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Supervised learning — that is, learning from labeled examples — is an area of Machine Learning
that has reached substantial maturity. It has generated general-purpose and practically-successful
algorithms and the foundations are quite well understood and captured by theoretical frameworks
such as the PAC-learning model and the Statistical Learning theory framework. However, for many
contemporary practical problems such as classifying web pages or detecting spam, there is often
additional information available in the form of unlabeled data, which is often much cheaper and
more plentiful than labeled data. As a consequence, there has recently been substantial interest
in semi-supervised learning — using unlabeled data together with labeled data — since any useful
information that reduces the amount of labeled data needed can be a significant benefit. Several
techniques have been developed for doing this, along with experimental results on a variety of
different learning problems. Unfortunately, the standard learning frameworks for reasoning about
supervised learning do not capture the key aspects and the assumptions underlying these semi-
supervised learning methods.

In this paper we describe an augmented version of the PAC model designed for semi-supervised

learning, that can be used to reason about many of the different approaches taken over the past
decade in the Machine Learning community. This model provides a unified framework for ana-
lyzing when and why unlabeled data can help, in which one can analyze both sample-complexity
and algorithmic issues. The model can be viewed as an extension of the standard PAC model
where, in addition to a concept class C, one also proposes a compatibility notion: a type of com-
patibility that one believes the target concept should have with the underlying distribution of
data. Unlabeled data is then potentially helpful in this setting because it allows one to estimate
compatibility over the space of hypotheses, and to reduce the size of the search space from the
whole set of hypotheses C down to those that, according to one’s assumptions, are a-priori reason-
able with respect to the distribution. As we show, many of the assumptions underlying existing
semi-supervised learning algorithms can be formulated in this framework.

After proposing the model, we then analyze sample-complexity issues in this setting: that is,
how much of each type of data one should expect to need in order to learn well, and what the key
quantities are that these numbers depend on. We also consider the algorithmic question of how to
efficiently optimize for natural classes and compatibility notions, and provide several algorithmic
results including an improved bound for Co-Training with linear separators when the distribution
satisfies independence given the label.
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1. INTRODUCTION

In recent years there has been substantial and growing interest in using unlabeled
data together with labeled data in machine learning. The motivation is clear: in
many applications, unlabeled data can be much cheaper and much more plentiful
than labeled data. If useful information can be extracted from unlabeled exam-
ples that allows for learning from fewer labeled examples, this can be a substantial
benefit. A number of Semi-Supervised learning techniques have been developed for
doing this, along with experimental results on a variety of different learning prob-
lems. These include label propagation for word-sense disambiguation [Yarowsky
1995], co-training for classifying web pages [Blum and Mitchell 1998] and improv-
ing visual detectors [Levin et al. 2003], transductive SVM [Joachims 1999] and
EM [Nigam et al. 2000] for text classification, graph-based methods [Zhu et al.
2003c], and others. The problem of learning from labeled and unlabeled data has
been the topic of several ICML workshops [Ghani et al. 2003; Amini et al. 2005] as
well as a recent book [Chapelle et al. 2006] and survey article [Zhu 2006].

What makes unlabeled data so useful and what many of these methods exploit, is
that for a wide variety of learning problems, the natural regularities of the problem
involve not only the form of the function being learned by also how this function
relates to the distribution of data. For example, in many problems one might expect
the target function should cut through low density regions of the space, a property
used by the transductive SVM algorithm [Joachims 1999]. In other problems one
might expect the target to be self-consistent in some way, a property used by Co-
training [Blum and Mitchell 1998]. Unlabeled data is potentially useful in these
settings because it then allows one to reduce the search space to a set which is
a-priori reasonable with respect to the underlying distribution.

Unfortunately, however, the underlying assumptions of these semi-supervised
learning methods are not captured well by standard theoretical models. The main
goal of this work is to propose a unified theoretical framework for semi-supervised
learning, in which one can analyze when and why unlabeled data can help, and in
which one can discuss both sample-complexity and algorithmic issues in a discrim-
inative (PAC-model style) framework.

One difficulty from a theoretical point of view is that standard discriminative
learning models do not allow one to specify relations that one believes the tar-
get should have with the underlying distribution. In particular, both in the PAC
model [Valiant 1984; Blumer et al. 1989; Kearns and Vazirani 1994] and the Sta-
tistical Learning Theory framework [Vapnik 1998] there is intentionally a complete
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disconnect between the data distribution D and the target function f being learned.
The only prior belief is that f belongs to some class C: even if the data distribution
D is known fully, any function f ∈ C is still possible. For instance, in the PAC
model, it is perfectly natural (and common) to talk about the problem of learning a
concept class such as DNF formulas [Linial et al. 1989; Verbeurgt 1990] or an inter-
section of halfspaces [Baum 1990; Blum and Kannan 1997; Vempala 1997; Klivans
et al. 2002] over the uniform distribution; but clearly in this case unlabeled data is
useless — you can just generate it yourself. For learning over an unknown distribu-
tion, unlabeled data can help somewhat in the standard models (e.g., by allowing
one to use distribution-specific algorithms and sample-complexity bounds [Benedek
and Itai 1991; Kaariainen 2005]), but this does not seem to capture the power of
unlabeled data in practical semi-supervised learning methods. In fact, a recent
result of Simon [2009] shows that the information-theoretic advantage provided by
knowing the distribution in the standard PAC model is extremely limited.

In generative models, one can easily talk theoretically about the use of unlabeled
data, e.g., [Castelli and Cover 1995; 1996]. However, these results typically make
strong assumptions that essentially imply that there is only one natural distinc-
tion to be made for a given (unlabeled) data distribution. For instance, a typical
generative model would be that we assume positive examples are generated by one
Gaussian, and negative examples are generated by another Gaussian. In this case,
given enough unlabeled data, we could in principle recover the Gaussians and would
need labeled data only to tell us which Gaussian is the positive one and which is
the negative one.1 However, this is too strong an assumption for most real-world
settings. Instead, we would like our model to allow for a distribution over data (e.g.,
documents we want to classify) where there are a number of plausible distinctions
we might want to make. In addition, we would like a general framework that can
be used to model many different uses of unlabeled data.

1.1 Overview of Our Model

In this paper, we present a PAC-style framework that bridges between these posi-
tions and can be used to help think about and analyze many of the ways unlabeled
data is typically used. This framework extends the PAC learning model in a way
that allows one to express not only the form of target function one is considering,
but also relationships that one hopes the target function and underlying distribu-
tion will possess. We then analyze both sample-complexity issues—that is, how
much of each type of data one should expect to need in order to learn well—as
well as algorithmic results in this model. We derive bounds for both the realizable
(PAC) and agnostic (statistical learning framework) settings.

