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Abstract

Given some arbitrary distributionD over{0, 1}n and arbitrary target functionc∗, the problem of
agnostic learning of disjunctions is to achieve an error rate comparable to the errorOPTdisj of
the best disjunction with respect to(D, c∗). Achieving errorO(n · OPTdisj) + ǫ is trivial, and
Winnow [13] achieves errorO(r ·OPTdisj) + ǫ, wherer is the number of relevant variables in the
best disjunction. In recent work, Peleg [14] shows how to achieve a bound of̃O(

√
n ·OPTdisj)+ ǫ

in polynomial time. In this paper we improve on Peleg’s bound, giving a polynomial-time algorithm
achieving a bound of

O(n1/3+α · OPTdisj) + ǫ

for any constantα > 0. The heart of the algorithm is a method for weak-learning when OPTdisj =

O(1/n1/3+α), which can then be fed into existing agnostic boosting procedures to achieve the
desired guarantee.

1 Introduction

Learning disjunctions (or conjunctions) over{0, 1}n in the PAC model is a well-studied and easy problem.
The simple “list-and-cross-off” algorithm runs in linear time per example and requires onlyO(n/ǫ) examples
to achieve errorǫ (ignoring the logarithmic dependence on the confidence termδ). The similarly efficient
Winnow algorithm [13] requires onlyO((r log n)/ǫ) examples to learn well when the target function is a
disjunction of sizer.

However, when the data is only “mostly” consistent with a disjunction, the problem becomes substan-
tially harder. In thisagnosticsetting, our goal is to produce a hypothesish whose error rateerrD(h) =
PrD (h(x) 6= c∗(x)) satisfieserrD(h) ≤ c · OPTdisj + ǫ, whereOPTdisj is the error rate of thebestdis-
junction andc is as small as possible. For example, while Winnow performs well as a function of the number
of attribute errorsof the best disjunction1 [12, 1] , this can be a factorO(r) worse than the number ofmistakes
of the best disjunction. Recently, Feldman [3] has shown that for any constantǫ > 0, determining whether the
best disjunction for a given datasetS has error≤ ǫ or error≥ 1

2 − ǫ is NP-hard. Even more recently, Feldman
et al. [5] extend this hardness result to the problem of agnostic learning disjunctions by the hypothesis class
of halfspaces. Thus, these results show that the problem of finding a disjunction (or linear separator) of error
at most12 − ǫ given that the errorOPTdisj of the best disjunction is at mostǫ is computationally hard for any
constantǫ > 0.

Given these hardness results, it is natural to consider whatkinds of learning guaranteescanbe achieved.
If the errorOPTdisj of the best disjunction isO(1/n) then learning is essentially equivalent to the noise-free
case. Peleg [14] shows how to improve this to a bound ofÕ(1/

√
n). In particular, on any given datasetS,

his algorithm produces a disjunction of error rate onS at mostÕ(
√

n · OPTdisj(S)).2

1The minimum number of variables that would need to be flipped in order to make the data perfectly consistent with
a disjunction. This is essentially the same as its hinge loss.

2His results are for the “Red-Blue Set-Cover Problem” [2] which is equivalent to the problem of approximating the
best disjunction, except that positive examples must be classified correctly (i.e., the goal is to approximate the minimum
number of mistakes on negatives subject to correctly classifying the positives). The extension to allowing for two-sided
error, however, is immediate.



In this work, we improve on the result of Peleg [14], achieving a bound ofO(n1/3+α · OPTdisj) + ǫ
for any constantα > 0, though our algorithm is not a “proper” learner (does not produce a disjunction as its
output).3 In particular, our main result is an algorithm for weak-learning under an arbitrary distributionD,
under the assumption that the optimal disjunction has errorrateO(1/n1/3+α), which we can then feed into
boosting procedures of [7, 9] or the recentABoostDI booster of [4], to achieve the claimed guarantee.

Note that our guarantee holds for any distribution over{0, 1}n. In contrast, most recent work on agnostic
learning has been for the case of uniform or other “nice” distributions [8, 10, 11].

1.1 Our Results

We present a learning algorithm whose error rate is anO(n1/3+α) approximation to that of the best disjunc-
tion, for anyα > 0. Formally, we prove the following theorem.

