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Abstract
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broad class of revenue-maximizing pricing problems. Our reductions imply that for
these problems, given an optimal (or β-approximation) algorithm for an algorith-
mic pricing problem, we can convert it into a (1 + ε)-approximation (or β(1 + ε)-
approximation) for the incentive-compatible mechanism design problem, so long as
the number of bidders is sufficiently large as a function of an appropriate measure
of complexity of the class of allowable pricings. We apply these results to the prob-
lem of auctioning a digital good, to the attribute auction problem which includes a
wide variety of discriminatory pricing problems, and to the problem of item-pricing
in unlimited-supply combinatorial auctions. From a machine learning perspective,
these settings present several challenges: in particular, the “loss function” is discon-
tinuous, is asymmetric, and has a large range. We address these issues in part by
introducing a new form of covering-number bound that is especially well-suited to
these problems and may be of independent interest.
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1 Introduction

In recent years there has been substantial work on problems of algorithmic
mechanism design. These problems typically take a form similar to classic al-
gorithm design or approximation-algorithm questions, except that the inputs
are each given by selfish agents who have their own interest in the outcome
of the computation. As a result it is desirable that the mechanisms (the al-
gorithms and protocol) be incentive compatible — meaning that it is in each
agent’s best interest to report its true value — so that agents do not try to
game the system. This requirement can greatly complicate the design problem.

In this paper we consider the design of mechanisms for one of the most funda-
mental economic objectives: profit maximization. Agents participating in such
a mechanism may choose to falsely report their preferences if it might benefit
them. What we show, however, is that so long as the number of agents is suf-
ficiently large as a function of a measure of the complexity of the mechanism
design problem, we can apply sample-complexity techniques from learning the-
ory to reduce this problem to standard algorithmic questions in a broad class
of settings. It is useful to think of the techniques we develop in the context of
designing an auction to sell some goods or services, though they also apply in
more general scenarios.

In a seminal paper Myerson [33] derives the optimal auction for selling a sin-
gle item given that the bidders’ true valuations for the item come from some
known prior distribution. His mechanism generalizes trivially to any single-
parameter agent setting with arbitrary supply constraints or costs to the auc-
tioneer for the outcome produced. Following a trend in the recent computer
science literature on optimal auction design, we consider the prior-free setting
in which there is no underlying distribution on valuations and we wish to per-
form well for any (sufficiently large) set of bidders. In absence of a known prior
distribution we will use machine learning techniques to estimate properties of
the bidders’ valuations. We consider the unlimited supply setting in which this
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problem is conceptually simpler because there are no infeasible allocations;
though, it is often possible to obtain results for limited supply or with cost
functions on the outcome via reduction to the unlimited supply case [25,19,2].
Research in optimal prior-free auction design is important for optimal auction
design because it directly links inaccurate distributional knowledge typical of
small markets with loss in performance.

Implicit in mechanism design problems is the fact that the selfish agents that
will be participating in the mechanism have private information that is known
only to them. Often this private information is simply the agent’s valuation
over the possible outcomes the mechanism could produce. For example, when
selling a single item (with the standard assumption that an agent only cares if
they get the item or not and not whether another agent gets it) this valuation
is simply how much they are willing to pay for the item. There may also be
public information associated with each agent. This information is assumed
to be available to the mechanism. Such information is present in structured
optimization problems such as the knapsack auction problem [2] and multicast
auction problem [19] and is the natural way to generalize optimal auction de-
sign for independent but non-identically distributed prior distributions (which
are considered by Myerson [33]) to the prior-free setting. There are many stan-
dard economic settings where such public information is available, e.g., in the
college tuition mechanism, in-state or out-of-state residential status is public;
for acquiring a loan, a consumer’s credit report is public information; for au-
tomobile insurance, driving records, credit reports, and the make and color of
the vehicle are public information.

A fundamental building block of an incentive compatible mechanism is an
offer. For full generality an offer can be viewed as an incentive compatible
mechanism for one agent. As an example, if we are selling multiple units of
a single item, an offer could be a take-it-or-leave-it price per unit. A rational
agent would accept such an offer if it is lower than the agent’s valuation for
the item and reject if it is greater. Notice that if all agents are given the
same take-it-or-leave-it price then the outcome is non-discriminatory and the
same price is paid by all winners. Prior-free auctions based on this type of
non-discriminatory pricing have been considered previously (see, e.g., [25]).

One of the main motivations of this work is to explore discriminatory pricing
in optimal auction design. There are two standard means to achieve discrimi-
natory pricing. The first, is to discriminate based on the public information of
the consumer. Naturally, loans are more costly for individuals with poor credit
scores, car insurance is more expensive for drivers with points on their driving
record, and college tuition at state run universities is cheaper for students
that are in-state residents. In this setting a reasonable offer might be a map-
ping from the public information of the agents to a take-it-or-leave-it price.
We refer to these types of offers as pricing functions. The second standard
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means for discriminatory pricing is to introduce similar products of different
qualities and price them differently. Consumers who cannot afford the expen-
sive high-quality version may still purchase an inexpensive low-quality version.
This practice is common, for example, in software sales, electronics sales, and
airline ticket sales. An offer for the multiple good setting could be a take-it-
or-leave it price for each good. An agent would then be free to select the good
(or bundle of goods) with the (total) price that they most prefer. We refer to
these types of offers as item pricings.

Notice that allowing offers in the form of pricing functions and item pricings,
as described above, provides richness to both algorithmic and mechanism de-
sign questions. This richness; however, is not without cost. Our performance
bounds are parameterized by a suitable notion of the complexity of the class
of allowable offers. It is natural that this kind of complexity should affect the
ability of a mechanism to optimize. It is easier to approximate the optimal of-
fer from a simple classes of offers, such as take-it-or-leave-it prices for a single
item, than it is for a more complex class of offers, such as take-it-or-leave-it
prices for multiple items. Our prior-free analysis makes the relationship be-
tween a mechanism’s performance and the complexity of allowed offers precise.

We phrase our auction problem generically as: given some class of reasonable
offers, can we construct an incentive-compatible auction that obtains profit
close to the profit obtained by the optimal offer from this class? The auctions
we discuss are generalizations of the random sampling auction of Goldberg et
al. [26]. These auctions make use of a (non-incentive-compatible) algorithm
for computing a best (or approximately best) offer from a given class for any
set of consumers. Thus, we can view this construction as reducing the optimal
mechanism design problem to the optimal algorithm design problem.

The idea of the reduction is as follows. Let A be an algorithm (exact or
approximate) for the purely algorithmic problem of finding the optimal offer
in some class G for any given set of consumers S with known valuations. Our
auction, which does not know the valuations a priori, asks the agents to report
their valuations (as bids), splits agents randomly into two sets S1 and S2, runs
the algorithm A separately on each set (perhaps adding an additional penalty
term to the objective to penalize solutions that are too “complex” according to
some measure), and then applies the offer found for S1 to S2 and the offer found
on S2 to S1. The incentive compatibility of this auction allows us to assume
that the agents will indeed report their true valuations. Sample-complexity
techniques adapted from machine learning theory can then give a guarantee
on the quality of the results if the market size is sufficiently large compared to
a measure of complexity of the class of possible solutions. From an economics
perspective, this can be viewed as replacing the Bayesian assumption that
bidders come from a known prior distribution (e.g., as in Myerson’s work [33])
with the use of learning, over a random subset S1 of an arbitrary set of bidders
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S, to get enough information to apply to S2 (and vice versa).

It is easy to see that as the size of the market grows, the law of large num-
bers indicates that the above approach is asymptotically optimal. This is not
surprising as conventional economic wisdom suggests that even the approach
of market analysis followed by the Bayesian optimal mechanism would in-
cur negligibly small loss compared to the Bayesian optimal mechanism which
was endowed with foreknowledge of the distribution. In contrast, the main
contribution of this work is to give a mechanism with upper bounds on the
convergence rate, i.e., the relationship between the size of the market, the
approximation factor, and the complexity of the class of reasonable offers.

Our contributions: We present a general framework for reducing problems of
incentive-compatible mechanism design to standard algorithmic questions, for
a broad class of revenue-maximizing pricing problems. To obtain our bounds
we use and extend sample-complexity techniques from machine learning theory
(see [3,11,30,36]) and to design our mechanisms we employ machine learning
methods such as structural risk minimization. In general we show that an
algorithm (or β-approximation) can be converted into a (1+ε)-approximation
(or β(1 + ε)-approximation) for the optimal mechanism design problem when
the market size is at least O(βε−2) times a reasonable notion of the complexity
of the class of offers considered. Our formulas relating the size of the market
to the approximation factor give upper bounds on the performance loss due to
unknown market conditions and we view these as bounds on the convergence
rate of our mechanism. From a learning perspective, the mechanism-design
setting presents a number of technical challenges when attempting to get good
bounds: in particular, the payoff function is discontinuous and asymmetric,
and the payoffs for different offers are non-uniform. For example, in Section
3.3.3 we develop bounds based on a different notion of covering number than
typically used in machine learning, in order to obtain results that are more
meaningful for our setting.

We instantiate our framework for a variety of problems, some of which have
been previously considered in the literature, including:

Digital Good Auction Problem: The digital good auction problem con-
siders the sale of an unlimited number of units of an item to indistinguish-
able consumers, and has been considered by Goldberg et al. [26] and a
number of subsequent papers. As argued in [26] the only reasonable offers
for this setting are take-it-or-leave-it prices.

The analysis techniques developed in this paper give a simple proof that
the random sampling auction (related to that of [26]) obtains a (1 − ε)
fraction of the optimal offer as long as the market size is at least O( h

ε2
log 1

ε
)

(where h is an upper bound on the valuation of any agent).
Attribute Auction Problem: The attribute auction problem is an abstrac-
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tion of the problem using discriminatory prices based on public information
(a.k.a., attributes) of the agents. A seller can often increase its profit by
using discriminatory pricing: for example, the motion picture industry uses
region encodings so that they can charge different prices for DVDs sold in
different markets. Further, in many generalizations of the digital good auc-
tion problem, the agents are distinguishable via public information so the
techniques exposed in the study of attribute auctions are fundamental to
the study of profit maximization in general settings.

Here a reasonable class of offers to consider are mappings from the agents’
attributes to take-it-or-leave-it prices. As such, we refer to these offers as
pricing functions. For example, for one-dimensional attributes, a natural
class of pricing functions might be piece-wise constant functions with k
prices, as studied in [9]. In this paper we give a general treatment that can
be applied to arbitrary classes of pricing functions. For example, if attributes
are multi-dimensional, pricing functions might involve partitioning agents
into markets defined by coordinate values or by some natural clustering, and
then offering a constant price or a price that is some other simple function of
the attributes within each market. Our bounds give a (1+ε)-approximation
when the market size is large in comparison to ε−2 scaled by a suitable
notion of the complexity of the class of offers.

Combinatorial Auction Problem: We also consider the goal of profit max-
imization in an unlimited-supply combinatorial auction. This generalizes the
digital good auction and exemplifies the problem of discriminatory pricing
through the sale of multiple products. The setting here is the following. We
have m different items, each in unlimited supply (like a supermarket), and
bidders have valuations over subsets of items. Our goal is to achieve revenue
nearly as large as the best revenue that uses take-it-or-leave-it prices for
each item individually, i.e., the best item-pricing.