We focus for most of this paper on inductive binary classification. In this setting,
we assume that our data comes according to a fixed unknown distribution D over an
instance space X , and is labeled by some unknown target function c∗ : X → {0, 1}.
As in the standard PAC model, in the “realizable case”, we make the assumption
that the target is in a given class concept class C, whereas in the “agnostic case”
we do not make this assumption and instead aim to compete with the best function

1[Castelli and Cover 1995; 1996] do not assume Gaussians in particular, but they do assume the
distributions are distinguishable, which from this perspective has the same issue.
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in the given class C. A learning algorithm is given a set of labeled examples drawn
i.i.d. from D and labeled by c∗ as well as a (usually larger) set of unlabeled examples
from D. The goal is to perform some optimization over these samples and to output
a hypothesis that agrees with the target or with the best approximation of the target
in C over most of the distribution.

We now describe how we extend the PAC model to capture the kinds of beliefs
and assumptions used in semi-supervised learning. The main idea is to augment the
PAC notion of a concept class, which is a set of functions (such as linear separators
or decision trees), with a notion of compatibility between a function and the data
distribution that we hope the target function will satisfy. Rather than talking of
“learning a concept class C,” we will talk of “learning a concept class C under
compatibility notion χ.” For example, suppose we believe there should exist a low-
error linear separator, and that furthermore, if the data happens to cluster, then
this separator does not slice through the middle of any such clusters. Then we
would want a compatibility notion that penalizes functions that do, in fact, slice
through clusters. In this framework, the ability of unlabeled data to help depends
on two quantities: first, the extent to which the target function indeed satisfies
the given assumptions, and second, the extent to which the distribution allows this
assumption to rule out alternative hypotheses. For instance, if the data does not
cluster at all (say the underlying distribution is uniform in a ball), then all functions
would equally satisfy this compatibility notion and the assumption is not useful.
From a Bayesian perspective, one can think of this as a PAC model for a setting
in which one’s prior is not just over functions, but also over how the function and
underlying distribution relate to each other.

To make our model formal, we will need to ensure that the degree of compatibility
be something that can be estimated from a finite sample. To do this, we will require
that the compatibility notion χ in fact be a function from C ×X to [0, 1], where the
compatibility of a hypothesis h with the data distribution D is then Ex∼D[χ(h, x)].
That is, we require that the degree of incompatibility be a kind of unlabeled loss
function, and the incompatibility of a hypothesis h with a data distribution D is a
quantity we can think of as an “unlabeled error rate” that measures how a-priori
unreasonable we believe some proposed hypothesis to be. For instance, in the
example above of a “margin-style” compatibility, we could define χ(f, x) to be an
increasing function of the distance of x to the separator f . In this case, the unlabeled
error rate, 1 − χ(f, D), is a measure of the probability mass close to the proposed
separator. In co-training, where each example x has two “views” (x = 〈x1, x2〉),
the underlying belief is that the true target c∗ can be decomposed into functions
〈c∗1, c∗2〉 over each view such that for most examples, c∗1(x1) = c∗2(x2). In this case,
we can define χ(〈f1, f2〉, 〈x1, x2〉) = 1 if f1(x1) = f2(x2), and 0 if f1(x1) 6= f2(x2).
Then the compatibility of a hypothesis 〈f1, f2〉 with an underlying distribution D
is Pr〈x1,x2〉∼D[f1(x1) = f2(x2)].

This framework allows us to analyze the ability of a finite unlabeled sample to
reduce our dependence on labeled examples, as a function of (a) the compatibility
of the target function (i.e., how correct we were in our assumption) and (b) various
measures of the “helpfulness” of the distribution. In particular, in our model, we
find that unlabeled data can help in several distinct ways.
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(1) If the target function is highly compatible with D and belongs to C, then if we
have enough unlabeled data to estimate compatibility over all f ∈ C, we can in
principle reduce the size of the search space from C down to just those f ∈ C
whose estimated compatibility is high. For instance, if D is “helpful”, then the
set of such functions will be much smaller than the entire set C and we thus
need many fewer labeled examples to learn well. In the agnostic case, or even
in realizable case if the number of labeled examples is severely limited, we can
do (unlabeled)-data-dependent structural risk minimization to trade off labeled
error and incompatibility.

(2) By providing an estimate of D, unlabeled data can allow us to use a more
refined distribution-specific notion of “hypothesis space size” such as Annealed
VC-entropy [Devroye et al. 1996], Rademacher complexities [Koltchinskii 2001;
Bartlett and Mendelson 2002; Boucheron et al. 2005] or the size of the smallest
ǫ-cover [Benedek and Itai 1991], rather than VC-dimension [Blumer et al. 1989;
Kearns and Vazirani 1994]. In fact, for many natural notions of compatibility
we find that the sense in which unlabeled data reduces the “size” of the search
space is best described in these distribution-specific measures.

(3) Finally, if the distribution is especially helpful, we may find that not only does
the set of compatible f ∈ C have a small ǫ-cover, but also the elements of
the cover are far apart. In that case, if we assume the target function is fully
compatible, we may be able to learn from even fewer labeled examples than the
Ω(1/ǫ) needed just to verify a good hypothesis. For instance, as one application
of this, we show that under the assumption of independence given the label, one
can efficiently perform Co-Training of linear separators from a single labeled
example!

A key feature of our framework is that it allows us to address the issue of how
much unlabeled data we should expect to need. Roughly, the “VCdim/ǫ2” form
of standard sample complexity bounds now becomes a bound on the number of
unlabeled examples we need to uniformly estimate compatibilities. However, tech-
nically, the set whose VC-dimension we now care about is not C but rather a set
defined by both C and χ: that is, the overall complexity depends both on the com-
plexity of C and the complexity of the notion of compatibility (see Section 3.1.2).
One consequence of our model is that if the target function and data distribution
are both well behaved with respect to the compatibility notion, then the sample-
size bounds we get for labeled data can substantially beat what one could hope to
achieve through pure labeled-data bounds, and we illustrate this with a number of
examples through the paper.

We can also talk about a transductive analog of our inductive model where one
is given a fixed set S of examples, of which some small random subset is labeled,
and the goal is to predict well over S. In this case we again express the relationship
we hope the target function has with the data through a compatibility notion χ.
However, since in this case the compatibility of a given hypothesis is completely
determined by S (which is known), we will not need to require that compatibility
be an expectation over unlabeled examples. In this case unlabeled data can help
in the ways (1) and (3) described above.
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1.2 Summary of Main Results

The primary contributions of this paper are three-fold.

(1) As described above, we develop a new discriminative (PAC-style) model for
semi-supervised learning, that can be used to analyze when unlabeled data can
help and how much unlabeled data is needed in order to gain its benefits, as
well as the algorithmic problems involved.

(2) We present a number of fundamental sample complexity bounds illustrating
important and subtle issues in this framework. We present both uniform-
convergence results—which apply to any algorithm that is able to find rules
of low error and high compatibility—as well as ǫ-cover-based bounds that ap-
ply to a more restricted class of algorithms but can be substantially tighter.
Our main uniform convergence result (Theorem 11) applies to the fully-agnostic
setting and shows how an algorithm that minimizes the sum of empirical error
plus a regularization term that is a function of the compatibility structure, will
achieve a near-optimal tradeoff and strong generalization guarantees. Our main
ǫ-cover bound (Theorem 13) then gives even tighter guarantees for algorithms
that first use the unlabeled data to select a small subclass of hypotheses and
then optimize over them. We also describe several natural, interesting cases
where the set of highly compatible hypotheses is large but it has a small ep-
silon cover; in these cases, the ǫ-cover-based bounds can apply even though with
high probability there still exist high-error hypotheses in the class consistent
with the labeled and unlabeled examples.