Theorem 1 There exists an algorithm that for an arbitrary distribution D over{0, 1}n and arbitrary target
functionc∗ : {0, 1}n 7→ {1,−1}, for every constantα > 0 and everyǫ, δ > 0, runs in time polynomial
in 1/ǫ, log(1/δ), andn, usespoly(1/ǫ, log(1/δ), n) random examples fromD, and outputs a hypothesish,
such that with probability> 1 − δ,

errD(h) ≤ O(n
1
3+αOPTdisj) + ǫ

whereOPTdisj = minf∈DISJUNCTIONS errD(f).

The proof of Theorem 1 is based on finding a weak-learner underthe assumption thatOPT ≡ OPTdisj =

O(n−(1/3+α)). In particular, we show:

Theorem 2 There exists an algorithm with the following property. For every distributionD over{0, 1}n and
every target functionc∗ such thatOPT < n− 1

3−α, for some constantα > 0, for everyδ > 0, the algorithm
runs in timet(δ, n), usesm(δ, n) random samples drawn fromD and outputs a hypothesish, such that with
probability> 1 − δ,

errD(h) ≤ 1

2
− γ

wheret andm are polynomials inn, 1/δ, andγ = Ω(n−2).

The high-level idea of the algorithm and proof for Theorem 2 is as follows. First, we can assume the target
function is balanced (nearly equal probability mass on positive and negative examples) and that similarly no
individual variable is noticeably correlated with the target, else weak-learning is immediate. So, for each
variablei, the probability mass of positive examples withxi = 1 is approximately equal to the fraction of
negative examples withxi = 1. Let copt denote the (unknown) optimal disjunction, which we may assume
is monotone by including negated variables as additional features. Letr denote the number of relevant
variables; i.e., the number of variables incopt. Also, assume for this discussion that we know the value of
OPT = errD(copt). Call an examplex “good” if c∗(x) = copt(x) and “bad” otherwise. Now, since the
only negative examples than can have a relevantxi set to 1 are the bad negatives, this means that for relevant
variablesi, Prx∼D(xi = 1|c∗(x) = −1) = O(OPT). Therefore,Prx∼D(xi = 1|c∗(x) = +1) = O(OPT)
and soPrx∼D(xi = 1) = O(OPT) as well. This means that by estimatingPrx∼D(xi = 1) for each variable
i, we can remove all variables of densityω(OPT) from the system, knowing they are irrelevant.

At this point, we have nearly all the ingredients for theÕ(1/
√

n) bound of Peleg [14]. In particular,
since all variables have densityO(OPT), this means the average number of variables set to 1 per example is
O(OPT · n). Let S′ be the set of examples whose density is at most twice the average (soPr(S′) ≥ 1/2);
we now claim that ifOPT = o(1/

√
n), then eitherS′ is unbalanced or else some variablexi must have

noticeable correlation with the target over examples inS′. In particular, since positive examples must have
on average at least1−O(OPT) relevant variables set to 1, and the good negative examples have zero relevant
variables set to 1, the only way forS′ to be balanced and have no relevant variable with noticeablecorrelation
is for the bad negative examples to on average haveΩ(1/OPT) relevant variables set to 1. But this is not
possible since all examples inS′ have onlyO(OPT · n) variables set to 1, and1/OPT ≫ OPT · n for
OPT = o(1/

√
n). So, some hypothesis of the form: “ifx 6∈ S′ then flip a fair coin, else predictxi” must be

a weak-learner.

3This bound hides a low-order term of(log n)1/α. Solving for equality yieldsα =
q

log log n
log n

and a bound of

O(n1/3+o(1)).