For arbitrary item pricings we show that our reduction has a convergence
rate of Õ

(

hm2

ε2

)

no matter how complicated those bidders’ valuations are

(where the Õ hides terms logarithmic in n, the number of agents; m, the
number of items; and h, the highest valuation). If instead the specification
of the problem constrains the item prices to be integral (e.g., in pennies)
or the consumers to be unit-demand (desiring only one of several items) or
single-minded (desiring only a particular bundle of items) then our bound

improves to Õ
(

hm
ε2

)

. This improves on the bounds given by [21] for the
unit-demand case by roughly a factor of m.

A special case of this setting is the problem of auctioning the right to
traverse paths in a network. When the network is a tree and each user
wants to reach the root (like drivers commuting into a city or a multicast
tree in the Internet), Guruswami et al. [28] give an exact algorithm for the
algorithmic problem to which our reduction applies as noted above.

Related Work: Several papers [9,10] have applied machine learning tech-
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niques to mechanism design in the context of maximizing revenue in online
auctions. The online setting is more difficult than the “batch” setting we con-
sider, but the flip-side is that as a result, that work only applies to quite simple
mechanism design settings where the class G of allowable offers has small size
and can be easily listed. Also, in a similar spirit to the goals of this paper,
Awerbuch et al. [4] give reductions from online mechanism design to online
optimization for a broad class of revenue maximization problems. Their work
compares performance to the sum of bidders’ valuations, a quite demand-
ing measure. As a result, however, their approximation factors are necessarily
logarithmic rather than (1 + ε) as in our results.

Structure of this paper: The structure of the paper is as follows. We
describe the general setting in which our results apply in Section 2 and give
our generic reduction and bounds Section 3. We then apply our techniques
to the digital good auction problem (Section 4), attribute auction problems
(Section 5), the problem of item-pricing in combinatorial auctions (Section 6).
We give our conclusions and some open research directions in Section 7.

2 Model, Notation, and Definitions

2.1 Abstract model

Our results apply to the following abstract model. We have a set of n agents
S = {1, . . . , n}. Each agent i has some private preference information vi known
only to itself (such as how much the agent is willing to pay for each of our
products) and possibly also some public information pubi (such as its age or
location) that is known to the mechanism. A bid bi is a reporting by the
agent of its private information to the mechanism (which may or may not be
truthful).

The basic building block of our mechanism is an offer. The precise notion of
what an offer is will be defined in Section 2.2 and depends on the specific
application; however, our results apply to an abstract setting where an offer
g is just an incentive-compatible mechanism for a single agent that maps the
agent’s public information pubi and bid bi to a profit g(i) for the mechanism.
For example, in the attribute-auction problem, an offer might be a price p(pubi)
that, applied to a bidder’s bid bi, either produces profit p(pubi) (and a sale) if
p(pubi) ≤ bi, or else produces profit 0 (and no sale) otherwise. Let G denote
a class of offers. The specific property we assume is that if our choice of offer
g ∈ G does not depend on the agent’s bid bi, then the agent will report
truthfully with bi = vi.
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We assume we are in an unlimited supply setting which in particular means
that the profit from a set of bidders S ′ ⊆ S, all receiving offer g, can be written
as g(S ′) =

∑

i∈S′ g(i).

Our approach to incentive-compatible mechanism design is via reduction to
the algorithmic optimization problem. Given the true preferences of S and a
class of offers G, the algorithmic optimization problem is to find the g ∈ G
with maximum profit, i.e., optG = argmaxg∈G g(S). Let OPTG = maxg∈G g(S)
be this maximum profit. This computational problem is interesting in its own
right; however, we will not consider it here. Instead we will assume that we
are given an algorithm that either exactly solves the algorithmic optimization
problem or approximates it, and our goal is to somehow use that algorithm
to choose for each agent i an offer gi ∈ G in a way that does not depend on
the agent’s bid bi. Some of our techniques also make use of the existence of an
algorithm that optimizes over the profit of an offer minus some penalty term
that is related to the complexity of the offer, i.e., maxg∈G g(S) − peng(S).

One final point at this level of generality: we will assume that h is an upper
bound on the value of g(i) for all i ∈ S and g ∈ G; that is, no individual bidder
can influence the total profit by more than h. This term will come into our
general sample-complexity bounds. Auctions that make use of the technique
of structural risk minimization will need to know h in advance.

2.2 Offers, Preferences, and Incentives

To describe how the framework above allows us to consider a large class of
mechanism design problems, we formally discuss the details of offers, agent
preferences, and the constraints imposed by incentive compatibility. To do
this we develop some notation; however, the main results of the paper will be
given using the general framework above.

Formally, a market consists of a set of n agents S and a space of possible
outcomes O. We consider unlimited supply allocation problems where Oi is
set of possible outcomes (allocations) to agent i and O = O1 × · · · × On (i.e.,
all possible combinations of allocations are feasible). Except where noted, we
assume there is no cost to the mechanism for producing any outcome.

As is standard in the mechanism design literature [35], an agent i’s preference
is fully specified by its private type, which we denote vi. We assume no ex-
ternalities, which means that vi can be viewed as a preference ordering �vi

over (outcome, payment) pairs in Oi×R. That is, each agent cares only about
what it recieves and pays, and not about what other agents get. A bid bi is
a reporting of one’s type, i.e., it is also a preference ordering over (outcome,
payment) pairs, and we say a bidder is bidding truthfully if the preference

8



ordering under bi matches that given by its true type vi. Each bidder i may
also have public information pubi that it cannot misreport.

A deterministic mechanism is incentive compatible if for all agents i and all
actions of the other agents, bidding truthfully is at least as good as bidding
non-truthfully. If oi(bi,b−i) and pi(bi,b−i) are the outcome and payment when
agent i bids bi and the other agents bid b−i, then incentive compatibility
requires for all vi, bi, and b−i,

(oi(vi,b−i), pi(vi,b−i)) �vi
(oi(bi,b−i), pi(bi,b−i)).

A randomized mechanism is incentive compatible if it is a randomization over
deterministic incentive compatible mechanisms.

An offer is a mapping from a bidder’s public information to a collection of
(outcome, payment) pairs. We interpret making an offer to an agent as choos-
ing the outcome and payment for them that they most prefer according to their
reported type. As a result, any fixed offer is by definition incentive-compatible.
In fact the following more general result is easy to show:

Fact 1 A mechanism is incentive compatible if the choice of which offer to
make to any agent does not depend on the agent’s bid.

Because all our mechanisms are incentive compatible, we will henceforth treat
the profit g(i) of offer g on agent i as if it were defined in terms of the true
types vi rather than the bids bi.

2.3 Quasi-linear Preferences

We will apply our general framework and analysis to a number of special cases
where the agents’ preferences are to maximize their quasi-linear utility. This is
the most studied case in mechanism design literature. The type, vi, of a quasi-
linear utility maximizing agent i specifies its valuation for each outcome. We
notate valuation of agent i for outcome oi ∈ Oi as vi(oi). This agent’s utility is
the difference between its valuation and the price it is required to pay. I.e., for
outcome oi and payment pi, agent i’s utility is ui = vi(oi)−pi. An agent prefers
the outcome and payment that maximizes its utility. I.e., vi(oi)−pi ≥ vi(o

′
i)−p′i

if and only if (oi, pi) �vi
(o′i, p

′
i).

For the quasi-linear case, the incentive compatibility constraints imply for all
vi, bi, and b−i that,

vi(oi(vi,b−i)) − pi(vi,b−i) ≥ vi(oi(bi,b−i)) − pi(bi,b−i).
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Notice that in the quasi-linear setting our constraint that g(i) ≤ h would be
implied by the condition that vi(oi) ≤ h for all oi ∈ Oi.

2.4 Examples

The following examples illustrate the relationship between the outcome of the
mechanism, offers, valuations, and attributes. (The first three examples are
quasi-linear, the fourth is not.)

Digital Good Auction: The digital good auction models an auction of a
single item in unlimited supply to indistinguishable bidders. Here the set
of possible outcomes for bidder i is Oi = {0, 1} where oi = 1 represents
bidder i receiving a copy of the good and oi = 0 otherwise. We normalize
their valuation function vi(0) = 0 and use a simple shorthand notation of
vi = vi(1) as the bidders privately known valuation for receiving the good.
As described in the introduction, in this setting the bidders have no public
information. Here, a natural class of offers, G, is the class of all take-it-or-
leave-it prices. For bidder i with valuation vi and offer gp = “take the good
for $p, or leave it” the profit is

gp(i) =







p if p ≤ vi

0 otherwise.

We consider the digital good auction problem in detail in Section 4.
Attribute Auctions: This is the same as the digital good setting except

now each bidder i is associated a public attribute, pubi ∈ X , where X is the
attribute space. We view X as an abstract space, but one can envision it as
R

d, for example. Let P be a class of pricing functions from X to R+, such
as all linear functions, or all functions that partition X into k markets in
some natural way (say, based on distance to k cluster centers) and offer a
different price in each. Let G be the class of take-it-or-leave-it offers induced
by P. That is, if p ∈ P is a pricing function, then the offer gp ∈ G induced
by p is: “for bidder i, take the good for $p(pubi), or leave it”. The profit to
the mechanism from bidder i with valuation vi and public information pubi

is

gp(i) =







p(pubi) if p(pubi) ≤ vi,

0 otherwise.

We will give analyses for several interesting classes of pricing functions in
Section 5.

Combinatorial Auctions: Here we have a set J of m distinct items, each
in unlimited supply. Each consumer has a private valuation vi(J

′) for each
bundle J ′ ⊆ J of items, which measures how much receiving bundle J ′

would be worth to the consumer i (again we normalize such that vi(∅) = 0).
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For simplicity, we assume bidders are indistinguishable, i.e., there is no
public information. A natural class of offers G (studied in [28]) is the class
of functions that assign a separate price to each item, such that the price of
a bundle is just the sum of the prices of the items in it (called item pricing).
For price vector p = (p1, . . . , pm) let the offer gp = “for bundle J ′, pay
∑

j∈J ′ pj”. The profit for bidder i on offer gp is

gp(i) =
∑

{

pj : j ∈ argmaxJ ′⊂J

[

vi(J
′) −

∑

j′∈J ′
pj′

]}

.

(If the bundle J ′ maximizing the bidder’s utility is not unique, we define
the mechanism to select the utility-maximizing bundle of greatest profit.)
We discuss combinatorial auctions in Section 6.

Marginal Cost Auctions with Budgets: To illustrate an interesting model
with agents in a non-quasi-linear setting consider the case each bidder
i’s preference is given tuple (Bi, vi) where Bi is their budget and vi is
their value-per-unit received. Possible allocations for bidder i, Oi, are non-
negative real numbers corresponding to the number of units they receive.
Assuming their total payment is less than their budget, bidder i’s utility is
simply vioi minus their payment; a bidder’s utility when payments exceed
their budget is negative infinity.