(3) We present several algorithmic results in this model matching the various sam-
ple complexity bounds we provide. As a warmup we first present a simple
algorithm for learning disjunctions in the fully realizable case for a simple com-
patibility notion (Theorem 17). Next, more interestingly we show how we can
efficiently perform a near-optimal data dependent structural risk minimization
in a natural transductive graph-based learning setting (Theorem 18). Finally,
we present a new algorithm for Co-Training with linear separators (Theorems
20 and 21) that, if the distribution satisfies independence given the label as-
sumption, requires only a single labeled example to learn to any desired error
rate ǫ and is computationally efficient (i.e., achieves PAC guarantees). This
substantially improves on the results of [Blum and Mitchell 1998] which re-
quired enough labeled examples to produce an initial weak hypothesis, and in
the process we get also a simplification to the noisy halfspace learning algorithm
of [Blum et al. 1998].

Our framework has helped analyze many existing semi-supervised learning methods
used in practice and has guided the development of new semi-supervised learning
algorithms and analyses. We discuss this further in Section 6.1.

1.3 Structure of this Paper

We begin by describing the general setting in which our results apply as well as
several examples to illustrate our framework in Section 2. We then give results
both for sample complexity (in principle, how much data is needed to learn) and
efficient algorithms. In terms of sample-complexity, we start by discussing uniform
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convergence results in Section 3.1. For clarity we begin with the case of finite
hypothesis spaces in Section 3.1.1, and then discuss infinite hypothesis spaces in
Section 3.1.2. We present results for the agnostic case, where one must trade off
labeled error and incompatibility, in Section 3.1.3. In Section 3.2 we give results
based on the notion of ǫ-cover size, which can be substantially tighter though they
require algorithms of a specific type (that first use the unlabeled data to choose a
small set of “representative” hypotheses and then choose among the representatives
based on the labeled data).

In Section 4, we give our algorithmic results. Our main results here are an efficient
algorithm for graph-based structural risk minimization, nearly matching the sample
complexity bounds in Section 3.1.3, and an efficient algorithm for Co-Training with
linear separators, nearly matching the bounds of Section 3.2. In Section 5 we discuss
transductive learning, connections with generative models and with other ways of
using unlabeled data in machine learning, as well as the relationship between our
model and the Luckiness Framework [Shawe-Taylor et al. 1998] developed in the
context of supervised learning. Finally, in Section 6 we discuss some implications
of our model and present our conclusions, as well a number of open problems.

2. A FORMAL FRAMEWORK

In this section we introduce general notation and terminology we use throughout
the paper, and describe our model for semi-supervised learning. In particular, we
formally define what we mean by a notion of compatibility and we illustrate it
through a number of examples including margins and co-training.

We will focus on binary classification problems. We assume that our data comes
according to a fixed unknown distribution D over an instance space X , and is
labeled by some unknown target function c∗ : X → {0, 1}. A learning algorithm is
given a set SL of labeled examples drawn i.i.d. from D and labeled by c∗ as well
as a (usually larger) set SU of unlabeled examples from D. The goal is to perform
some optimization over the samples SL and SU and to output a hypothesis that
agrees with the target over most of the distribution. In particular, the error rate
(also called “0 − 1 loss”) of a given hypothesis f is defined as

err(f) = errD(f) = Prx∼D[f(x) 6= c∗(x)].

For any two hypotheses f1, f2, the distance with respect to D between f1 and f2 is
defined as

d(f1, f2) = dD(f1, f2) = Prx∼D[f1(x) 6= f2(x)].

We will use êrr(f) to denote the empirical error rate of f on a given labeled sample

(i.e., the fraction of mistakes on the sample) and d̂(f1, f2) to denote the empirical
distance between f1 and f2 on a given unlabeled sample (the fraction of the sam-
ple on which they disagree). As in the standard PAC model, a concept class or
hypothesis space is a set of functions over the instance space X . In the “realizable
case”, we make the assumption that the target is in a given class C, whereas in the
“agnostic case” we do not make this assumption and instead aim to compete with
the best function in the given class C.

We now formally describe what we mean by a notion of compatibility. A notion
of compatibility is a mapping from a hypothesis f and a distribution D to [0, 1]
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indicating how “compatible” f is with D. In order for this to be estimable from
a finite sample, we require that compatibility be an expectation over individual
examples.2 Specifically, we define:

Definition 1. A legal notion of compatibility is a function χ : C × X → [0, 1]
where we (overloading notation) define χ(f, D) = Ex∼D[χ(f, x)]. Given a sample
S, we define χ(f, S) to be the empirical average of χ over the sample.

Note: One could also allow compatibility functions over k-tuples of examples, in
which case our (unlabeled) sample-complexity bounds would simply increase by a
factor of k.3

Definition 2. Given compatibility notion χ, the incompatibility of f with D is
1 − χ(f, D). We will also call this its unlabeled error rate, errunl(f), when χ and
D are clear from context. For a given sample S, we use êrrunl(f) = 1 − χ(f, S) to
denote the empirical average over S.

Finally, we need a notation for the set of functions whose incompatibility is at
most some given value τ .

Definition 3. Given value τ , we define CD,χ(τ) = {f ∈ C : errunl(f) ≤ τ}.
So, e.g., CD,χ(1) = C. Similarly, for a sample S, we define CS,χ(τ) = {f ∈ C :
êrrunl(f) ≤ τ}.

The transductive case: In transductive learning, one is given a fixed set S of
examples, of which some small random subset is labeled, and the goal is to predict
well over S. That is, we know which examples we will be tested on up front, and
so we can view this as a case of learning from a known distribution (the uniform
distribution over S). Since in this case the compatibility of a given hypothesis is
completely determined by S (which is known), we will not need to require that
compatibility be an expectation over unlabeled examples. For this setting or for
the setting in which D is actually known in advance, we can drop this requirement
entirely and allow any notion of compatibility χ(f, D) to be legal.