In order to improve over thẽO(1/
√

n) bound of [14], we do the following. Assume all variables have
nearly the same density and all examples have nearly the samedensity as well. This isnot without loss of
generality (and the general case adds additional complications that must be addressed), but simplifies the
picture for this high-level sketch. Now, if no individual variable or its complement is a weak predictor, by
the above analysis it must be the case that the bad negative examples on average have a substantial number
of variables set to 1 in the relevant region (essentially so that the total hinge-loss (attribute-errors) isΩ(m)).
Suppose now that one “guesses” such a bad negative examplee and focuses on only thosen′ variables set
to 1 by e. The disjunctioncopt restricted to this set may now make many mistakes on positiveexamples
(the “substantial number of variables set to 1 in the relevant region” in e may still be a small fraction of the
relevant region). On the other hand, because we have restricted to a relatively small number of variablesn′,
theaverage densityof examples as a function ofn′ has dropped significantly.4 As a result, suppose we again
discard all examples with a number of 1’s in thesen′ variables substantially larger than the average. Then,
on the remainder, thehinge-loss(attribute-errors) caused by the bad negative examples is now substantially
reduced. This more than makes up for the additional error on positive examples. In particular, we show one
can argue that forsomebad negative examplee, if one performs the above procedure, then with respect to
the remaining subset of examples, some variable must be a weak predictor. In the end, the final hypothesis
is defined by an examplee, a thresholdθ, and a variablei, and will be of the form “ifx · e 6∈ [1, θ] then flip
a coin, else predictxi.” The algorithm then simply searches over all such triples.In the general case (when
the variables and the examples do not all have the same density), this is preceded by a preprocessing step that
groups variables and examples into a number of buckets and then runs the above algorithm on each bucket.

The rest of the paper is organized as follows. We start off with notation and definitions in Section 2.
In Section 3 we prove Theorem 1. We achieve this in two steps: first we show how to get a weak learner
for the special case that the examples and variables are fairly homogeneous (all variables set to 1 roughly
the same number of times, and all examples with roughly the same number of variables set to 1 (actually a
somewhat weaker condition than this)). We then show how to reduce a general instance to this special case.
In Section 3.3 we use existing boosting algorithms combinedwith this weak-learner to prove our main result.
Finally, we discuss conclusions and future directions in Section 4.

2 Notation and Preliminaries

Let X = {0, 1}n and letD be the data distribution overX . We have a labeling functionc∗ : X → {1,−1},
and usecopt to denote the disjunction of least error with respect toc∗. Without loss of generality we may
assumecopt is monotone, and we denote the error rate ofcopt asOPTdisj or simply OPT. I.e., OPT =
Prx∼D[copt(x) 6= c∗(x)]. For the rest of the paper, we will assume thatOPT = Ω( 1√

n
) (otherwise we can

use Peleg’s algorithm described in the previous section). We will also assume that we know the value of
OPT.5 We user to denote the number of variables incopt and we call these therelevantvariables. We will
call the examples on whichc∗ andcopt agree “good”, and those on whichc∗ andcopt disagree “bad”. The
examples causing the most difficulty will be the bad negativeexamples, which can potentially satisfy many
relevant variables, thus incurring up tor attribute errors (hinge-loss) and yet be labeled negative.

We assume that the algorithm gets as input2m examples out of whichm+ are positive examples (their
label is 1), andm− are negative (their label is−1). We can assume for the goal of weak-learning that
m+, m− = m(1 ± o(1)), else we have an immediate weak predictor. Letm+

bad denote the number of bad
positive examples, i.e., positives that do not satisfycopt, and letm−

bad denote the number of bad negative
examples, i.e., negatives that do satisfycopt. For convenience of notation (losing at most a factor of 2 in our
guarantee) we assume that the error rate ofcopt on both positive and negative examples separately is at most
OPT. Given this, we may assume thatm+

bad ≤ m · OPT(1 + o(1)) andm−
bad ≤ m · OPT(1 + o(1)).

Our algorithm will examine a set of̃O(mn2) hypotheses, of which we will prove that at least one has
training error at most1/2 − Ω̃(1/n2), under the assumption thatOPT is O(1/n1/3+α). In the following
we assume thatm is sufficiently large,Õ(n4), so that with high probability this implies error at most1/2 −
Ω̃(1/n2) overD. In particular, each hypothesis is defined by a training example, a threshold and a variable,
and so by compression bounds [6],Õ(n4) training examples are sufficient to produce a weak learner with

4E.g., given tworandomvectors withn′ = n2/3 1’s, their intersection would have expected size(n′)1/2. Of course,
our dataset need not be uniform random examples of the given density, but the fact that all variables have the same density
allows one to make a similar argument.