We assume that the seller has a fixed marginal cost c for producing a
unit of the good. Consider the class of offers G with gp = “pay $p per unit
received”. A bidder i faced with offer gp with p < vi will maximize their
utility by buying enough units to exactly exhaust their budget. The payoff
to the auctioneer for this bidder i is therefor Bi less c times the number of
units the bidder demands. I.e.,

gp(i) =







Bi − cBi/p if p ≤ vi,

0 otherwise.

This model is quite similar to one considered by Borgs et al. [12]. Though
we do not explicitly analyze this setting, it is simple to apply our generic
analysis to get reasonable bounds.

3 Generic Reductions

We are interested in reducing incentive-compatible mechanism design to the
(non-incentive-compatible) algorithmic optimization problem. Our reductions
will be based on random sampling. Let A be an algorithm (exact or approx-
imate) for the algorithmic optimization problem over G. The simplest mech-
anism that we consider, which we call RSO(G,A) (Random Sampling Optimal
offer), is the following generalization of the random sampling digital-goods
auction from [26]:
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(0) Bidders commit to their preferences by submitting their bids.
(1) Randomly split the bidders into two groups S1 and S2 by flipping a fair

coin for each bidder to determine its group.
(2) Run A to determine the best (or approximately best) offer g1 ∈ G over

S1, and similarly the best (or approximately best) g2 ∈ G over S2.
(3) Finally, apply g1 to all bidders in S2 and g2 to all bidders in S1 using

their reported bids.

We will also consider various more refined versions of RSO(G,A) that discretize
G or perform some type of structural risk minimization (in which case we will
need to assume A can optimize over the modifications made to G).

Note 1: One might think that the “leave-one-out” mechanism, where the offer
made to a given bidder i is the best offer for all other bidders, i.e., optG(S\{i}),
would be a better mechanism than the random sampling mechanism above.
However, as pointed out in [26,25], such a mechanism (and indeed, any sym-
metric deterministic mechanism) has poor worst-case revenue. Furthermore,
even if bidders’ valuations are independently drawn from some distribution,
the leave-one-out revenue can be much less stable than RSO(G,A) in that it
may have a non-negligable probability of achieving revenue that is far from
optimal, whereas such an event is exponentially small for RSO(G,A).

3

Note 2: The reader will notice that in converting an algorithm for finding
the best offer in G into an incentive-compatible mechanism, we produce a
mechanism whose outcome is not simply that of a single offer applied to all
consumers. For example, even in the simplest case of auctioning a digital good
to indistinguishable bidders, we compare our performance to the best take-it-
or-leave-it price, and yet the auction itself does not in fact offer each bidder
the same price (all bidders in S1 get the same price, and all bidders in S2 get
the same price, but those two prices may be different). In fact, Goldberg and
Hartline [22] show that this sort of behavior is necessary: it is not possible for
an incentive-compatible auction to approximately maximize profit and offer
all the bidders the same price.

3 For example, say we are selling just one item and the distribution over valuations
is 50% probability of valuation 1 and 50% probability of valuation 2. If we have n
bidders, then there is a nontrivial chance (about 1/

√
n) that there will be the exact

same number of each type (n/2 bidders with valuation 1 and n/2 bidders with
valuation 2), and the mechanism will make the wrong decision on everybody. The
RSO(G,A) mechanism on the other hand has only an exponentially small probability
of doing this poorly.
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3.1 Generic Analyses

The following theorem shows that the random sampling auction incurs only
a small loss in performance if the profit of the optimal offer is large in com-
parison to the logarithm of the number of offers we are choosing from. Later
sections of this paper will focus on techniques for bounding the effective size
(or complexity) of G that can yield even stronger guarantees.

Theorem 1 Given the offer class G and a β-approximation algorithm A for
optimizing over G, then with probability at least 1− δ the profit of RSO(G,A) is
at least (1 − ε)OPTG/β as long as

OPTG ≥ β 18h
ε2

ln
(

2|G|
δ

)

.

Notice that this bound holds for all ε and δ simultaneously as these are not
parameters of the mechanism. In particular, this bound and those given by the
two immediate corollaries, below, show how the approximation factor improves
as a function of market size.

Corollary 2 Given the offer class G and a β-approximation algorithm A for
optimizing over G, then with probability at least 1−δ, the profit of RSO(G,A) is
at least (1−ε)OPTG/β, when OPTG ≥ n and the number of bidders n satisfies

n ≥ 18hβ
ε2

ln
(

2|G|
δ

)

.

Corollary 3 Given the offer class G and a β-approximation algorithm A for
optimizing over G then with probability at least 1− δ, the profit of RSO(G,A) is
at least

(1 − ε)OPTG/β − 18hβ
ε2

ln
(

2|G|
δ

)

.

If bidders’ valuations are in the interval [1, h] and the take-it-or-leave-it offer
of $1 is in G, then the condition OPTG ≥ n is trivially satisfied and Corollary 2
can be interpreted as giving a bound on the convergence rate of the random
sampling auction. Corollary 3 is a useful form of our bound when considering
structural risk minimization and it also matches the form of bounds given in
prior work (e.g., [9]).

For example, in the digital good auction with the class of offers Gε consisting
of all take-it-or-leave-it offers in the interval [1, h] discretized to powers of
1 + ε, we have OPTGε

≥ n (since each bidder’s valuation is at least 1), β = 1
(since the algorithmic problem is easy), and |Gε| = dlog1+ε he. So, Corollary 2
states that O( h

ε2
log log1+ε h) bidders are sufficient to perform nearly as well

as optimal (we derive better bounds for this problem in Section 4).
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In general we will give our bounds in a similar form as Theorem 1, knowing
that bounds of the form of Corollary 2 and 3 can be easily derived. The only
exceptions are the structural risk minimization results which we give in the
same form as Corollary 3.

In the remainder of this section we prove Theorem 1. We start with a lemma
that is key to our analysis.

Lemma 4 Given S, an offer g satisfying 0 ≤ g(i) ≤ h for all i ∈ S, and a
profit level p, if we randomly partition S into S1 and S2, then the probability

that |g(S1) − g(S2)| ≥ ε max [g(S), p] is at most 2e

[

− ε2p
2h

]

.

Proof: Let Y1, . . . , Yn be i.i.d. random variables that define the partition of S
into S1 and S2: that is, Yi is 1 with probability 1

2
and Yi is 2 with probability 1

2
.

Let t(Y1, ..., Yn) =
∑

i:Yi=1 g(i). So, as a random variable, g(S1) = t(Y1, ..., Yn)

and clearly E[t(Y1, ..., Yn)] = g(S)
2

. Assume first that g(S) ≥ p. From the
McDiarmid concentration inequality (see Theorem 26 in Appendix A), by
plugging in ci = g(i), we get:

Pr

{∣

∣

∣

∣

∣

g(S1) −
g(S)

2

∣

∣

∣

∣

∣

≥ ε

2
g(S)

}

≤ 2e
− 1

2
ε2g(S)2/

n
∑

i=1

g(i)2

.

Since
n
∑

i=1

g(i)2 ≤ max
i

{g(i)}
n
∑

i=1

g(i) ≤ hg(S),

we obtain:

Pr

{∣

∣

∣

∣

∣

g(S1) −
g(S)

2

∣

∣

∣

∣

∣

≥ ε

2
g(S)

}

≤ 2e
−

[

ε2g(S)
2h

]

.

Moreover, since g(S1) + g(S2) = g(S) and g(S) ≥ p, we obtain Pr{|g(S1) −
g(S2)| ≥ εg(S)} ≤ 2e−ε2p/(2h), as desired. Consider now the case that g(S) < p.
Again, using the McDiarmid inequality we have

Pr{|g(S1) − g(S2)| ≥ εp} ≤ 2e
− 1

2
ε2p2/

n
∑

i=1

g(i)2

.

Since
∑n

i=1 g(i)2 ≤ hg(S) ≤ ph we obtain again that

Pr{|g(S1) − g(S2)| ≥ εp} ≤ 2e

[

− ε2p
2h

]

,

which gives us the desired bound. 2

It is worth noting that using tail inequalities that depend on the maximum
range of the random variables rather than the sum of their squares in the proof
of Lemma 4 would increase the h to an h2 in the exponent. Note also that if
g(i) = g′(i) for all i ∈ S then they are equivalent from the point of view of the
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auction; we will use |G| to denote the number of different such offers in G. 4

Lemma 4 implies that:

Corollary 5 For a random partition of S into S1 and S2, with probability
at least 1 − δ, all offers g in G such that g(S) ≥ 2h

ε2
ln
(

2|G|
δ

)

satisfy |g(S1) −
g(S2)| ≤ εg(S).

Proof: Follows from Lemma 4 by plugging in p = 2h
ε2

ln
(

2|G|
δ

)

and then using
the union bound over all g ∈ G. 2

We complete this section with the proof of the main theorem.

Proof of of Theorem 1: Let g1 be the offer in G produced by A over S1 and
g2 be the offer in G produced by A over S2. Let gOPT be the optimal offer in
G over S; so gOPT(S) = OPTG. Since the optimal offer over S1 is at least as
good as gOPT on S1 (and likewise for S2), the fact that A is a β-approximation

implies that g1(S1) ≥ gOPT(S1)
β

and g2(S2) ≥ gOPT(S2)
β

.

Let p = 18h
ε2

ln
(

2|G|
δ

)

. Using Lemma 4 (applying the union bound over all

g ∈ G), we have that with probability 1 − δ, every g ∈ G satisfies |g(S1) −
g(S2)| ≤ ε

3
max [g(S), p]. In particular, g1(S2) ≥ g1(S1) − ε

3
max[g1(S), p], and

g2(S1) ≥ g2(S2) − ε
3
max[g2(S), p].

Since the theorem assumes that OPTG ≥ βp, summing the above two inequali-
ties and performing a case analysis 5 we get that the profit of RSO(G,A), namely

the sum g1(S2)+ g2(S1), is at least (1− ε)OPTG

β
. More specifically, assume first

that g1(S) ≥ p and g2(S) ≥ p. This implies that g1(S2) ≥ g1(S1)− ε
3
g1(S) and

g2(S1) ≥ g2(S2) − ε
3
g2(S), and therefore (1 + ε

3
)g1(S2) ≥ (1 − ε

3
)g1(S1) and

(1+ ε
3
)g2(S1) ≥ (1− ε

3
)g2(S2). So, the profit of RSO(G,A) in this case is at least

1 − ε
3

1 + ε
3

(g1(S1) + g2(S2)) ≥
1 − ε

3

1 + ε
3

OPTG

β
≥ (1 − ε)

OPTG

β
.