For convenience, we summarize the notation used throughout the paper in Ap-
pendix A. We now give several examples to illustrate this framework:

Example 1. Suppose examples are points in Rd and C is the class of linear sep-
arators. A natural belief in this setting is that data should be “well-separated”:
not only should the target function separate the positive and negative examples,
but it should do so by some reasonable margin γ. This is the assumption used by
Transductive SVM, also called Semi-Supervised SVM (S3VM) [Joachims 1999; Bie

2One could imagine more general notions of compatibility with the property that they can be
estimated from a finite sample and all our results would go through in that case as well. We
consider the special case where the compatibility is an expectation over individual examples for
simplicity of notation, and because most existing semi-supervised learning algorithms used in
practice do satisfy it.
3In other words, in this case χ(f, D) = E(x1,...,xk)∼Dk [χ(f, (x1, ..., xk))]. In order to estimate
this quantity, we simply draw a sample of size n from D, and partition it into n/k groups of size k,
namely (xi

1, ..., xi
k) for i = 1, . . . , n/k; our estimate is then simply the average over those groups,

i.e.,
Pn/k

i=1 χ(f, (xi
1, ..., xi

k)).
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and Cristianini 2003; Chapelle and Zien 2005]. In this case, if we are given γ up
front, we could define χ(f, x) = 1 if x is farther than distance γ from the hyperplane
defined by f , and χ(f, x) = 0 otherwise. So, the incompatibility of f with D is
the probability mass within distance γ of the hyperplane f · x = 0. Alternatively,
if we do not want to commit to a specific γ in advance, we could define χ(f, x) to
be a smooth function of the distance of x to the separator, as done in [Chapelle
and Zien 2005]. Note that in contrast, defining compatibility of a hypothesis based
on the largest γ such that D has probability mass exactly zero within distance γ
of the separator would not fit our model: it cannot be written as an expectation
over individual examples and indeed would not be a good definition since one can-
not distinguish “zero” from “exponentially close to zero” from a small sample of
unlabeled data.

Example 2. In co-training [Blum and Mitchell 1998], we assume examples x each
contain two “views”: x = 〈x1, x2〉, and our goal is to learn a pair of functions
〈f1, f2〉, one on each view. For instance, if our goal is to classify web pages, we
might use x1 to represent the words on the page itself and x2 to represent the
words attached to links pointing to this page from other pages. The hope underly-
ing co-training is that the two parts of the example are generally consistent, which
then allows the algorithm to bootstrap from unlabeled data. For example, iterative
co-training uses a small amount of labeled data to learn some initial information
(e.g., if a link with the words “my advisor” points to a page then that page is
probably a faculty member’s home page). Then, when it finds an unlabeled exam-
ple where one side is confident (e.g., the link says “my advisor”), it uses that to
label the example for training over the other view. In regularized co-training, one
attempts to directly optimize a weighted combination of accuracy on labeled data
and agreement over unlabeled data. These approaches have been used for a vari-
ety of learning problems, including named entity classification [Collins and Singer
1999], text classification [Nigam and Ghani 2000; Ghani 2001], natural language
processing [Pierce and Cardie 2001], large scale document classification [Park and
Zhang 2003], and visual detectors [Levin et al. 2003]. As mentioned in Section 1,
the assumptions underlying this method fit naturally into our framework. In partic-
ular, we can define the incompatibility of some hypothesis 〈f1, f2〉 with distribution
D as Pr〈x1,x2〉∼D[f1(x1) 6= f2(x2)]. Similar notions are given in subsequent work
of [Rosenberg and Bartlett 2007; Sridharan and Kakade 2008] for other types of
learning problems (e.g. regression) and for other loss functions.

Example 3. In transductive graph-based methods, we are given a set of unlabeled
examples connected in a graph G, where the interpretation of an edge is that we
believe the two endpoints of the edge should have the same label. Given a few
labeled vertices, various graph-based methods then attempt to use them to infer
labels for the remaining points. If we are willing to view D as a distribution over
edges (a uniform distribution if G is unweighted), then as in co-training we can
define the incompatibility of some hypothesis f as the probability mass of edges
that are cut by f , which then motivates various cut-based algorithms. For instance,
if we require f to be boolean, then the mincut method of [Blum and Chawla 2001]
finds the most-compatible hypothesis consistent with the labeled data; if we allow f
to be fractional and define 1−χ(f, 〈x1, x2〉) = (f(x1)−f(x2))

2, then the algorithm
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of [Zhu et al. 2003c] finds the most-compatible consistent hypothesis. If we do not
wish to view D as a distribution over edges, we could have D be a distribution
over vertices and broaden Definition 1 to allow for χ to be a function over pairs
of examples. In fact, as mentioned in section 2 (right after definition 1), since
we have perfect knowledge of D in this setting we can allow any compatibility
function χ(f, D) to be legal. We discuss connections to other graph-based methods
in Section 5.1.

Example 4. As a special case of co-training, suppose examples are pairs of points
in Rd, C is the class of linear separators, and we believe the two points in each
pair should both be on the same side of the target function. (So, this is a version
of co-training where we require f1 = f2.) The motivation is that we want to use
pairwise information as in Example 3, but we also want to use the features of each
data point. For instance, in the word-sense disambiguation problem studied by
[Yarowsky 1995], the goal is to determine which of several dictionary definitions
is intended for some target word in a piece of text (e.g., is “plant” being used to
indicate a tree or a factory?). The local context around each word can be viewed
as placing it into Rd, but the edges correspond to a completely different type of
information: the belief that if a word appears twice in the same document, it is
probably being used in the same sense both times. In this setting, we could use the
same compatibility function as in Example 3, but rather than having the concept
class C be all possible functions, we restrict C to just linear separators.

Example 5. In a related setting to co-training considered by [Leskes 2005], ex-
amples are single points in X but we have a pair of hypothesis spaces 〈C1, C2〉 (or
more generally a k-tuple 〈C1, . . . , Ck〉), and the goal is to find a pair of hypotheses
〈f1, f2〉 ∈ C1 ×C2 with low error over labeled data and that agree over the distribu-
tion. For instance, if data is sufficiently “well-separated”, one might expect there
to exist both a good linear separator and a good decision tree, and one would like
to use this assumption to reduce the need for labeled data. In this case one could
define compatibility of 〈f1, f2〉 with D as Prx∼D[f1(x) = f2(x)], or the similar
notions given in [Leskes 2005; Shawe-Taylor 2006].

3. SAMPLE COMPLEXITY RESULTS

We now present several sample-complexity bounds that can be derived in this frame-
work, showing how unlabeled data, together with a suitable compatibility notion,
can reduce the need for labeled examples. Our key focus is to understand the
fundamental quantities that determine these bounds, in order to better understand
what it is about the learning problem one can hope to leverage from unlabeled data.

The high-level structure of all of these results is as follows. First, given enough
unlabeled data (where “enough” will be a function of some measure of the com-
plexity of C and possibly of χ as well), we can uniformly estimate the true compat-
ibilities of all functions in C using their empirical compatibilities over the sample.
Then, by using this quantity to give a preference ordering over the functions in
C, in the realizable case we can reduce “C” down to “the set of functions in C
whose compatibility is not much larger than the true target function” in bounds
for the number of labeled examples needed for learning. We also show how we can
do (unlabeled)-data-dependent structural risk minimization to trade off labeled er-
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ror and incompatibility – this is extremely useful both in the agnostic case and in
the realizable case when the number of labeled examples is severely limited. The
specific bounds differ in terms of the exact complexity measures used (and a few
other issues) and we provide examples illustrating when and how certain complexity
measures can be significantly more powerful than others. Moreover, one can prove
fallback properties of these procedures — the number of labeled examples required
is never much worse than the number of labeled examples required by a standard
supervised learning algorithm4. However, if the assumptions happen to be right,
one can significantly benefit by using the unlabeled data.