5If OPT is unknown, we can efficiently enumerate over possible guesses forOPT such that one such guess will be
within a 1/poly additive factor of the true value. For each guess, we can run our algorithm and test it on a fresh sample
to see if its output is a weak learner.



high probability.
Finally, it will be convenient to think of algorithms that make predictions on only a subset of the domain.

If an algorithm predicts on a subset of probability massp, and has error rate1/2 − γ′ on that subset, then by
flipping a fair coin on the remainder, the overall error rate will be 1/2 − γ for γ = pγ′.

3 Proof of Theorem 1

We first build a weak agnostic learner for the best disjunction problem. Our weak learner has the guarantee
given in Theorem 2, which we restate below.

Theorem 2There exists an algorithm with the following property. For every distributionD over{0, 1}n and
every target functionc∗ such thatOPT < n− 1

3−α, for some constantα > 0, for everyδ > 0, the algorithm
runs in timet(δ, n), usesm(δ, n) random samples drawn fromD and outputs a hypothesish, such that with
probability> 1 − δ,

errD(h) ≤ 1

2
− γ

wheret andm are polynomials inn, 1/δ, andγ = Ω(n−2).

Our algorithm has two stages: a preprocessing step (which wepresent later in Section 3.2) that ensures
that all variables are set to 1 roughly the same number of times and that the bad and good examples have
roughly the same number 1s, and a core algorithm (which we present first in Section 3.1) that operates on
data of this form. One aspect of the preprocessing step is that in addition to partitioning examples into buckets,
it may involve discarding some relevant variables, yielding a dataset in which only somẽm ≥ m/polylog(n)
positive examples satisfycopt over the variables remaining. Thus, our assumption in Section 3.1 is that
while the dataset has the “homogeneity” properties desiredand the fraction of bad negative examples is
OPT(1 + o(1)), the fraction of badpositiveexamples may be as large as1 − 1/polylog(n). Nonetheless,
this will still allow for weak learning.

3.1 (B, α, m̃)-Sparse Instances

As mentioned above, in this section we give a weak learning algorithm for a dataset that has certain “nice”
homogeneity properties. We call such a dataset a(B, α, m̃)-sparse instance. We begin by describing what
these properties are.

The first property is that there exists a positive integerB such that for each variablexi, the number of
positive examples in the instance withxi = 1 is betweenB/2 andB, and the number of negative examples
with xi = 1 is betweenB

2 (1 − o(1)) andB(1 + o(1)).
The first property implies that in this case the overall number of 1s in all examples is at most2nB(1 +

o(1)), and therefore, an average example has no more thannB(1+o(1))
m variables set to1. If the bad negatives

were typical examples, we would expect them to contain at most nB
m ·m−

bad(1+o(1)) ≤ nB ·OPT(1+o(1))
ones in total. While in general this may not necessarily be the case, we assume for this section that at least
they are nottoo atypical on average. In particular, the second property we assume this instance satisfies is
that the overall number of ones present in all the bad negatives is at mostn1+αBOPT.

Denote bym̃ the number of positive examples thatcopt classifies correctly. The third property is that
m̃ ≥ m/no(α). If this dataset were our given training set then this would be redundant, as we already assume
the stronger condition that the fraction of good positive examples is1 − O(OPT).6 However,m̃ will be of
use in later sections, when we call this algorithm as a subroutine on instances defined by only a subset of all
the variables. In other words, we show here that even if we allow copt to make more mistakes on the positive
examples (and in particular, to label almost all positives incorrectly!) yet make at mostmOPT mistakes on
the negatives, we are still able to weak-learn. As our analysis shows, the condition we require of̃m is that
the ratio m̃

m dominates the ratioOPT

n−1/3 . Furthermore, the ratiom̃m will play a role in the definition ofγ, our
advantage over a random guess.

An instance satisfying all the above three properties is called a(B, α, m̃)-sparseinstance. Next, we show
how to get a weak learner for such sparse instances. We first introduce the following definitions.

Definition 3 Given an examplee and a positive integer thresholdθ, we define the(e, θ)-restricted domainto
be the set of all examples whose intersection withe is strictly smaller thanθ. That is, the set of examplesx
such thatx · e < θ. For any hypothesish, we define the(e, θ)-restricted hypothesisto beh over any example

6Indeed, if the original instance was sparse, we would havem̃ = m(1 − o(1)).



that belongs to the(e, θ) restricted domain, and “I don’t know” (flipping a fair coin) over any other example.
In particular, we consider the

• (e, θ)-restricted(+1)-hypothesis – predict+1 if the given example intersectse on less thanθ variables.