If both g1(S) < p and g2(S) < p, then g1(S2) ≥ g1(S1) − ε
3
p and g2(S1) ≥

g2(S2) − ε
3
p, and so the profit of RSO(G,A) in this case is at least OPTG

β
− 2ε

3
p

which is at least (1 − ε)OPTG

β
by our assumption that OPTG ≥ βp. Finally,

assume without loss of generality that g1(S) ≥ p and g2(S) < p. This implies
that g1(S2) ≥ g1(S1)− ε

3
g1(S) and g2(S1) ≥ g2(S2)− ε

3
p. The former inequality

implies that (1 + ε
3
)g1(S2) ≥ (1 − ε

3
)g1(S1), and so g1(S2) ≥

(

1 − 2ε
3

)

g1(S1),

4 Notice that in our generic reduction, |G| only appears in the analysis and we do
not actually have to know whether two offers are equivalent with respect to S when
running the auction.
5 Note that if β = 1, then the conclusion follows easily. The case analysis is only
need to deal with the case β > 1.
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and the latter inequality implies that g2(S1) ≥ g2(S2) − ε
3

OPTG

β
. Together we

have that

g1(S2) + g2(S1) ≥
(

1 − 2ε

3

)

gOPT(S1)

β
+

gOPT(S2)

β
− ε

3

OPTG

β
≥ (1− ε)

OPTG

β
,

as desired. 2

3.2 Structural Risk Minimization

In many natural cases, G consists of offers at different “levels of complexity”
k. In the case of attribute auctions, for instance, G could be an offer class
induced by pricing functions that partition bidders into k markets and offer
a constant price in each market, for different values of k. The larger k is the
more complex the offer is. One natural approach to such a setting is to perform
structural risk minimization (SRM): that is, to assign a penalty term to offers
based on their complexity and then to run a version of RSO(G,A) in which A
optimizes profit minus penalty. Specifically, let Ḡ be a series of offers classes
G1,G2, . . ., and let pen be a penalty function defined over these classes. We
then define the procedure RSO-SRM(Ḡ,pen) as follows:

1. Randomly partition the bidders into two sets, S1 and S2, by flipping fair
coin for each bidder.

2. Compute g1 to maximize maxk maxg∈Gk
[g(S1) − pen(Gk)] and similarly

compute g2 from S2.
3. Use the offer g1 for bidders in S2 and the offer g2 for bidders in S1.

We can now derive a guarantee for the RSO-SRM(Ḡ,pen) mechanism as follows:

Theorem 6 Assuming that we have an algorithm for solving the optimization
problem required by RSO-SRM(Ḡ,pen), then for any given value of n, ε, and δ,
with probability at least 1 − δ, the revenue of RSO-SRM(Ḡ,pen) for pen(Gk) =
8hk

ε2
ln
(

8k2|Gk|
δ

)

is at least

max
k

([(1 − ε) OPTk −2pen(Gk)]),

where hk is the maximum payoff from Gk and OPTk = OPTGk
.

Proof: Using Corollary 5 and a union bound over the values δk = δ/(4k2),
we obtain that with probability at least 1 − δ, simultaneously for all k and
for all offers g in Gk such that g(S) ≥ 8hk

ε2
ln(8k2|Gk|/δ) = pen(Gk), we have

|g(S1) − g(S2)| ≤ ε
2
g(S). Let k∗ be the optimal index, namely let k∗ be the

index such that (1 − ε) OPTk∗ −2pen(Gk∗) = maxk ((1 − ε) OPTk −2pen(Gk)),
and let ki be the index of the best offer (according to our criterion) over Si,
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for i = 1, 2. By our assumption that g1 and g2 were chosen by an optimal
algorithm, we have gi(Si) − pen(Gki

) ≥ gOPTk∗
(Si) − pen(Gk∗), for i = 1, 2.

We will argue next that g1(S2) ≥ 1− ε
2

1+ ε
2

(gOPTk∗
(S1) − pen(Gk∗)). First, if g1(S1) <

pen(Gk1), then the conclusion is clear since we have 0 > g1(S1) − pen(Gk1) ≥
gOPTk∗

(S1) − pen(Gk∗). If g1(S1) ≥ pen(Gk1), then as argued above we have
|g1(S1) − g1(S2)| ≤ ε

2
g1(S) and so

g1(S2) ≥
1 − ε

2

1 + ε
2

g1(S1) ≥
1 − ε

2

1 + ε
2

(gOPTk∗
(S1) − pen(Gk∗)) .

Similarly, we can prove that we have g2(S1) ≥ 1− ε
2

1+ ε
2

(gOPTk∗
(S2) − pen(Gk∗)).

All these together imply that the profit of the mechanism RSO-SRM(Ḡ,pen),
namely g1(S2) + g2(S1), is at least

1 − ε
2

1 + ε
2

(gOPTk∗
(S) − 2pen(Gk∗)) ≥ ((1 − ε) OPTk∗ −2pen(Gk∗)) ,

as desired. 2

3.3 Improving the Bounds

The results above say, in essence, that if we have enough bidders so that
the optimal profit is large compared to h

ε2
log(|G|), then our mechanism will

perform nearly as well as the best offer in G. In these bounds, one should think
of log(|G|) as a measure of the complexity of the offer class G; for instance,
it can be thought of as the number of bits needed to describe a typical offer
in that class. However, in many cases one can achieve a better bound by
adapting techniques developed for analyzing generalization performance in
machine learning theory. In this section, we discuss a number of such methods
that can produce better bounds. These include both analysis techniques (such
as using appropriate forms of covering numbers), where we do not change the
mechanism but instead provide a stronger guarantee, and design techniques
(like discretizing), where we modify the mechanism to produce a better bound.

3.3.1 Discretizing

Notation: Given a class of offers G, define Gα to be the set of offers induced
by rounding all prices down to the nearest power of (1 + α).

In many cases, we can greatly reduce |G| without much affecting OPTG by
performing some type of discretization. For instance, for auctioning a digital
good, there are infinitely many offers induced by all take-it-or-leave-it prices
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but only log1+α h ≈ 1
α

ln h offers induced by the discretized prices at powers
of 1 + α. Also, since rounding down the optimal price to the nearest power of
1 + α can reduce revenue for this auction by at most a factor of 1 + α, the
optimal offer in the discretized class must be close, in terms of total profit,
to the optimal offer in the original class. More generally, if we can find a
smaller offer class G′ such that OPTG′ is guaranteed to be close to OPTG,
then we can instruct our algorithm A to optimize over G ′ instead of G to get
better bounds. We consider the discretization Gα in our refined analysis of the
digital good auction problem (Section 4) and in our consideration of attribute
auctions (Section 5). Further, in Section 6 we discuss an interesting alternative
discretization for item-pricing in combinatorial auctions.

3.3.2 Counting Possible Outputs

Suppose we can argue that our algorithm A, run on a subset of S, will only
ever output offers from a restricted set GA ⊆ G. For example, for the problem
of auctioning a digital good, if A picks the offer based on the optimal take-
it-or-leave-it price over its input then this price must be one of the bids, so
|GA| ≤ n. Then, we can simply replace |G| with |GA| (or |GA|+1 if the optimal
offer is not in GA) in all the above arguments. Formally we can say that:

Observation 7 If algorithm A, run on any subset of S, only output offers
from a restricted set GA ⊆ G, then all the bounds in Sections 3.1 and 3.2 hold
with |G| replaced by |GA| + 1.

3.3.3 Using Covering Numbers

The main idea of these arguments is the following. Suppose G has the property
that there exists a much smaller class G ′ such that every g ∈ G is “close” to
some g′ ∈ G′, with respect to the given set of bidders S. Then one can show
that if all offers in G′ perform similarly on S1 as they do on S2, then this will
be true for all offers in G as well. These kind of arguments are quite often used
in machine learning (see for instance [3,13,16,36]), but the main challenge is
to define the right notion of “close” for our mechanism design setting to get
good and meaningful bounds. Specifically, we will consider L1 multiplicative
γ-covers which we define as follows:

Definition 1 G′ is an L1 multiplicative γ-cover of G with respect to S if for
every g ∈ G there exists g′ ∈ G′ such that

∑

i∈S

|g(i) − g′(i)| ≤ γg(S).
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In the following we present bounds based on L1 multiplicative γ-covers. We
start by proving the following structural lemma characterizing these L1 covers.

Lemma 8 If
∑

i∈S
|g(i)− g′(i)| ≤ γg(S) and |g′(S1) − g′(S2)| ≤ ε′ max [g′(S), p]

then we have |g(S1) − g(S2)| ≤ ε′ max[g′(S), p] + γg(S). This further implies
that |g(S1) − g(S2)| ≤ (γ + ε′(1 + γ)) max[g(S), p].

Proof: We will first prove that g(S1) ≥ g(S2) − ε′ max[g′(S), p] − γg(S). Note
that this clearly implies g(S1) ≥ g(S2)− (γ + ε′(1 + γ)) max[g(S), p], since the
first assumption in the lemma implies that |g(S) − g′(S)| ≤ γg(S) . Let us de-

fine ~∆g1g2(S) =
∑

i∈S max(g1(i) − g2(i), 0) and consider ∆gg′(S) = ~∆gg′(S) +
~∆g′g(S) =

∑

i∈S
|g(i)−g′(i)|. Clearly, for any S ′ ⊆ S we have ~∆gg′(S) ≥ ~∆gg′(S

′)

and likewise ∆gg′(S) ≥ ∆gg′(S
′). Also, for any subset S ′ ⊆ S we have g(S ′) −

g′(S ′) ≤ ~∆gg′(S) and g′(S ′) − g(S ′) ≤ ~∆g′g(S). Now, from g′(S1) ≥ g′(S2) −
ε′ max[g′(S), p] we obtain that g(S1) + ~∆g′g(S) ≥ g′(S2) − ε′ max[g′(S), p] ≥
g(S2)− ~∆gg′(S)−ε′ max[g′(S), p]. Therefore we have g(S1) ≥ g(S2)−∆gg′(S)−
ε′ max[g′(S), p], which implies g(S1) ≥ g(S2)− ε′ max[g′(S), p]− γg(S), as de-
sired. Using the same argument with S1 replaced by S2 yields the theorem. 2

Using Lemma 8, we can now get the following bound:

Theorem 9 Given the offer class G and a β-approximation algorithm A for
optimizing over G, then with probability at least 1 − δ, the profit of RSO(G,A)

is at least (1 − ε)OPTG/β so long as

OPTG ≥ β 72h
ε2

ln
(

2|G′|
δ

)

,

for some L1 multiplicative ε
12

-cover G′ of G with respect to S.

Proof: Let p = 72h
ε2

ln
(

2|G′|
δ

)

. By Lemma 4, applying the union bound, we

have that with probability 1 − δ, every g′ ∈ G′ satisfies |g′(S1) − g′(S2)| ≤
ε
6
max [g′(S), p]. Using Lemma 8, with ε′ set to ε

6
and γ set to ε

12
, we obtain that

with probability 1 − δ, every g ∈ G satisfies |g(S1) − g(S2)| ≤ ε
3
max [g(S), p].

Finally, proceeding as in the proof of Theorem 1 we obtain the desired re-
sult. 2

Notice that Theorem 9 implies that:

Corollary 10 Given the offer class G and a β-approximation algorithm A for
optimizing over G, then with probability at least 1 − δ, the profit of RSO(G,A)

is at least (1 − ε)OPTG/β, so long as OPTG ≥ n and the number of bidders
satisfies

n ≥ 72hβ
ε2

ln
(

2|G′|
δ

)

for some L1 multiplicative ε
12

-cover G′ of G with respect to S.
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We will demonstrate the utility of L1 multiplicative covers in Section 4 by
showing the existence of L1 covers of size o(n) for the digital good auction. It is
worth noting that a straightforward application of analogous ε-cover results in
learning theory [3] (which would require an additive, rather than multiplicative
gap of ε for every bidder) would add an extra factor of h into our sample-size
bounds.