Since it is immediate to derive their analogues in the simpler transductive set-
ting, we write all our generic bounds in the inductive setting, though some of the
examples we consider are transductive.

3.1 Uniform Convergence Bounds

We begin with uniform convergence bounds (later in Section 3.2 we give tighter
ǫ-cover bounds that apply to algorithms of a particular form). For clarity, we
begin with the case of finite hypothesis spaces where we measure the “size” of
a set of functions by just the number of functions in the set. We then discuss
several issues that arise when considering infinite hypothesis spaces, such as what
is an appropriate measure for the “size” of the set of compatible functions, and the
need to account for the complexity of the compatibility notion itself. Note that in
the standard PAC model, one typically talks of either the realizable case, where
we assume that the target function c∗ belongs to C, or the agnostic case where we
allow any target function c∗ [Kearns and Vazirani 1994]. In our setting, we have the
additional issue of unlabeled error rate, and can either make an a-priori assumption
that the target function’s unlabeled error is low, or else provide a bound in which
our sample size (or error rate) depends on whatever its unlabeled error happens to
be. We begin in Sections 3.1.1 and 3.1.2 with bounds for the the setting in which
we assume c∗ ∈ C, and then in Section 3.1.3 we consider the agnostic case where
we remove this assumption.

3.1.1 Finite hypothesis spaces. We first give a bound for the “doubly realizable”
case where we assume c∗ ∈ C and errunl(c

∗) = 0.

Theorem 4. If c∗ ∈ C and errunl(c
∗) = 0, then mu unlabeled examples and ml

labeled examples are sufficient to learn to error ǫ with probability 1 − δ, where

mu =
1

ǫ

[
ln |C| + ln

2

δ

]
and ml =

1

ǫ

[
ln |CD,χ(ǫ)| + ln

2

δ

]
.

In particular, with probability at least 1 − δ, all f ∈ C with êrr(f) = 0 and
êrrunl(f) = 0 have err(f) ≤ ǫ.

Proof. The probability that a given hypothesis f with errunl(f) > ǫ has
êrrunl(f) = 0 is at most (1 − ǫ)mu < δ

2|C| for the given value of mu. Therefore, by

the union bound, the number of unlabeled examples is sufficient to ensure that with
probability 1 − δ

2 , only hypotheses in CD,χ(ǫ) have êrrunl(f) = 0. The number of

4See for example Corollary 12 and the discussion following Corollary 6.
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labeled examples then similarly ensures that with probability 1 − δ

2 , none of those
whose true error is at least ǫ have an empirical error of 0, yielding the theorem.

Interpretation: If the target function indeed is perfectly correct and compatible,
then Theorem 4 gives sufficient conditions on the number of examples needed to
ensure that an algorithm that optimizes both quantities over the observed data will,
in fact, achieve a PAC guarantee. In section 4.1 we describe an efficient algorithm for
learning disjunctions under a natural notion of compatibility matching the bounds
in this theorem.

We can think of Theorem 4 as bounding the number of labeled examples we
need as a function of the “helpfulness” of the distribution D with respect to our
notion of compatibility. That is, in our context, a helpful distribution is one in
which CD,χ(ǫ) is small, and so we do not need much labeled data to identify a good
function among them. We can get a similar bound in the situation when the target
function is not fully compatible:

Theorem 5. If c∗ ∈ C and errunl(c
∗) = t, then mu unlabeled examples and ml

labeled examples are sufficient to learn to error ǫ with probability 1 − δ, for

mu =
2

ǫ2

[
ln |C| + ln

4

δ

]
and ml =

1

ǫ

[
ln |CD,χ(t + 2ǫ)| + ln

2

δ

]
.

In particular, with probability at least 1 − δ, the f ∈ C that optimizes êrrunl(f)
subject to êrr(f) = 0 has err(f) ≤ ǫ.

Alternatively, given the above number of unlabeled examples mu, for any number
of labeled examples ml, with probability at least 1 − δ, the f ∈ C that optimizes
êrrunl(f) subject to êrr(f) = 0 has

err(f) ≤ 1

ml

[
ln |CD,χ(errunl(c

∗) + 2ǫ)| + ln
2

δ

]
. (1)

Proof. By Hoeffding bounds, mu is sufficiently large so that with probability
at least 1 − δ/2, all f ∈ C have |êrrunl(f) − errunl(f)| ≤ ǫ. Thus we have:

{f ∈ C : êrrunl(f) ≤ t + ǫ} ⊆ CD,χ(t + 2ǫ).

For the first implication, the given bound on ml is sufficient so that with probability
at least 1 − δ, all f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ t + ǫ have err(f) ≤
ǫ; furthermore, êrrunl(c

∗) ≤ t + ǫ, so such a function f exists. Therefore, with
probability at least 1− δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0
has err(f) ≤ ǫ, as desired. For the second implication, inequality (1) follows
immediately by solving for the labeled estimation-error as a function of ml.

Interpretation: Theorem 5 has several implications. Specifically:

(1) If we can optimize the (empirical) unlabeled error rate subject to having zero
empirical labeled error, then to achieve low true error it suffices to draw a
number of labeled examples that depends logarithmically on the number of
functions in C whose unlabeled error rate is at most 2ǫ greater than that of the
target c∗.
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(2) Alternatively, for any given number of labeled examples ml, we can provide a
bound (given in equation 1) on our error rate that again depends logarithmically
on the number of such functions.

(3) If we have a desired maximum error rate ǫ and do not know the value of
errunl(c

∗) but have the ability to draw additional labeled examples as needed,
then we can simply do a standard “doubling trick” on ml. On each round, we
check if the hypothesis f found indeed has sufficiently low empirical unlabeled
error rate, and we spread the “δ” parameter across the different runs. See, e.g.,
Corollary 9 in Section 3.1.2.

Finally, before going to infinite hypothesis spaces, we give a simple Occam-style
version of the above bounds for this setting. Given a sample S, let us define
descS(f) = ln |CS,χ(êrrunl(f))|. That is, descS(f) is the description length of f
(in “nats”) if we sort hypotheses by their empirical compatibility and output the
index of f in this ordering. Similarly, define ǫ-descD(f) = ln |CD,χ(errunl(f) + ǫ)|.
This is an upper-bound on the description length of f if we sort hypotheses by an
ǫ-approximation to the their true compatibility. Then we immediately get a bound
as follows:

Corollary 6. For any set S of unlabeled data, given ml labeled examples, with
probability at least 1−δ, all f ∈ C satisfying êrr(f) = 0 and descS(f) ≤ ǫml−ln(1/δ)
have err(f) ≤ ǫ. Furthermore, if |S| ≥ 2

ǫ2 [ln |C|+ln 2
δ ], then with probability at least

1 − δ, all f ∈ C satisfy descS(f) ≤ ǫ-descD(f).