• (e, θ)-restricted(−1)-hypothesis – predict−1 if the given example intersectse on less thanθ variables.

• (e, θ)-restrictedxi-hypothesis – predict+1 if the given example intersectse on less thanθ variablesand
hasxi = 1.

We call thesen + 2 restricted hypotheses the(e, θ)-restricted base hypotheses.

Our weak-learning algorithm enumerates over all pairs of(e, θ), wheree is a negative example in our
training set andθ is an integer between1 andn. For every such pair, our algorithm checks whether any of
the n + 2 restricted hypothesis is aΩ( m̃

m · OPT

r )-weak-learner (see Algorithm 1 below). Our next lemma
proves that for(B, α, m̃)-sparse instances, this algorithm indeed finds a weak-learner. In fact, we show that
for every negative examplee, it suffices to consider a particular value ofθ.

Algorithm 1 A weak learner for sparse instances.

Input: A (B, α, m̃) sparse instance.
Step 1: For every negative examplee in the set and everyθ ∈ {1, 2, . . . , n}
Step 1a: Check if any of the(e, θ)-restricted hypotheses from Definition 3 is a weak learner with error at

most 1
2 − Ω(n−2).

Step 1b: If Yes, then output the corresponding hypothesis and halt.
Step 2: If no restricted hypothesis is a weak learner, output failure.

Lemma 4 Suppose we are given a(B, α, m̃)-sparse instance, and thatcopt makes no more than an−( 1
3+α)

fraction of errors on the negative examples. Then there exists a bad negative examplee and a thresholdθ
such that one of the(e, θ)-restricted base hypotheses mentioned in Definition 3 has error at most1/2− γ for
γ = Ω( m̃

m · OPT

r ). Since we may assumeOPT > 1/
√

n, this impliesγ = Ω(n−2). Thus Algorithm 1 outputs
a hypothesis of error at most12 − Ω(n−2).

Proof: Let m+ andm− be the number of positive and negative examples in this sparse instance, where we
reservem to refer to the size of the original dataset of which this sparse instance is a subset. As before, call
examples “good” if they are classified correctly bycopt, else call them “bad”. We knowB = O(mOPT),
because relevant variables have no more thanO(mOPT) occurrences of1 over the negative examples. Since
each good positive example has to have at least one relevant variable set to1, it must also hold thatB =
Ω(m̃/r). It follows thatrOPT = Ω(m̃/m). We now show how to find a weak learner given a(B, α, m̃)-
sparse instance, based on a bad negative example.

Consider any bad negative exampleei with ti variables set to1. If we sum the intersection (i.e. the dot-
product) ofei with each of the positive examples in the instance, we simplyget the total number of ones in
the positive examples over theseti variables. As each variable is set to1 betweenB/2 andB times, this sum
is B′ti for someB′ ∈ [B/2, B]. Therefore, the expected intersection ofei with a random positive example
is 1

m+ · tiB′. Setθi = β · tiB
′

m+ , whereβ > 1 will be chosen later suitably. Throw out any example which has
more thanθi intersection withei. Using Markov’s inequality, we deduce that we retain at least m+(1 − 1

β )

positive examples.
The key point of the above is that focusing on the examples that remain, none of them can contribute

more thanθi hinge-loss (attribute errors), restrictingcopt to theti variables set to 1 byei. On the other hand,
it is possible that the number ofactualerrors over positives has increased substantially: perhaps too few of
the remaining positive examples share relevant variables with ei in order for any of the(ei, θi) restricted
hypotheses to be a weak learner. We now argue that this cannothappen simultaneously for allei.