4 The Digital Good Auction

We now consider applying the results in Section 3 to the problem of auctioning
a digital good to indistinguishable bidders. In this section we define G to be
the natural class of offers induced by the set of all take-it-or-leave-it prices
(see for instance [25]). Clearly in this case, it is trivial to solve the underlying
optimization problem optimally: given a set of bidders, just output the offer
induced by the constant price that maximizes the price times the number of
bidders with bids at least as high as the price. Also, it is easy to see that this
price will be one of the bid values. Thus, applying Theorem 7 with the bound
on |GA| = n, we get an approximately optimal auction with convergence rate
O(h log n).

We can obtain better results using L1 multiplicative-cover arguments and
Theorem 9 as follows. Let b1, . . . , bn be the bids of the n bidders sorted
from highest to lowest. Define G′ as the offer class induced by {bi : i =
b(1 + γ)jc for some j ∈ Z} ∪ {(1 + γ)i : i ∈ {1, . . . , log1+γ h}}. Consider
g ∈ G and find the g′ ∈ G′ that offers the largest price less than the offer price
of g. Notice first that all the winners in S on g also win in g′. Second, the offer
price of g′ is within a factor of 1 + γ of the offer price of g. Third, g′ has at
most a factor of 1 + γ more winners than g. The first two facts above imply
that ~∆gg′(S) ≤ γg(S). The third fact implies that ~∆g′g(S) ≤ γg(S). Thus,
∆gg′ ≤ 2γg(S) and therefore, G ′ is a 2γ-cover of G (see the proof of Lemma 8

for definitions of ∆gg′ and ~∆gg′). Since |G′| is O(log hn), the additive loss of
RSO(G,A) is O(h log log nh). 6

We can also apply the discretization technique by defining Gα to be the set of
offers induced by the set of all constant-price functions whose price v ∈ [1, h]
is a power of (1 +α) and α = ε

2
. Clearly, if we can get revenue at least (1− ε

2
)

times the optimal in this class, we will be within (1 − ε) of the optimal fixed
price overall. For example, Corollary 2 (A can trivially find the best offer in

6 It is interesting to contrast these results with that of [26] which showed that RSO
over the set of constant-price functions is near 6-competitive with the promise that
n � h. A much more complicated analysis of RSO in a slightly different competitive
framework is given in [18].
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G′ by simply trying all of them) shows that with probability 1 − δ we get at
least 1 − ε times the revenue of the optimal take-it-or-leave-it offer so long as
the number of bidders n is at least 72h

ε2
ln(4 ln h

εδ
) = O(h log log h).

4.1 Data Dependent Bounds

We can use the high level idea of our structural risk minimization reduction
in order to get a better data dependent bound for the digital good auction. In
particular, we can replace the “h” term in the additive loss with the actual
sale price used by the optimal take-it-or-leave-it offer (in fact, even better, the
lowest sales price needed to generate near-optimal revenue), yielding a much
better bound when most of the profit to be made is from the low bids. The
idea is that rather than penalizing the “complexity” of the offer in the usual
sense, we instead penalize the use of higher prices.

Let qi = (1 + α)i and offer gi be the take-it-or-leave-it price of qi. Define
Ḡ = {g1}, {g2}, . . . and consider the auction RSO-SRMḠ,pen with pen({gi})
specified from Section 3.2 to be 8qi

ε2
ln
(

8i2

δ

)

. The following is an a corollary of
of Theorem 6.

Corollary 11 For any given value of n, ε, and δ, with probability 1 − δ, the
revenue of RSO-SRM(Ḡ,pen) is at least maxi [(1 − ε)gi(S) − 2pen({gi})], where

pen({gi}) = 8qi

ε2
ln
(

8i2

δ

)

.

In other words, if the optimal take-it-or-leave-it offer has a sale price of p,
then RSO-SRM(Ḡ,pen) has convergence rate bounded by O(p log log h) instead
of O(h log log h) as provided by our generic analysis of RSO(G,A).

4.2 A Special Purpose Analysis for the Digital Good Auction

In this section we present a refined data independent analysis for the digital
good auction. Specifically, we can show for an optimal algorithm A, that:

Theorem 12 For δ < 1
2
, with probability 1 − δ, RSO(Gα,A) obtains profit at

least

OPTGα
−8

√

h OPTGα
log

(

1
αδ

)

.

Corollary 13 For δ < 1
2

and α = ε
2
, so long as OPTGα

≥ (16
ε
)2h log

(

2
εδ

)

, then

with probability at least 1− δ, the profit of RSO(Gα,A) is at least (1− ε) OPTG.
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The above corollary improves over our basic discretization results using The-
orem 1 by an O(log log h) factor in the convergence rate.

To prove Theorem 12, let us introduce some notation. For the offer gv induced
by the take-it-or-leave-it offer of price v, let nv denote the number of winners
(bidders whose value is at least v), and let rv = v · nv denote the profit of gv

on S. Denote by r̂v the observed profit of gv on S1 (and so r̂v = v · n̂v, where
n̂v is the number of winners in S1 for gv). So, we have E[r̂v] = rv

2
. We now

begin with the following lemma.

Lemma 14 Let ε < 1 and δ < 1
2
. With probability at least 1− δ we have that,

for every gv ∈ Gα the observed profit on S1 satisfies:

∣

∣

∣

∣

r̂v −
rv

2

∣

∣

∣

∣

≤ max





h log
(

1
αδ

)

ε
, εrv



.

Proof: First for a given price v let an,v be |n̂v − nv

2
|. To prove our lemma

we will use the consequence of Chernoff bound we present in Appendix A,

Theorem 27. For any v and j ≥ 1 we consider n′ =
(1+α)j log ( 1

αδ )
ε2

, and so we
get

Pr







an,v ≥ ε max



nv,
(1 + α)j log

(

1
αδ

)

ε2











≤ 2e−2(1+α)j log ( 1
αδ ).

This further implies that we have an,v ≥ ε max
(

nv,
(1+α)j log ( 1

αδ )
ε2

)

with prob-

ability at most 2(αδ)2(1+α)j

. Therefore for v = h
(1+α)j we have

Pr







∣

∣

∣

∣

r̂v −
rv

2

∣

∣

∣

∣

≥ max





h log
(

1
αδ

)

ε
, εrv











≤ 2(αδ)2(1+α)j

,

and so the probability that there exists a gv ∈ Gα such that
∣

∣

∣r̂v − rv

2

∣

∣

∣ ≥
max

(

h
ε
, εrv

)

is at most 2
∑

j(αδ)2(1+α)j ≤ 2
∑

j′
1
α
(αδ)2·2j′ ≤ δ. This implies

that with high probability, at least 1 − δ, we have that simultaneously, for
every gv ∈ Gα the observed revenue on S1 satisfies:

∣

∣

∣

∣

r̂v −
rv

2

∣

∣

∣

∣

≤ max





h log
(

1
αδ

)

ε
, εrv



,

as desired. 2

Proof of Theorem 12: Assume now that it is the case that for every gv ∈ Gα we
have

∣

∣

∣r̂v − rv

2

∣

∣

∣ ≤ max
(

H
ε
, εrv

)

, where H = h log
(

1
αδ

)

. Let v∗ be the optimal
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price level among prices in Gα, and let ṽ∗ be the price that looks best on S1.
Obviously, our gain on S2 is rṽ∗ − r̂ṽ∗ . We have r̂v∗ ≥ r∗v

2
− H

ε
− εrv∗rv∗

1−2ε
2

− H
ε
,

r̂ṽ∗ ≥ r̂v∗ and r̂ṽ∗ ≤ rṽ∗

2
+ H

ε
+ εrṽ∗ ≤ rṽ∗

2
+ H

ε
+ εrv∗ , and therefore rṽ∗ − r̂ṽ∗ ≥

r̂ṽ∗ − H
ε
− εrv∗ , which finally implies that rṽ∗ − r̂ṽ∗ ≥ rv∗

(

1
2
− 2ε

)

− 2H
ε
.

This implies that with probability at least 1 − δ
2

our gain on S2 is at least

rv∗

(

1
2
− 2ε

)

− 2H
ε
, and similarly our gain on S1 is at least rv∗

(

1
2
− 2ε

)

− 2H
ε
.

Therefore, with probability 1 − δ, our revenue is OPTGα
(1 − 4ε) − 4

h log ( 1
αδ )

ε
.

Optimizing the bound we set ε =

√

h log ( 1
αδ )

OPTGα
and get a revenue of

OPTGα
− 8

√

h OPTGα
log

(

1

αδ

)

,

which completes the proof. 2

5 Attribute Auctions

We now consider applying our general bounds (Section 3) to attribute auc-
tions. For attribute auctions an offer is a function from the publicly observable
attribute of an agent to a take-it-or-leave-it price. As such, we identify such
an offer with its pricing function. We begin by instantiating the results in Sec-
tion 3 for market pricing auctions, in which we consider pricing functions that
partition the attribute space into market segments and offer a fixed price in
each. We show how one can use standard combinatorial dimensions in learning
theory, e.g. the Vapnik-Chervonenkis (VC) dimension [3,11,16,30,36], in order
to bound the complexity of these classes of offers. We then give an analysis
for very general offer classes induced by general pricing functions over the
attribute space that uses the notion of covers defined in Section 3.3.3.

5.1 Market Pricing

For attribute auctions, one natural class of pricing functions are those that
segment bidders into markets in some simple way and then offer a single sale
price in each market segment. For example, suppose we define Pk to be the
set of functions that choose k bidders b1, . . . , bk; use these as cluster centers to
partition S into k markets based on distance to the nearest center in attribute
space; and then offer a single price in each market. In that case, if we discretize
prices to powers of (1 + ε), then clearly the number of functions in the offer
class Gk induced by the pricing class Pk, is at most nk(log1+ε h)k, so Corollary 2

implies that so long as n ≥ 18h
ε2

[

ln
(

2
δ

)

+ k ln n + k ln
(

log1+ε h
)]

and assuming
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we can solve the optimization problem, then with probability at least 1 − δ,
we can get profit at least (1 − ε) OPTGk

.

We can also consider more general ways of defining markets. Let C be any class
of subsets of X , which we will call feasible markets. For k a positive integer,
we consider Fk+1(C) to be the set of all pricing functions of the following
form: pick k disjoint subsets X1,...,Xk ⊆ X from C, and k + 1 prices p0,...,pk

discretized to powers of 1 + ε. Assign price pi to bidders in Xi, and price p0 to
bidders not in any of X1,...,Xk. For example, if X = R

d a natural C might be
the set of axis-parallel rectangles in R

d. The specific case of d = 1 was studied
in [9]. One can envision more complex partitions, using the membership of a
bidder in Xi as a basic predicate, and constructing any function over it (e.g.,
a decision list).