Interpretation: The point of this bound is that an algorithm can use observable
quantities (the “empirical description length” of the hypothesis produced) to deter-
mine if it can be confident that its true error rate is low. Furthermore, if we have
enough unlabeled data, the observable quantities will be no worse than if we were
learning a slightly less compatible function using an infinite-size unlabeled sample.

Note that if we begin with a non-distribution-dependent ordering of hypotheses,
inducing some description length desc(f), and our compatibility assumptions turn
out to be wrong, then it could well be that descD(c∗) > desc(c∗). In this case our
use of unlabeled data would end up hurting rather than helping. However, notice
that by merely interleaving the initial ordering and the ordering produced by S, we
get a new description length descnew(f) such that

descnew(f) ≤ 1 + min(desc(f), descS(f)).

Thus, up to an additive constant, we can get the best of both orderings.
Also, if we have the ability to purchase additional labeled examples until the

function produced is sufficiently “short” compared to the amount of data, then we
can perform the usual stratification and be confident whenever we find a consistent
function f such that

descS(f) ≤ ǫml − ln(
ml(ml + 1)

δ
),

where ml is the number of labeled examples seen so far.

3.1.2 Infinite hypothesis spaces. To reduce notation, we will assume in the rest
of this paper that χ(f, x) ∈ {0, 1} so that χ(f, D) = Prx∼D[χ(f, x) = 1]. However,
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all our sample complexity results can be easily extended to the general case. Before
giving our main theorems, we first discuss some subtle issues that come up when
dealing with infinite hypothesis spaces.

The first issue that arises is that in order to achieve uniform convergence of
unlabeled error rates, the set whose complexity we care about is not C but rather
the potentially more complex set χ(C) = {χf : f ∈ C} where

χf : X → {0, 1} is defined as χf (x) = χ(f, x).

For instance, suppose examples are just points on the line, and C = {fa(x) : fa(x) =
1 iff x ≤ a}. In this case, VCdim(C) = 1. However, we could imagine a compatibil-
ity function such that χ(fa, x) depends on some complicated relationship between
the real numbers a and x. In this case, VCdim(χ(C)) is much larger, and we would
need many more unlabeled examples to estimate compatibility over all of C. Of
course, with VCdim(C) = 1 we do not need to uniformly estimate compatibilities in
order to learn from a small number of labeled examples.5 However in Appendix B
we present an explicit lower bound where indeed having an unlabeled sample size
depending only on VCdim(C) and 1/ǫ results in a substantially larger number of
labeled examples needed for uniform convergence of labeled error rates. See Theo-
rem 22 in Appendix B.

A second issue is that we need an appropriate measure for the “size” of the set
of surviving functions. VC-dimension tends not to be a good choice: for instance,
if we consider the case of Example 1 (margins), then even if data is concentrated
in two well-separated “blobs”, the set of compatible separators still has as large a
VC-dimension as the entire class even though they are all very similar with respect
to D (see, e.g., Figure 1 after Theorem 8 below). Instead, it is better to consider
distribution dependent complexity measures such as annealed VC-entropy [Devroye
et al. 1996] or Rademacher averages [Koltchinskii 2001; Bartlett and Mendelson
2002; Boucheron et al. 2005]. For this we introduce some notation. Specifically,
for any C, we denote by C[m, D] the expected number of splits of m points (drawn
i.i.d.) from D using concepts in C. Also, for a given (fixed) S ⊆ X , we will denote
by S the uniform distribution over S, and by C[m, S] the expected number of splits
of m points from S using concepts in C. The following is the analog of Theorem 5
for the infinite case.

Theorem 7. If c∗ ∈ C and errunl(c
∗) = t, then mu unlabeled examples and ml

labeled examples are sufficient to learn to error ǫ with probability 1 − δ, for

mu = O
(

V Cdim (χ(C))

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)

and

ml =
2

ǫ

[
ln

(
2CD,χ(t + 2ǫ)[2ml, D]

)
+ ln

4

δ

]
,

where recall CD,χ(t+2ǫ)[2ml, D] is the expected number of splits of 2ml points drawn
from D using concepts in C of unlabeled error rate ≤ t + 2ǫ. In particular, with

5If by “small” we mean O(1/ǫ). Later, in Section 3.2, we present results where unlabeled examples
can reduce the labeled sample size below even this level.
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probability at least 1 − δ, the f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0
has err(f) ≤ ǫ.

Proof. Let S be the set of mu unlabeled examples. By standard VC-dimension
bounds (e.g., see Theorem 24 in Appendix D) the number of unlabeled examples
given is sufficient to ensure that with probability at least 1 − δ

2 we have

|Prx∼S [χf (x) = 1] − Prx∼D[χf (x) = 1]| ≤ ǫ for all χf ∈ χ(C).

Since χf (x) = χ(f, x), this implies that we have

|êrrunl(f) − errunl(f)| ≤ ǫ for all f ∈ C.

So, the set of hypotheses with êrrunl(f) ≤ t + ǫ is contained in CD,χ(t + 2ǫ).
The bound on the number of labeled examples now follows directly from known

concentration results using the expected number of partitions instead of the maxi-
mum in the standard VC-dimension bounds (e.g., see Theorem 25 in Appendix D).
This bound ensures that with probability 1− δ

2 , none of the functions f ∈ CD,χ(t+2ǫ)
with err(f) ≥ ǫ have êrr(f) = 0.

The above two arguments together imply that with probability 1 − δ, all f ∈ C
with êrr(f) = 0 and êrrunl(f) ≤ t + ǫ have err(f) ≤ ǫ, and furthermore c∗ has
êrrunl(c

∗) ≤ t + ǫ. This in turn implies that with probability at least 1 − δ, the
f ∈ C that optimizes êrrunl(f) subject to êrr(f) = 0 has err(f) ≤ ǫ as desired.

We can also give a bound where we specify the number of labeled examples as a
function of the unlabeled sample; this is useful because we can imagine our learning
algorithm performing some calculations over the unlabeled data and then deciding
how many labeled examples to purchase.

Theorem 8. If c∗ ∈ C and errunl(c
∗) = t, then an unlabeled sample S of size

O
(

max[V Cdim(C), V Cdim(χ(C))]

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)

is sufficient so that if we label ml examples drawn uniformly at random from S,
where

ml >
4

ǫ

[
ln(2CS,χ(t + ǫ)

[
2ml, S

]
) + ln

4

δ

]

then with probability at least 1 − δ, the f ∈ C that optimizes êrrunl(f) subject to
êrr(f) = 0 has err(f) ≤ ǫ.

Proof. Standard VC-bounds (in the same form as for Theorem 7) imply that
the number of labeled examples ml is sufficient to guarantee the conclusion of the
theorem with “err(f)” replaced by “errS(f)” (the error with respect to S) and “ǫ”
replaced with “ǫ/2”. The number of unlabeled examples is enough to ensure that,
with probability ≥ 1 − δ

2 , for all f ∈ C, |err(f) − errS(f)| ≤ ǫ/2. Combining these
two statements yields the theorem.