Specifically, assume for contradiction that none of the(ei, θi)-restricted base hypotheses yields a weak
learner. Consider the total number of1s contributed by the remaining negative examples over the relevant
variables ofei (the relevant variables that are set to1 by ei). As each bad negative contributes at mostθi such
ones, the overall contribution on the negative side is≤ θi · mOPT(1 + o(1)) = β tiB

′

m+ · mOPT(1 + o(1)).
Since none of relevant variables set to1 by ei gives a weak learner, it holds that the number of1s over the
positive side of these relevant variables is no more than2β m

m+ · tiB ·OPT (see below, at the specification of
the value ofγ). So even if each occurrence of1 comes from a unique positive example, we still have no more



than2β m
m+ · tiB ·OPT positive examples from the(ei, θi) restricted domain intersectingei over the relevant

variables. Therefore, adding back in the positive examplesnot from the restricted domain, we have no more
than2β m

m+ · tiB · OPT + m+/β positive examples that intersectei over the relevant variables.
Consider now a bipartite graph with thẽm good positive examples on one side and themOPT bad

negative examples on the other side, with an edge between positive ej and negativeei if ej intersectsei over
the relevant variables. Since eachei has degree at most2β m

m+ ·tiB ·OPT+m+/β, the total number of edges
is at most2β m

m+ BOPT
∑

i ti+m+ ·mOPT/β, and therefore some good positive examples must have degree

at mostOPT[ 2βBm
m̃m+

∑

i ti + m+

β · m
m̃ ]. On the other hand, since we are given a(B, α, m̃)-sparse instance, we

know that every good positive example intersectsat least B(1−o(1))
2 negative examples, and moreover that

∑

i ti ≤ n1+αBOPT. Putting this together we have:

B/2 ≤ (1 + o(1))OPT

[

2βB2n1+αOPTm

m̃m+
+

m+

β
· m

m̃

]

.

Settingβ =
√

(m+)2

2B2n1+αOPT
to equalize the two terms in the sum above, we derive

B ≤ 4
√

2(1 + o(1))B · m
m̃ · n(1+α)/2OPT

3/2.

Thus we haven1+α · m2

m̃2 · OPT
3 ≥ 1+o(1)

32 . Recall thatm̃/m ≥ n−o(α), so we derive a contradiction, as for
sufficiently largen it must hold that

OPT ≥
(

1 + o(1)

32

)1/3

n− 1+α
3 −o(α) > n−1/3−α.

In order to complete the proof, we need to verify that indeedβ > 1. RecallB = O(mOPT) and
m+ ≥ m̃, som+/m ≥ n−o(α). Thusβ2 = Ω( 1

n1+α+o(α)OPT3 ) = Ω(n2α−o(α)) by our assumption onOPT.
The last detail is to check what advantage do we get over a random guess. Our analysis shows that for

some bad negative exampleei, the number of ones over the relevant variables on the positive side is at least
2β m

m+ · tiB · OPT, whereas on the negative side, there can be at mostβ m
m+ · tiB · OPT(1 + o(1)) ones.

We deduce that at least one of the at mostmin(r, ti) relevant variables set to 1 byei must give a gap of
at leastβ·tiBm·OPT(1−o(1))

m+ min(r,ti)
> B · OPT(1 − o(1)) sinceβ > 1. Finally, using the fact thatB = Ω(m̃/r)

we get a gap ofΩ( m̃OPT

r ) or equivalently an advantage ofγ = Ω(OPT

r · m̃
m ). This advantage is trivially

Ω(n−2(1+o(α))), or, using the assumptionOPT > 1/
√

n (for otherwise, we can apply Peleg’s algorithm [14]),
we getγ = Ω(n− 3

2 (1+o(α))).

3.2 General Instances

Section 3.1 dealt with nicely behaved (homogeneous) instances. In order to complete the proof of Theorem 2,
we need to show how to reduce a general instance to such a(B, α, m̃)-sparse instance. What we show is a
(simple) algorithm that partitions a given instance into sub-instances, based on the number of 1s of each ex-
ample over certain variables (but without looking at the labels of the examples). It outputs apolylog(n)-long
list of sub-instances, each containing a noticeable fraction of the domain, and has the following guarantee:
either some sub-instance has a trivial weak-learner (has a noticeably different number of positive versus neg-
ative examples or there is a variable with noticeable correlation), or some sub-instance is(B, α, m̃)-sparse.
Formally, we prove this next lemma.

Lemma 5 There exists apoly((log n)O(1/α), n, m)-time algorithm, that gets as an input2m labeled exam-
ples in{0, 1}n, and output a list of subsets, each containingm/polylog(n) examples, s.t. either some subset
has a trivial weak-learner, or some subset is(B, α, m/polylog(n))-sparse.