We can apply the results in Section 3 by using the machinery of VC-dimension
to count the number of distinct such functions over any given set of bidders
S. In particular, let D = VCdim(C) be the VC-dimension of C and assume
D < ∞. Define C[S] to be the number of distinct subsets of S induced by

C. Then, from Sauer’s Lemma C[S] ≤
(

en
D

)D
, and therefore the number of

different pricing functions in Fk(C) over S is at most
(

log1+ε h
)k (

en
D

)kD
. Thus

applying Corollary 2 here we get:

Corollary 15 Given a β-approximation algorithm A for optimizing over the
offer class Gk induced by the class of pricing functions Fk(C), then so long as
OPTGk

≥ n and the number of bidders n satisfies

n ≥ 18hβ

ε2

[

ln
(

2

δ

)

+ k ln
(

1

ε
ln h

)

+ kD ln
(

ne

D

)]

,

then with probability at least 1−δ, the profit of RSOGk,A is at least (1−ε)
OPTGk

β
.

The above lemma has “n” on both sides of the inequality. Simple algebra
yields:

Corollary 16 Given a β-approximation algorithm A for optimizing over the
offer class Gk induced by the class of pricing functions Fk(C), then so long as
OPTGk

≥ n and the number of bidders n satisfies

n ≥ 36hβ

ε2

[

ln
(

2

δ

)

+ k ln
(

1

ε
ln h

)

+ kD ln

(

36khβ

ε2

)]

,

then with probability at least 1−δ, the profit of RSOGk,A is at least (1−ε)
OPTGk

β
.

Proof: Since ln a ≤ ab − ln b − 1 for all a, b > 0, we obtain: 18kDhβ
ε2

ln n ≤
n
2

+ 18kDhβ
ε2

ln
(

36kDhβ
eε2

)

. Therefore, it suffices to have: n ≥ n
2

+ 18hβ
ε2

[

ln
(

2
δ

)

+
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k ln
(

1
ε
ln h

)

+kD ln
(

36khβ
ε2

)

]

, so n ≥ 36hβ
ε2

[

ln
(

2
δ

)

+ k ln
(

1
ε
ln h

)

+ kD ln
(

36khβ
ε2

)]

suffices. 2

For certain classes C we can get better bounds. In the following, denote by Ck

the concept class of unions of at most k sets from C, and let L be dlog1+ε he.
If C is the class of intervals on the line, then the VC-dimension of Ck is 2k,
and so the number of different pricing functions in Fk(C) over S is at most

Lk
(

en
2k

)2k
; also, if C is the class of all axis parallel rectangles in d dimensions,

then the VC-dimension of Ck is O(kd) [20]. In these cases we can remove the
log k term in our bounds, which is nice because it means we can interpret
our results (e.g., Corollary 16) as charging OPT a penalty for each market it
creates. However, we do not know how to remove this log k term in general,
since in general the VC-dimension of Ck can be as large as 2Dk log(2Dk) (see
[7,17]).

Corollary 16 gives a guarantee in the revenue of RSOGk,A so long as we have
enough bidders. In the following, for k ≥ 0 let OPTk = OPTGk

. We can also
use Corollaries 5 and 16 to show a bound that holds for all n, but with an
additive loss term.

Theorem 17 For any given value of n, k, ε, and δ, with probability at least
1 − δ, the revenue of RSOGk,A is

1
β

[(1 − ε) OPTk −h · rF (k, D, h, ε, δ)] ,

where rF (k, D, h, ε, δ) = O
(

kD
ε2

ln
(

kDh
εδ

))

.

Proof: For simplicity, we show the proof for β = 1, the general case is sim-
ilar. We prove the bound with the “(1 − ε)” term replaced by the term

min
(

(1−ε′)2

1+ε′
, 1 − 2ε′

)

, which then implies our desired result by simply using

ε′ = ε
3
. If n ≥ 36h

ε′2

[

ln
(

2
δ

)

+ k ln
(

1
ε′

ln h
)

+ kD ln
(

36kh
ε′2

)]

, then the desired
statement follows directly from Corollary 16. Otherwise, consider first the
case when we have OPTk ≥ 4h

ε′2(1−ε′)

[

ln
(

2
δ

)

+ k ln
(

1
ε′

ln h
)

+ kD ln
(

ne
D

)]

. Let

gi be the optimal offer in Gk over Si, for i = 1, 2, and let gOPT be the opti-
mal offer in Gk over S (and so gi(Si) ≥ gOPT(Si)). From Corollary 5, we have

gOPT(Si) ≥ 2h
ε′2

[

ln
(

2
δ

)

+ k ln
(

1
ε′

ln h
)

+ kD ln
(

ne
D

)]

, for i = 1, 2. So, gi(Si) ≥
2h
ε′2

[

ln
(

2
δ

)

+ k ln
(

1
ε′

ln h
)

+ kD ln
(

ne
D

)]

. Using again Corollary 5, we obtain

gi(Sj) ≥ 1−ε′

1+ε′
gi(Si) for j 6= i, which then implies the desired result. To complete

the proof notice that if both OPTk ≤ 4h
ε′2(1−ε′)

[

ln
(

2
δ

)

+ k ln
(

1
ε′

ln h
)

+ kD ln
(

ne
D

)]

and n ≤ 4h
ε′2

[

ln
(

2
δ

)

+ k ln
(

2
ε′

ln h
)

+ kD ln
(

4kh
ε′2

)]

, then we easily get the de-
sired statement. 2

Finally, as in Theorem 6 we can extend our results to use structural risk
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minimization, where we want the algorithm to optimize over k, by viewing
the additive loss term, h · rF (·), as a penalty function.

Theorem 18 Let Ḡ be the sequence G1,G2, . . . ,Gn of offer classes induced by
the sequence of classes of pricing functions F1(C), F2(C), . . . , Fn(C). Then for
any value of n, ε and δ with probability 1− δ the revenue of RSO-SRMḠ,pen is

max
k

((1 − ε) OPTk −h · rF (k, D, h, ε, δ)),

where pen(Fk(C)) = h
2
· rF (k, D, h, ε, δ) = O

(

kD
ε2

ln
(

kDh
εδ

))

.

To illustrate the tightness of Theorem 17, notice that even for the special
case of pricing using interval functions (the case of d = 1 studied in [9]), the
following lower bound holds.

Theorem 19 Let X = R and let Ck be the class of k intervals over X . Then
there is no incentive compatible mechanism whose expected revenue is at least
3
4
OPTk −o(kh).

That is, an additive loss linear in kh is necessary in order to achieve a multi-
plicative ratio of at least 3/4.

Proof: Consider kh
2

bidders with distinct attributes (for instance, say bidder
i has attribute i), each of whom independently has a 1

h
probability of having

valuation h and a 1− 1
h

probability of having valuation 1. Then, any incentive-
compatible mechanism has expected profit at most kh

2
because for any given

bidder and any given proposed price, the expected profit (over randomization
in the bidder’s valuation) is at most 1. However, there is at least a 50% chance
we will have at least k

2
bidders of valuation h, and in that case OPTk can give

k
2
− 1 of those bidders a price of h and the rest a price of 1 for an expected

profit of
(

k
2
− 1

)

h+
(

kh
2
− k

2
+ 1

)

1 = kh−h− k
2
+1. On the other hand even

if that does not occur, we always have OPTk ≥ kh
2

. So, the expected profit
of OPTk is at least 3kh

4
− h

2
− k

4
. Thus, the profit of the incentive-compatible

mechanism is at most 3
4
OPTk −kh

16
+ o(kh). 2

We note that a similar lower bound holds for most base classes. Also for the
case of intervals on the line, both our auction and the auction in [9] match
this lower bound up to constant factors.

5.2 General Pricing Functions over the Attribute Space

In this section we generalize the results in Section 5.1 in two ways: we consider
general classes of pricing functions (not just piecewise-constant functions de-
fined over markets), and we remove the need to discretize by instead using the
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covering arguments discussed in Section 3.3.3. This allows us to consider offers
based on linear or quadratic functions of the attributes, or perhaps functions
that divide the attribute space into markets and use pricing functions are lin-
ear in the attributes (rather than constant) in each market. The key point of
this section is that we can bound the size of the L1 multiplicative cover in an
attribute auction in terms of natural quantities.

Assume in the following that X ⊆ R
d, let P be a fixed class of pricing functions

over the attribute space X and let G be the induced class of offers. Let Pd be
the class of decision surfaces (in R

d+1) induced by P: that is, to each q ∈ P
we associate the set of all (x, v) ∈ X × [1, h] such that q(x) ≤ v. Also, let us
denote by D the VC-dimension of class Pd. We can then show that:

Theorem 20 Given the offer class G and a β-approximation algorithm A for
optimizing over G, then so long as OPTG ≥ n and the number of bidders n
satisfies

n ≥ 154hβ

ε2

[

ln
(

2

δ

)

+ D ln

(

154hβ

ε2

(

12

ε
ln h + 1

)

)]

,

then with probability at least 1−δ, the profit of RSO(G,A) is at least (1−ε)OPTG

β
.

The key to the proof is to exhibit an L1 multiplicative cover of G whose size
is exponential in D only, and then to apply Corollary 10.

Proof: Let α = ε
12

. For each bidder (x, v) we conceptually introduce O( 1
α

ln h)
“phantom bidders” having the same attribute value x and bid values 1, (1 +
α), (1 + α)2, · · · , h. Let S∗ be the set S together with the set of all phantom
bidders; let n∗ = |S∗|. Let Split be the set of possible splittings of S∗ with
surfaces from Pd. We clearly have |Split| ≤ Pd[S

∗]. For each element s ∈ Split

consider a representative function in G that induces splitting s in terms of its
winning bidders, and let SplitG be the set of these representative functions.
Let G′ be the offer class induced by the pricing class SplitG. Notice that G′

is actually an L1 multiplicative α-cover for G with respect to S, since for
every offer in G there is a offer in G ′ that extracts nearly the same profit
from every bidder; i.e., for every offer in g ∈ G, there exists g′ ∈ G′ such
that for every (x, v) ∈ S, we have both g′((x, v)) ≤ (1 + α)g((x, v)) and

g((x, v)) ≤ (1 + α)g′((x, v)). From Sauer’s lemma we know |SplitG| ≤
(

n∗e
D

)D
,

and applying Corollary 10, we finally get the desired statement by using simple
algebra as in Corollary 16. 2

The above theorem is the analog of Corollary 2. Using it and Theorem 9, it is
easy to derive a bound that holds for all n (i.e., the analog of Theorem 17).
One can further easily extend these results to get bounds for the corresponding
SRM auction (as done in Theorem 18).
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5.3 Algorithms for Optimal Pricing Functions

There has been relatively little work on the algorithmic question of com-
puting optimal pricing functions in general attribute spaces. However, for
single-dimentional attributes and piece-wise constant pricing functions [9] dis-
cusses an optimal polynomial time dynamic program. For single-dimentional
attributes and monotone pricing functions, [2] gives a polynomial time dy-
namic program. The problem of computing the optimal of linear pricing func-
tion over m-dimentional attributes generalizes the problem of item-pricing (m
distinct items) for single-minded combinatorial consumers (see Section 6.4)
that has been shown to be hard to approximate to better than a logδ(m)
factor for some δ > 0 [15].

6 Combinatorial Auctions

Combinatorial auctions have received much attention in recent years because
of the difficulty of merging the algorithmic issue of computing an optimal
outcome with the game-theoretic issue of incentive compatibility. To date,
the focus primarily has been on the problem of optimizing social welfare:
partitioning a limited supply of items among bidders to maximize the sum of
their valuations. We consider instead the goal of profit maximization for the
seller in the case that the items for sale are available in unlimited supply. 7

We consider the general version of the combinatorial auction problem as well
as the special cases of unit-demand bidders (each bidder desires only singleton
bundles) and single-minded bidders (each bidder has a single desired bundle).

