we throw out any variable with more than this many occurrermeer the negative examples, as it cannot



possibly be a relevant variable. For convenience, redefiteebe the number of variables that remain. Next,
we check each individual variable to determine if it itsalfa weak predictor. If not, then this means each
variable is set to 1 on approximately the same number ofigesind negative examples.

Bucket all the variables according the number of times theysat tol, where thej-bucket contains
all the variables that are set toany number of times in the rang®’, 2/*1). Since there are at moktg n

buckets, some buckgtmust cover at Ieaq% positive examples, in the sense that the disjunction ower th

relevantvariables in this bucket agrees with at least this many gamsitiges. So now, leB’ = 271, et

n’ andr’ be the total number of variables and the number of relevamabias in this bucket respextively.
As we can ignore all examples that are identicéligver then’ variables in this bucket, let’™ (resp.m’™)

be the number of positive (resp. negative) examples covgyeate variables in this bucket. Our algorithm
adds the remaining examples (over theSeariables) as one sub-instance to its list. Let the numb#rexe
examples b@&m/. As before, if the number of positive examples and negatiagrgples covered by thesé
variables differ significantly, or if some variable is a wdakrner (with respect to the set of examples left),
then the algorithm halts. Observe that if this sub-instasa¢®’, «, m/ log(n))-sparse, then we are done, no
matter what other sub-instances the algorithm will addstdist.

Focusing on the remaining examples, every variable is sétdbmostB’ many times over the pos-
itive examples, so the total number tf, over the positive examples ¢ n’B’. If indeed the resulting
instance is not B, o, m/ log(n))-sparse, then the total number t§ over the bad negative examples is
> (n/)+*(B")OPT. So now, our algorithm throws out any example with more thaiB’ /m’ variables set
to 1, and adds the remaining examples to the list of sub-instai®yeMarkov’s inequality, we are guaranteed
not to remove more thai/2 of the positive examples, so the sub-instance remainingfficiently large.
As before, if the remaining subset of examples (over théseariables) has a trivial weak-learner, we are
done. Otherwise, the algorithm continues recursively ahir sub-instance — re-buckets and then removes
all examples with too many variables setltd\Note, each time the algorithm buckets the variables, ita¢e
recurse over each bucket that covers at ledstlag(n) fraction of the positive examples. In the worst-case,
all of thelog(n) buckets cover these many positive examples, and therafeehranching factor in each
bucketing step isog(n).

We now show that the depth of the bucket-and-remove reccerenno more tha®(1/«). It is easy
to see inductively that at thieth step of the recursion, we retain a fractionof (logn)® positive examples.
Suppose that by the firssteps, no sub-instance is sparse and no weak-learner @.fRacall, ifrOPT « 1,
we have an immediate weak-learner, so it must hold that iri-thestep, we still retain at least; = 1/OPT
variables. Furthermore, as in thth step we did not have a sparse instance, it follows thab#uenegative
examples had more tham;)! ™ (B’)OPT ones before we threw out examples. Once we remove dense

examples, they contain no more th%ﬁﬁ— mOPT many ones. Thus, the fraction of ones over the bad
negatives that survive each removal step is no moredthdn -=-. As1/0OPT > n'/3, this fraction is at most

n=3(logn)* < n=/% (for the firstO(1/«) iterations). Hence, aftet/« iterations, some relevant variable
must be a weak-learner.
To complete the proof, note that we take no more tHagn)%* bucket-and-remove steps. Each such
step requirepoly(n, m) time for the bucketing, removal and checking for weak-leariWe conclude that
the run-time of this algorithm igoly((log n)'/*, n, m). |

Algorithm 2 A weak learner for general instances.

Input: A set of2m training examples.

Step 1: If any individual variable or the constant hypotheses is akilearner, output it and halt.

Step 2: Remove any variable which has more tl?2anOPT 1's over the negative examples.

Step 3: Bucket the remaining variables such that bugkebntains variables with density 8/, 2/F1).

Step 4: For every bucket which covers at leadbg n fraction of the positive examples

Step 4a: Run the algorithm for sparse instances on this bucket. If akiearner is obtained, output it and
halt.

Step 4b: Let B’ be the densityZ’+!) in this buckety’ be the number of variables in the bucket 2nd’ be
the total number of examples with respect to this bucketdfigig the ones which are identically
zero over they’ variables). Remove all the examples which have more 2haB’ /m’ 1's over this
bucket. Repeat stefs4 on this new instance.




3.3 Strong Learning

Given Theorem 2, we now prove the main theorem (Theorem 1)lliyging the weak-learner into an off-
the-shelf boosting algorithm for the agnostic case. We hserécentABoost DI booster of [4], which
converts any algorithm satisfying Theorem 2 into one sgtigf Theorem 1. The result in [4] gives a boosting
technique for(n, v)-weak learners. In our context &n, v)-weak learner is an algorithm which with respect

to to any distributiorD, with high probability, produces a hypothesis of ergo% —v, wheneveOPTy;,; <
1

2 7"

Theorem 6 (Feldman [4], Theorem 3.5)There exists an algorithmABoost DI that, given a(n, v)-weak
learner, for every distributiorD ande > 0, produces, with high probability, a hypothesissuch that
errp(h) < %;;’7” + €. Furthermore, the running time of the algorithm'Is- poly(%, %), whereT is
the running time of the weak learner.

As an immediate corollary, we set= % — % -n~1/3= and obtain an hypothestssuch thaterrp(h) <
2n!/3+*QPT + €. This concludes the proof of Theorem 1. We note that as amalige toABoost DI ,
one can also use the boosting algorithm of Kalai et. al [9jp¥eed by another boosting algorithm of Gavin-
sky [7], to get the result in Theorem 1.

4  Future Directions

In this paper we have presented an algorithm for learningthgs of disjunctions in the case tH@PT <
n~(1/3+a) "achieving an error rate @b (n'/>** . OPT) 4 ¢. The natural open question is whether one can
improve this bound. For example, can one achieve weak agrieatning forOPT = n~'/4? Or, can one
improve the bounds as a function of the number of relevanables, e.g., making only a factoq(r%9) times
more mistakes than the best disjunction?

An intriguing open question is whether one can extend thahrigue for other concept classes. For
example, consider the class of linear separators ¢0et}" with weights in{0,1} (i.e., majority vote or
“k of r” functions). Here we do not know even how to achieve weaknigagy for OPT = n=°9. The
algorithm presented in this paper for disjunctions usedabgthat in order for individual variables not to be
weak hypotheses themselves, the bad negative examplesmsaashe sense “point” in the direction of the
target vector (they must have a high dot-product with thgeatfunction vector if we view the disjunction as
a linear threshold function) to a substantially greateeekthan the positive examples do. E.g., if a typical
positive example hasrelevant variables set to 1, then the typical bad negatieengke must have/OPT
relevant variables set to 1. For the case of majority-votefions, the difficulty with this approach is that
instead all we can say is that if the positive examples h@@er- ¢ relevant variables set to 1, then the typical
bad negative examples should have at lea3t+ ¢t /OPT relevant variables set to 1, which might not be such
a distinction in a multiplicative sense.

On a more general note, our work here uses somewhat notidreadihypotheses, by using the examples
themselves to define “slices” of the data (focusing on thosenples with no more than a certaindot-
product with some given negative example). Perhaps thisinhig useful for other learning problems.
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