Combining the algorithm from Lemma 5 with the algorithm presented in Section 3.1, we get our weak-
learning algorithm (see Algorithm 2). We first run the algorithm of Lemma 5, traverse all sub-instances, and
check whether any has a trivial weak-learner. If not, we run the algorithm for(B, α, m̃)-sparse instances over
each sub-instance. Obviously, given the one sub-instance which is sparse, we find a restricted hypothesis with
Ω̃(n−2) advantage over a random guess.

Proof: We start by repeating the argument presented in the introduction (Section 1.1). For any relevant
variable, no more thanm−

bad ≤ m · OPT(1 + o(1)) bad examples set it to1. Therefore, as an initial step,
we throw out any variable with more than this many occurrences over the negative examples, as it cannot



possibly be a relevant variable. For convenience, redefinen to be the number of variables that remain. Next,
we check each individual variable to determine if it itself is a weak predictor. If not, then this means each
variable is set to 1 on approximately the same number of positive and negative examples.

Bucket all the variables according the number of times they are set to1, where thej-bucket contains
all the variables that are set to1 any number of times in the range[2j , 2j+1). Since there are at mostlog n

buckets, some bucketj must cover at leastm
+

log n positive examples, in the sense that the disjunction over the

relevantvariables in this bucket agrees with at least this many good positives. So now, letB′ = 2j+1, let
n′ andr′ be the total number of variables and the number of relevant variables in this bucket respextively.
As we can ignore all examples that are identically0 over then′ variables in this bucket, letm′+ (resp.m′−)
be the number of positive (resp. negative) examples coveredby the variables in this bucket. Our algorithm
adds the remaining examples (over thesen′ variables) as one sub-instance to its list. Let the number ofthese
examples be2m′. As before, if the number of positive examples and negative examples covered by thesen′

variables differ significantly, or if some variable is a weaklearner (with respect to the set of examples left),
then the algorithm halts. Observe that if this sub-instanceis (B′, α, m/ log(n))-sparse, then we are done, no
matter what other sub-instances the algorithm will add to its list.

Focusing on the remaining examples, every variable is set to1 at mostB′ many times over the pos-
itive examples, so the total number of1s, over the positive examples is≤ n′B′. If indeed the resulting
instance is not(B′, α, m/ log(n))-sparse, then the total number of1s over the bad negative examples is
≥ (n′)1+α(B′)OPT. So now, our algorithm throws out any example with more than2n′B′/m′ variables set
to 1, and adds the remaining examples to the list of sub-instances. By Markov’s inequality, we are guaranteed
not to remove more than1/2 of the positive examples, so the sub-instance remaining is sufficiently large.
As before, if the remaining subset of examples (over thesen′ variables) has a trivial weak-learner, we are
done. Otherwise, the algorithm continues recursively overthis sub-instance – re-buckets and then removes
all examples with too many variables set to1. Note, each time the algorithm buckets the variables, it needs to
recurse over each bucket that covers at least a1/ log(n) fraction of the positive examples. In the worst-case,
all of the log(n) buckets cover these many positive examples, and therefore,the branching factor in each
bucketing step islog(n).

We now show that the depth of the bucket-and-remove recurrence is no more thanO(1/α). It is easy
to see inductively that at thei-th step of the recursion, we retain a fraction ofm/(logn)i positive examples.
Suppose that by the firsti steps, no sub-instance is sparse and no weak-learner is found. Recall, ifrOPT ≪ 1,
we have an immediate weak-learner, so it must hold that in thei-th step, we still retain at leastni = 1/OPT

variables. Furthermore, as in thei-th step we did not have a sparse instance, it follows that thebad negative
examples had more than(ni)

1+α(B′)OPT ones before we threw out examples. Once we remove dense

examples, they contain no more than2(ni)(B
′)

mi
· mOPT many ones. Thus, the fraction of ones over the bad

negatives that survive each removal step is no more thann−α
i · m

mi
. As1/OPT > n1/3, this fraction is at most

n−α/3(log n)i < n−α/6 (for the firstO(1/α) iterations). Hence, after6/α iterations, some relevant variable
must be a weak-learner.