It is interesting to restrict our attention to the case of item-pricing, where the
auctioneer intuitively is attempting to set a price for each of the distinct items
and bidders then choose their favorite bundle given these prices. Item-pricing
is without loss of generality for the unit-demand case, and general bundle-
pricing can be realized with an auction with m′ = 2m “items”, one for each of
possible bundle of the original m items. 8

First notice that if the set of allowable item pricings are constrained to be
integral, GZ, then clearly there are at most |GZ| = (h + 1)m possible item

7 Other work focusing on profit maximization in combinatorial auctions include
Goldberg and Hartline [21], Hartline and Koltun [29], Guruswami et al. [28],
Likhodedov and Sandholm [32], and Balcan et al. [6].
8 We make the assumption that all desired bundles contain at most one of each
item. This assumption can be easily relaxed and our results apply given any bound
on the number of copies of each item that are desired by any one consumer. Of
course, this reduction produces an exponential blowup in the number of items.
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pricings. By Corollary 2 we get that Õ
(

hm
ε2

)

bidders are sufficient to achieve
profit close to OPTGZ

. Generally it is possible to do much better if non-integral
item-pricings are allowed, i.e., OPTG(S) � OPTGZ

(S). In these settings we
can still get good bounds following the guidelines established in Section 3.3, by
either considering an offer class G′ induced by discretization (see Section 6.1),
or from counting possible outcomes in GA (see Section 6.2). A summary of our
results is given in Table 1.

general unit-demand single-minded

|G′| O(logm
1+ε2

nm
ε ) O(logm

1+ε2
n
ε ) O(logm

1+ε
nm
ε )

|GA| nm22m2
nm(m + 1)2m (n + m)m

Table 1
Size of offer classes for combinatorial auctions.

We can apply Theorem 1 and Corollary 2 to the sizes of the offer classes in
Table 1 to get bounds on the profit of random sampling auctions for com-
binatorial item pricing. In particular, using Corollary 2 we get that Õ

(

hm2

ε2

)

bidders are sufficient to achieve revenue close to the optimum item-pricing in
the general case, and Õ

(

hm
ε2

)

bidders are sufficient for the unit-demand case.
Also, by using Theorem 1 instead of Corollary 2 we can replace the condition
on the number of bidders with a condition on OPTG, which gives a factor of
m improvement on the bound given by [21].

As before we let h = maxg∈G,i∈S g(i). In particular, this implies that OPTG ≥ h
which will be important later in this section.

6.1 Bounds via Discretization

As shown in Section 3.3.1, we can obtain good bounds if we are willing to opti-
mize over a set G ′ of offers induced by a small set of discretized prices satisfying
that OPTG′ is close to OPTG. Prior to this work, [29] shows how to construct
discretized classes G′ with OPTG′ ≥ 1

1+ε
OPTG and size O(mm logm

1+ε
n
ε
) for the

unit-demand case and size O(logm
1+ε

nm
ε

) for the single-minded case. Nisan [34]
gives the basic argument necessary to generalize these results to obtain the
result in Theorem 21 which applies to combinatorial auctions in general. We
note in passing that Theorem 21 allows for generalization and improvement
of the computational results of [29]. The discretization results we obtain are
summarized in the first row of Table 1.

Let p = (p1, . . . , pm) be an item-pricing of the m items. Let gp correspond to
the offering pricing p. The following is the main result of this section.

Theorem 21 Let k be the size of the maximum desired bundle. Let p′ be the
optimal discretized price vector that uses item prices equal to 0 or powers of
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(1 + ε) in the range
[

hε
nk

, h
]

and let p∗ be the optimal price vector. Then we
have:

gp′(S) ≥ (1 − 2
√

ε)gp∗(S).

Proof: Let δ =
√

ε. For the optimal price vector p∗ with item j priced at p∗j (i.e.,
gp∗(S) = OPTG), consider a price vector p with pj in [(1− δ)p∗j , (1− δ + δ2)p∗j ]

if p∗j ≥ hδ2

nk
and 0 otherwise, where pj = (1 + ε)k for some integer k (note that

such a price vector always exists). We show now that gp(S) ≥ (1−2
√

ε)gp∗(S),
which clearly implies the desired result.

Let J be a multi-set of items and Profit(J) =
∑

j∈J p∗j be the payment nec-
essary to purchase bundle J under pricing p∗. Define Rj = p∗j − pj. Thus we
have:

(δ − δ2)p∗j ≤ Rj ≤ max{δp∗j , δ2h
nk

} ≤ δp∗j + δ2h
nk

.

This implies that for any multiset J with |J | ≤ k, we have the following upper
and lower bounds:

∑

j∈J

Rj ≥ (δ − δ2)Profit(J) , (1)

∑

j∈J ′

Rj ≤ δProfit(J ′) + hδ2

n
. (2)

Let J∗
i and Ji be the bundles that bidder i prefers under pricing p∗ and p,

respectively. Consider bidder i who switches from bundle J∗
i to bundle Ji when

the item prices are decreased from p∗ to p. This implies that:

∑

j∈J∗
i

Rj ≤
∑

j∈Ji

Rj .

Combining this with equations (1) and (2) and canceling a common factor of
δ we see that:

(1 − δ)Profit(J∗
i ) ≤ Profit(Ji) + hδ

n
.

Summing over all bidders i, we see that the total profit under our new pricing
p is at least (1 − δ) OPTG −hδ. Since OPTG ≥ h, we finally obtain that the
profit under p is at least (1 − 2δ) OPTG. 2

Note that we can now apply Theorem 21 by letting G ′ be the offer class induced
by the class of item prices equal to 0 or powers of (1 + ε) in the range

[

hε
nk

, h
]

(where k bounds the maximum size of a bundle). Using Theorem 1 we obtain
the following guarantee:

Corollary 22 Given a β-approximation algorithm A optimizing over G ′, then
with probability at least 1−δ, the profit of RSOG′,A is at least (1−3ε)OPTG/β
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so long as

OPTG′ ≥ 18hβ
ε2

(

m ln(log1+ε2 nk) + ln
(

2
δ

))

.

6.2 Bounds via Counting

We now show how to use the technique of counting possible outcomes (See
Section 3.3.2) to get a bound on the performance of the random sampling
auction with an algorithm A for item-pricing. This approach calls for bounding
|GA|, the number of different pricing schemes RSO(G,A) can possibly output.
Our results for this approach are summarized in the second row of Table 1.

Recall that bidder i’s utility for a bundle J given pricing p is ui(J,p) =
vi(J) −∑

j∈J pj . We now make the following claim about the regions of the
space of possible pricings, R

m
+ , in which bidder i’s most desired bundle is fixed.

Claim 2 Let Pi(J) = {p | ∀J ′, ui(J,p) ≥ ui(J
′,p)}. The set Pi(J,p) is a

polytope.

Proof: This follows immediately from the observation that the region Pi(J)
is convex and the only way to pack convex regions into space is if they are
polytopes.

To show that Pi(J) is convex, suppose the allocation to a particular bidder
for p and p′ are the same, J . Then for any other bundle J ′ we have:

vi(J) −
∑

j∈J

pj ≥ vi(J
′) −

∑

j∈J ′

pj

and

vi(J) −
∑

j∈J

p′j ≥ vi(J
′) −

∑

j∈J ′

p′j.

If we now consider any price vector αp+(1−α)p′, for α ∈ [0, 1], these imply:

vi(J) −
∑

j∈J

(αpj + (1 − α)p′j) ≥ vi(J
′) −

∑

j∈J ′

(αpj + (1 − α)p′j).

This clearly implies that this agent prefers allocation J on any convex com-
bination of p and p′. Hence the region of prices for which the agent prefers
bundle J is convex. 2

The above claim shows that we can divide the space of pricings into polytopes
based on an agent’s most desirable bundle. Consider fixing an outcome, i.e.,
the bundles J1, . . . , Jn, obtained by agents 1, . . . , n, respectively. This outcome
occurs for pricings in the intersection

⋂

i∈S Pi(Ji).
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Definition 2 For a set of agents S, let VertsS denote the set of vertices of
the polytopes that partition the space of prices by the allocation produced. I.e.,
VertsS = {p such that p is a vertex of the polytope containing

⋂

i∈S′ Pi(Ji) for
some i ∈ S ′ ⊂ S and bundles Ji}.

Claim 3 For S ′ ⊆ S we have VertsS′ ⊆ VertsS.

Proof: Follows immediately from the definition of VertsS and basic properties
of polytopes. 2

Now we consider optimal pricings. Note that when fixing an allocation J1, . . . , Jn

we are looking for an optimal price point within the polytope that gives this
allocation. Our objective function for this optimization is linear. Let nj be the
number of copies of item j allocated by the allocation. The seller’s payoff for
prices p = (p1, . . . , pm) is

∑

j pjnj . Thus, all optimal pricings of this allocation
lie on facets of the polytope and in particular there is an optimal pricing that
is at a vertex of the polytope. Over the space of all possible allocations, all
optimal pricings are on facets of the allocation defining polytopes and there
exists an optimal pricing that is at a vertex of one of the polytopes.

Lemma 23 Given an algorithm A that always outputs a vertex of the polytope
then GA ⊆ VertsS.

Proof: This follows from the fact that RSO(G,A) runs A on a subset S ′ of
S which has VertsS′ ⊆ VertsS. A must pick a price vector from VertsS′. By
Claim 3 this price vector must also be in VertsS. This gives the lemma. 2

We now discuss getting a bound on VertsS for n agents, m distinct items, and
various types of preferences.

Theorem 24 We have the following upper bounds on |VertsS|:

(1) (n + m)m for single-minded preferences.
(2) nm(m + 1)2m for unit-demand preferences.
(3) nm22m2

for arbitrary preferences.

Proof: We consider how many possible bundles, M , an agent might obtain as
a function of the pricing. An agent with single-minded preferences will always
obtain one of Ms = 2 bundles: either their desired bundle or nothing (the
empty bundle). An agent with unit-demand preferences receives one of the m
items or nothing for a total of Mu = m + 1 possible bundles. An agent with
general preferences receives one of the Mg = 2m possible bundles. 9

9 Here we make the assumption that desired bundles are simple sets. If they are
actually multi-sets with bounded multiplicity k, then the agent could receive one of
at most Mg = (k + 1)m bundles.
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We now bound the number of hyperplanes necessary to partition the pric-
ing space into M convex regions (e.g., that specify which bundle the agent
receives). For convex regions, each pair of regions can meet in at most one
hyperplane. Thus, the total number of hyperplanes necessary to partition the
pricing space into regions is at most

(

M
2

)

. Of course we wish to restrict our pric-
ings to be non-negative, so we must add m additional hyperplanes at pj = 0
for all j.