Note that if we assume errunl(c
∗) = 0, then we can use the set CS,χ(0) instead

of CS,χ(t + ǫ) in the formula giving the number of labeled examples in Theorem 8.

Note: Notice that for the setting of Example 1, in the worst case (over distribu-
tions D) this will essentially recover the standard margin sample-complexity bounds
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for the number of labeled examples. In particular, CS,χ(0) contains only those sep-
arators that split S with margin ≥ γ, and therefore, s =

∣∣CS,χ(0)[2ml, S]
∣∣ is no

greater than the maximum number of ways of splitting 2ml points with margin γ.
However, if the distribution is helpful, then the bounds can be much better because
there may be many fewer ways of splitting S with margin γ. For instance, in the
case of two well-separated “blobs” illustrated in Figure 1, if S is large enough, we
would have just s = 4.

Fig. 1. Linear separators with a margin-based notion of compatibility. If the distribution is
uniform over two well-separated “blobs” and the unlabeled set S is sufficiently large, the set
CS,χ(0) contains only four different partitions of S, shown in the figure as f1, f2, f3, and f4.
Therefore, Theorem 8 implies that we only need O(1/ǫ) labeled examples to learn well.

Theorem 8 immediately implies the following stratified version, which applies
to the case in which one repeatedly draws labeled examples until that number is
sufficient to justify the most-compatible hypothesis found.

Corollary 9. An unlabeled sample S of size

O
(

max[V Cdim(C), V Cdim(χ(C))]

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)

is sufficient so that with probability ≥ 1 − δ we have that simultaneously for every
k ≥ 0 the following is true: if we label mk examples drawn uniformly at random
from S, where

mk >
4

ǫ

[
ln

(
2CS,χ((k + 1)ǫ)

[
2mk, S

])
+ ln

4(k + 1)(k + 2)

δ

]

then all f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ (k + 1)ǫ have err(f) ≤ ǫ.

Interpretation: This corollary is an analog of Theorem 6 and it justifies a strat-
ification based on the estimated unlabeled error rates. That is, beginning with
k = 0, one draws the specified number of examples and checks to see if a suffi-
ciently compatible hypothesis can be found. If so, one halts with success, and if
not, one increments k and tries again. Since k ≤ 1

ǫ , we clearly have a fallback
property: the number of labeled examples required is never much worse than the
number of labeled examples required by a standard supervised learning algorithm.
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If one does not have the ability to draw additional labeled examples, then we can
fix ml and instead stratify over estimation error as in [Bartlett et al. 1999]. We
discuss this further in our agnostic bounds in Section 3.1.3 below.

3.1.3 The agnostic case. The bounds given so far have been based on the as-
sumption that the target function belongs to C (so that we can assume there will
exist f ∈ C with êrr(f) = 0). One can also derive analogous results for the agnostic
(unrealizable) case, where we do not make that assumption. We first present one
immediate bound of this form, and then show how we can use it in order to trade
off labeled and unlabeled error in a near-optimal way. We also discuss the relation
of this to a common regularization technique used in semi-supervised learning. As
we will see, the differences between these two point to certain potential pitfalls in
the standard regularization approach.

Theorem 10. Let f∗
t = argminf∈C [err(f)|errunl(f) ≤ t]. Then an unlabeled

sample S of size

O
(

max[V Cdim(C), V Cdim(χ(C))]

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

1

δ

)

and a labeled sample of size

ml ≥
8

ǫ2

[
ln

(
CD,χ(t + 2ǫ)[2ml, D]

)
+ ln

8

δ

]

is sufficient so that with probability ≥ 1− δ, the f ∈ C that optimizes êrr(f) subject
to êrrunl(f) ≤ t + ǫ has

err(f) ≤ err(f∗
t ) + ǫ +

√
ln(4/δ)/(2ml) ≤ err(f∗

t ) + 2ǫ.

Proof. The given unlabeled sample size implies that with probability 1 − δ/4,
all f ∈ C have |êrrunl(f) − errunl(f)| ≤ ǫ, which also implies that êrrunl(f

∗
t ) ≤

t + ǫ. The labeled sample size, using standard VC bounds (e.g, Theorem 26 in the
Appendix D) imply that with probability at least 1− δ/2, all f ∈ CD,χ(t+2ǫ) have
err(f)− êrr(f) ≤ ǫ. Finally, by Hoeffding bounds, with probability at least 1− δ/4
we have

êrr(f∗
t ) ≤ err(f∗

t ) +
√

ln(4/δ)/(2ml).

Therefore, with probability at least 1 − δ, the f ∈ C that optimizes êrr(f) subject
to êrrunl(f) ≤ t + ǫ has

err(f) ≤ êrr(f) + ǫ ≤ êrr(f∗
t ) + ǫ ≤ err(f∗

t ) + ǫ +
√

ln(4/δ)/(2ml) ≤ err(f∗
t ) + 2ǫ,

as desired.

Interpretation: Given a value t, Theorem 10 bounds the number of labeled ex-
amples needed to achieve error at most ǫ larger than that of the best function f∗

t of
unlabeled error rate at most t. Alternatively, one can also state Theorem 10 in the
form more commonly used in statistical learning theory: given any number of la-
beled examples ml and given t > 0, Theorem 10 implies that with high probability,
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the function f that optimizes êrr(f) subject to êrrunl(f) ≤ t + ǫ satisfies

err(f) ≤ êrr(f) + ǫt ≤ err(f∗
t ) + ǫt +

√
ln(4/δ)

2ml

where

ǫt =

√
8

ml
ln

(
8CD,χ(t + 2ǫ)[2ml, D]/δ

)
.

Note that as usual, there is an inherent tradeoff here between the quality of the
comparison function f∗

t , which improves as t increases, and the estimation error ǫt,
which gets worse as t increases. Ideally, one would like to achieve a bound of

min
t

[err(f∗
t ) + ǫt] +

√
ln(4/δ)/(2ml);

i.e., as if the optimal value of t were known in advance. We can perform nearly
as well as this bound by (1) performing a stratification over t (so that the bound
holds simultaneously for all values of t) and (2) using an estimate ǫ̂t of ǫt that
we can calculate from the unlabeled sample and therefore use in the optimization.
In particular, letting ft = argminf ′∈C[êrr(f ′) : êrrunl(f

′) ≤ t], we will output
f = argminft

[êrr(ft) + ǫ̂t].
Specifically, given a set S of unlabeled examples and ml labeled examples, let

ǫ̂t = ǫ̂t(S, ml) =

√
24

ml
ln (8CS,χ(t)[ml, S]),

where we define CS,χ(t)[ml, S] to be the number of different partitions of the first
ml points in S using functions in CS,χ(t), i.e., using functions of empirical unlabeled
error at most t (we assume |S| ≥ ml). Then we have the following theorem.