To complete the proof, note that we take no more than(log n)6/α bucket-and-remove steps. Each such
step requirespoly(n, m) time for the bucketing, removal and checking for weak-learner. We conclude that
the run-time of this algorithm ispoly((log n)1/α, n, m).

Algorithm 2 A weak learner for general instances.
Input: A set of2m training examples.
Step 1: If any individual variable or the constant hypotheses is a weak learner, output it and halt.
Step 2: Remove any variable which has more than2mOPT 1’s over the negative examples.
Step 3: Bucket the remaining variables such that bucketj contains variables with density in[2j , 2j+1).
Step 4: For every bucket which covers at least alog n fraction of the positive examples
Step 4a: Run the algorithm for sparse instances on this bucket. If a weak learner is obtained, output it and

halt.
Step 4b: Let B′ be the density (2j+1) in this bucket,n′ be the number of variables in the bucket and2m′ be

the total number of examples with respect to this bucket (ignoring the ones which are identically
zero over then′ variables). Remove all the examples which have more than2n′B′/m′ 1’s over this
bucket. Repeat steps1-4 on this new instance.



3.3 Strong Learning

Given Theorem 2, we now prove the main theorem (Theorem 1) by plugging the weak-learner into an off-
the-shelf boosting algorithm for the agnostic case. We use the recentABoostDI booster of [4], which
converts any algorithm satisfying Theorem 2 into one satisfying Theorem 1. The result in [4] gives a boosting
technique for(η, γ)-weak learners. In our context an(η, γ)-weak learner is an algorithm which with respect
to to any distributionD, with high probability, produces a hypothesis of error≤ 1

2 −γ, wheneverOPTdisj ≤
1
2 − η.

Theorem 6 (Feldman [4], Theorem 3.5)There exists an algorithmABoostDI that, given a(η, γ)-weak
learner, for every distributionD and ǫ > 0, produces, with high probability, a hypothesish such that
errD(h) ≤ OPTdisj

1−2η + ǫ. Furthermore, the running time of the algorithm isT · poly( 1
γ , 1

ǫ ), whereT is
the running time of the weak learner.

As an immediate corollary, we setη = 1
2 − 1

2 · n−1/3−α and obtain an hypothesish such thaterrD(h) ≤
2n1/3+αOPT + ǫ. This concludes the proof of Theorem 1. We note that as an alternative toABoostDI,
one can also use the boosting algorithm of Kalai et. al [9], followed by another boosting algorithm of Gavin-
sky [7], to get the result in Theorem 1.

4 Future Directions

In this paper we have presented an algorithm for learning theclass of disjunctions in the case thatOPT <
n−(1/3+α), achieving an error rate ofO(n1/3+α · OPT) + ǫ. The natural open question is whether one can
improve this bound. For example, can one achieve weak agnostic learning forOPT = n−1/4? Or, can one
improve the bounds as a function of the number of relevant variables, e.g., making only a factorO(r0.9) times
more mistakes than the best disjunction?

An intriguing open question is whether one can extend this technique for other concept classes. For
example, consider the class of linear separators over{0, 1}n with weights in{0, 1} (i.e., majority vote or
“k of r” functions). Here we do not know even how to achieve weak learning for OPT = n−0.99. The
algorithm presented in this paper for disjunctions uses thefact that in order for individual variables not to be
weak hypotheses themselves, the bad negative examples mustin some sense “point” in the direction of the
target vector (they must have a high dot-product with the target function vector if we view the disjunction as
a linear threshold function) to a substantially greater extent than the positive examples do. E.g., if a typical
positive example hast relevant variables set to 1, then the typical bad negative example must havet/OPT

relevant variables set to 1. For the case of majority-vote functions, the difficulty with this approach is that
instead all we can say is that if the positive examples haver/2 + t relevant variables set to 1, then the typical
bad negative examples should have at leastr/2 + t/OPT relevant variables set to 1, which might not be such
a distinction in a multiplicative sense.

On a more general note, our work here uses somewhat non-traditional hypotheses, by using the examples
themselves to define “slices” of the data (focusing on those examples with no more than a certainθ dot-
product with some given negative example). Perhaps this might be useful for other learning problems.
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