For all n agents, we simply intersect the regions of all agents. This does not
add any new hyperplanes. Furthermore, we only need to count the m hy-
perplanes that restrict to non-negative pricings once. Thus, the total num-
ber of hyperplanes necessary for specifying the regions of allocation for n
agents with M convex regions each, is K = n

(

M
2

)

+ m. Thus, Ks = n + m,

Ku ≤ n
(

m+1
2

)

+ m ≤ n(m + 1)2, and Kg ≤ n
(

2m

2

)

+ m ≤ n22m (for m ≥ 2).

Of course, K hyperplanes in m dimensional space intersect in at most
(

K
m

)

≤
Km vertices. Not all of these intersections are vertices of polytopes defining
our allocation, still Km is an upper bound on the size of VertsS. Plugging
this in gives us the desired bounds of (n + m)m, nm(m + 1)2m, and nm22m2

respectively for single-minded, unit-demand, and general preferences. 2

We note that are above arguments apply to approximation algorithms that al-
ways output a price corresponding to the vertex of a polytope as well. Though
we do not consider this direction here, it is entirely possible that it is not
computationally difficult to post-process the solution of an algorithm that is
not a vertex of a polytope to get a solution that is on a vertex of a polytope. 10

This would further motivate the analysis above. If for some reason, restricting
to algorithms that return vertices is undesirable, it is possible to use cover ar-
guments on the set of vertices we obtain when we add additional hyperplanes
corresponding to the discretization of the preceding section.

6.3 Combinatorial Auctions: Lower Bounds

We show in the following an interesting lower bound for combinatorial auc-
tions. 11 Notice that our upper bounds and this lower bound are quite close.

Theorem 25 Fix m and h. There exists a probability distribution on unit-
demand single-minded agents such that the expected revenue of any incentive

10 Notice that this is not immediate because of the complexity of representing an
agent’s combinatorial valuation.
11 This proof follows the standard approach for lower bounds for revenue maximizing
auctions that was first given by Goldberg et al. in [24].
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compatible mechanism is at most mh
2

whereas the expected revenue of OPT is
at least 0.7mh.

Thus, this theorem states that in order to achieve a close multiplicative ratio
with respect to OPT, one must have additive loss Ω(mh).

Proof: Consider the following probability distribution over valuations of agents
preferences. Assume we have n = mh

2
agents in total, and h

2
agents desire item

j only, j ∈ {1, · · ·m}. 12 Each of these agents has valuation h with probability
1
h

and valuation 1 with probability 1 − 1
h
.

Notice now any incentive-compatible mechanism has expected profit at most
n. To see this, note that for each bidder, any proposed price has expected
profit (over the randomization in the selection of his valuation) of at most 1.
Moreover, the expected profit of OPTG is at least n+ mh

8
. For each item j, there

is a 1−(1− 1
h
)h/2 ≈ 0.4 probability that some bidder has valuation h. For those

items, OPTG gets at least a profit of h. For the rest, OPTG gets a profit of h
2
.

So, overall, OPTG gets an expected profit of at least 0.4mh+0.6m(h/2) = 0.7h.
All these together imply the desired result. 2

6.4 Algorithms for Item-pricing

Given standard complexity assumptions, most item-pricing problems are not
polynomial time solvable, even for simple special cases. We review these results
here. We restrict our attention to the unlimited supply special case, though
some of the work we mention also considers limited supply item-pricing. Algo-
rithmic pricing problems in this form were first posed by Guruswami et al. [28]
though item-pricing for unit-demand consumers with several alternative pay-
ment rules (i.e., rules that do not represent quasi-linear utility maximization)
were independently considered by Aggarwal et al. [1].

For consumers with single-minded preferences, [28] gives a simple O(log mn)
approximation algorithm. Demaine et al. [15] show the problem to be hard
to approximate to better than a logδ(m) factor for some δ > 0. Both Briest
and Krysta [14] and Grigoriev et al. [27] proved that optimal pricing is weakly
NP-hard for the special case known as “the highway problem” where there is
a linear order on the items and all desired bundles are for sets of consecutive
items (actually this hardness result follows for the more specific case where the
desired bundles for any two agents, Si and Si′ , satisfy one of: Si ⊆ Si′, Si′ ⊆ Si,
or Si ∪ Si′ = ∅). In the case when the cardinality of the desired bundles are
bounded by k, Briest and Krysta [14] give an O(k2) approximation algorithm,
which is improved to O(k) by Balcan and Blum [5]. Finally, when the number

12 Notice that these preferences are both unit-demand and single-minded.
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of distinct items for sale, m, is constant, Hartline and Koltun [29] show that
it is possible to improve on the trivial O(nm) algorithm by giving a near-
linear time approximation scheme. Their approximation algorithm is actually
an exact algorithm for the problem of optimizing over a discretized set of
item prices G′ which is directly applicable to our auction RSO(G′,A), discussed
above.

For consumers with unit-demand preferences, [28] (and [1] essentially) give a
trivial logarithmic approximation algorithm and show that the optimization
problem is APX-hard (meaning that standard complexity assumptions imply
that there does not exist a polynomial time approximation scheme (PTAS)
for the problem). Again, Hartline and Koltun [29] show how to improve on
the trivial O(nm) algorithm in the case where the number of distinct items for
sale, m, is constant. They give a near-linear time approximation scheme that is
based on considering a discretized set of item prices; however, the discretiza-
tion of Nisan [34] that we discussed above gives a significant improvement
on their algorithm and also generalizes it to be applicable to the problem of
item-pricing for consumers with general combinatorial preferences.

7 Conclusions, Discussion, and Open Problems

In this work we have made an explicit connection between machine learning
and mechanism design. In doing so, we obtain a unified approach to considering
a variety of profit maximizing mechanism design problems including many that
have been previously considered in the literature.

Some of our techniques give suggestions for the design of mechanisms and
others for their analysis. In terms of design, these include the use of dis-
cretization to produce smaller function classes, and the use of structural-risk-
minimization to choose an appropriate level of complexity of the mechanism
for a given set of bidders. In terms of analysis, these include both the use of
basic sample-complexity arguments, and the notion of multiplicative covers
for better bounding the true complexity of a given class of offers.

Our results substantially generalize the previous work on random sampling
mechanisms by both broadening the applicability of such mechanisms and by
simplifying the analysis. Our bounds on random sampling auctions for digital
goods not only show how the auction profit approaches the optimal profit, but
also weaken the required assumptions of [26] by a constant factor. Similarly,
for random sampling auctions for multiple digital goods, our unified analysis
gives a bound that weakens the assumptions of [21] by a factor of more than m,
the number of distinct items. This multiple digital good auction problem is a
special case of the a more general unlimited supply combinatorial auction prob-
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lem for which we obtain the first positive worst-case results by showing that
it is possible to approximate the optimal profit with an incentive-compatible
mechanism. Furthermore, unlike the case for combinatorial auctions for so-
cial welfare maximization, our incentive-compatible mechanisms can be easily
based on approximation algorithms instead of exact ones.

We have also explored the attribute auction problem that was proposed in
[9] for 1-dimensional attributes in a much more general setting: the attribute
values can be multi-dimensional and the target pricing functions considered
can be arbitrarily complex. We bound the performance of random sampling
auctions as a function of the complexity of the target pricing functions.

Our random sampling auctions assume the existence of exact or approximate
pricing algorithms. Solutions to these pricing problem have been proposed for
several of our settings. In particular, optimal item-pricings for combinatorial
auctions in the single-minded and unit-demand special cases have been con-
sidered in [5,14,29,28]. On the other hand for attribute auctions, many of the
clustering and market-segmenting pricing algorithms have yet to be considered
at all.

Open Problems: Probably the most important direction for future work is
in relaxing the assumption that the items for sale are available in unlimited
supply. In the random sampling framework, we propose the following mecha-
nism: randomly partition the bidders into two sets, evenly divide the supply
among the two sets, compute the optimal envy-free 13 offer for the two parti-
tions, and apply the offer to the opposite partition. Of course, an offer g that
is envy-free for S1 may not necessarily be envy-free for S2. There are several
approaches that may work here. First, we could artificially deplete the supply
by a constant factor and ask for an offer that is envy-free for the depleted sup-
ply. Then it may be possible to argue that it is envy-free for both S1 and S2

with high probability. Another option would be to take the bidders of S2 in an
arbitrary (or random) order and allow them to take their preferred outcome
suggested by the offer constrained such that their preference is feasible given
the remaining supply. It is easy to see that the technique outlined above results
in an incentive compatible mechanism. Is it also close to optimal? Borgs et
al. have successfully applied this latter approach to limited supply multi-unit
auctions for bidders with budgets [12].

It is possible to further generalize the feasibility constraints imposed by limited
supply to arrive at the general single-parameter agent auction problem (See
e.g., [23] for a precise definition). This abstract problem can be viewed as

13 To generalize envy-freedom [28] to attribute auctions, declare an offer g ∈ G envy-
free for bidders S if there is enough supply such that all bidders that have strictly
positive utility for their preferred outcome under g can simultaneously be satisfied
without creating an infeasible outcome.
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auctioning a service to a number of agents where the service provider must
pay a cost that is a function of the agents served. In its full generality, this
cost function could be arbitrary. The possibly asymmetric cost function can
be viewed as endowing the agents with public attributes, or the agents could
have additional attributes. A very interesting direction for future research is
in determining for what classes of cost functions the general problem of profit
maximization in this setting can be solved.

The final direction of investigation we propose is that of generalizing the spe-
cial purpose bounds we obtain for digital good auctions (Section 4) to our
general unlimited supply setting (Section 3). Recall that in for digital goods
and indistinguishable bidders we were able to employ a telescoping argument
to reduce the additive loss term to O(h) which is optimal up to a constant
factor. This takes advantage of the properties of take-it-or-leave-it prices: that
the payoff for any given bidder is upper-bounded by the offer price. This allows
us to use non-uniform bounds on the payoffs of the different pricing functions
and these non-uniform bounds telescope. Can some form of this telescoping
be generalized to attribute auctions, combinatorial auctions, or our general
bounds? It would be also interesting to see if one can use some of the very re-
cent techniques and ideas used in the context of learning theory and empirical
processes (see e.g. [13,8,31]) to get better bounds for our mechanism design
setting. In particular, it would be interesting to investigate data dependent
bounding techniques in this setting.
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A Concentration Inequalities

Here is the McDiarmid inequality (see [16]) we use in our proofs:

Theorem 26 Let Y1, ..., Yn be independent random variables taking values in
some set A, and assume that t : An → R satisfies:

sup
y1,...,yn∈A,yi∈A

|t(y1, ..., yn) − t(y1, ..., yi−1, yi, yi+1, yn)| ≤ ci,

for all i, 1 ≤ i ≤ n. Then for all γ > 0 we have:

Pr {|t(Y1, ..., Yn) −E[t(Y1, ..., Yn)]| ≥ γ} ≤ 2e
−2γ2/

n
∑

i=1

c2
i

Here is also a consequence of the Chernoff bound that we used in Lemma 14.

Theorem 27 Let X1, ..., Xn be independent Poisson trials such that, for 1 ≤
i ≤ n, Pr [Xi = 1] = 1

2
and let X =

∑n
i=1 Xi. Then any n′ we have:

Pr
{∣

∣

∣

∣

X − n

2

∣

∣

∣

∣

≥ ε max{n, n′}
}

≤ 2e−2n′ε2
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