Theorem 11. Let f∗
t = argminf ′∈C [err(f ′)|errunl(f

′) ≤ t] and define ǫ̂(f ′) =
ǫ̂t′ for t′ = êrrunl(f

′). Then, given ml labeled examples, with probability at least
1 − δ, the function

f = argminf ′ [êrr(f ′) + ǫ̂(f ′)]

satisfies the guarantee that

err(f) ≤ min
t

[err(f∗
t ) + ǫ̂(f∗

t )] + 5

√
ln(8/δ)

ml
.

Proof. First we argue that with probability at least 1 − δ/2, for all f ′ ∈ C we
have

err(f ′) ≤ êrr(f ′) + ǫ̂(f ′) + 4

√
ln(8/δ)

ml
.

In particular, define C0 = CS,χ(0) and inductively for k > 0 define Ck = CS,χ(tk) for
tk such that Ck[ml, S] = 8Ck−1[ml, S]. (If necessary, arbitrarily order the functions
with empirical unlabeled error exactly tk and choose a prefix such that the size
condition holds.) Also, we may assume without loss of generality that C0[ml, S] ≥ 1.
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Then, using bounds of [Boucheron et al. 2000] (see also Appendix D), we have that
with probability at least 1 − δ/2k+2, all f ′ ∈ Ck \ Ck−1 satisfy:

err(f ′) ≤ êrr(f ′) +

√
6

ml
ln(Ck[ml, S]) + 4

√
1

ml
ln(2k+3/δ)

≤ êrr(f ′) +

√
6

ml
ln(Ck[ml, S]) + 4

√
1

ml
ln(2k) + 4

√
1

ml
ln(8/δ)

≤ êrr(f ′) +

√
6

ml
ln(Ck[ml, S]) +

√
6

ml
ln(8k) + 4

√
1

ml
ln(8/δ)

≤ êrr(f ′) + 2

√
6

ml
ln(Ck[ml, S]) + 4

√
1

ml
ln(8/δ)

≤ êrr(f ′) + ǫ̂(f ′) + 4

√
1

ml
ln(8/δ).

Now, let f∗ = argminf∗

t
[err(f∗

t )+ ǫ̂(f∗
t )]. By Hoeffding bounds, with probability at

least 1 − δ/2 we have êrr(f∗) ≤ err(f∗) +
√

ln(2/δ)/(2ml). Also, by construction
we have êrr(f) + ǫ̂(f) ≤ êrr(f∗) + ǫ̂(f∗). Therefore with probability at least 1− δ
we have:

err(f) ≤ êrr(f) + ǫ̂(f) + 4
√

ln(8/δ)/ml

≤ êrr(f∗) + ǫ̂(f∗) + 4
√

ln(8/δ)/ml

≤ err(f∗) + ǫ̂(f∗) + 5
√

ln(8/δ)/ml

as desired.

The above result bounds the error of the function f produced in terms of the
quantity ǫ̂(f∗) which depends on the empirical unlabeled error rate of f∗. If our
unlabeled sample S is sufficiently large to estimate all unlabeled error rates to
±ǫ, then with high probability we have êrrunl(f

∗
t ) ≤ t + ǫ, so ǫ̂(f∗

t ) ≤ ǫ̂t+ǫ,
and moreover CS,χ(t + ǫ) ⊆ CD,χ(t + 2ǫ). So, our error term ǫ̂(f∗

t ) is at most√
24
ml

ln (8CD,χ(t + 2ǫ)[ml, S]). Recall that our ideal error term ǫt for the case that

t was given to the algorithm in advance, factoring out the dependence on δ, was√
8

ml
ln

(
8CD,χ(t + 2ǫ)[2ml, D]

)
. [Boucheron et al. 2000] show that for any class

C, the quantity ln(C[m, S]) is tightly concentrated about ln(C[m, D]) (see also The-
orem 29 in the Appendix E), so up to multiplicative constants, these two bounds
are quite close.

Interpretation and use of unlabeled error rate as a regularizer: The above
theorem suggests to optimize the sum of the empirical labeled error rate plus an
estimation-error bound (regularization function) based on the unlabeled error rate.
A common related approach used in practice in machine learning (e.g., [Chapelle
et al. 2006]) is to just directly optimize the sum of the two kinds of error: i.e.,
to find argminf [êrr(f) + êrrunl(f)]. However, this is not generically justified in
our framework, because the labeled and unlabeled error rates are really of different
“types”. In particular, depending on the concept class and notion of compatibility,
a small change in unlabeled error rate could substantially change the size of the
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compatible set.6 For example, suppose all functions in C have unlabeled error
rate 0.6, except for two: function f0 has unlabeled error rate 0 and labeled error
rate 1/2, and function f0.5 has unlabeled error rate 0.5 and labeled error rate
1/10. Suppose also that C is sufficiently large that with high probability it contains
some functions f that drastically overfit, giving êrr(f) = 0 even though their true
error is close to 1/2. In this case, we would like our algorithm to pick out f0.5

(since its labeled error rate is fairly low, and we cannot trust the functions of
unlabeled error 0.6). However, even if we use a regularization parameter λ, there
is no way to make f0.5 = argminf [êrr(f) + λerrunl(f)]: in particular, one cannot
have 1/10 + 0.5λ ≤ min[1/2 + 0λ, 0 + 0.6λ]. So, in this case, this approach will not
have the desired behavior.

Application: A natural setting where we can efficiently apply the bounds of Theo-
rem 11 is that of learning linear separators in a constant-dimensional space under a
margin-based notion of compatibility. Given an unlabeled sample S, there are only
a polynomial number of partitions of S induced by the class C of linear separators,
and for each one we can efficiently find the separator of highest compatibility. This
in turn implies that by sampling, we can efficiently estimate the penalty term ǫ̂t

for any given t, and therefore (again because C induces only a polynomial number
of distinct partitions of S) we can efficiently perform the argmin computation in
Theorem 11. In Section 4.2 we demonstrate a more involved use of the bounds
of Theorem 11 in a natural graph-based learning setting, where C induces an ex-
ponential number of partitions of the dataset. Here, we are able to find a good
upper bound on the penalty term ǫ̂(f) which can be easily computed and has a
nice functional form. Moreover, because of this form, we can efficiently perform
the argmin computation solving for the hypothesis of smallest empirical error plus
penalty, without needing to use a surrogate loss for the empirical error term as is
often done in cases of large hypothesis spaces. See Section 4.2.

Fallback Guarantees: We end this section with a corollary pointing out that if
we have a purely supervised regularization function, we can combine that with the
compatibility-based bound of Theorem 11 to perform nearly as well as the best of
the two.

Corollary 12. Suppose λ(f) is a regularization function such that given ml

labeled examples, with probability at least 1 − δ the hypothesis

f = argminf ′ [êrr(f ′) + λ(f ′)]

satisfies

err(f) ≤ min
f ′

[err(f ′) + λ(f ′)] + g(ml, δ)

for some function g. Also let h(m, δ) = 5
√

ln(8/δ)/m. Then with probability at
least 1 − 2δ, the hypothesis

f = argminf ′ [ êrr(f ′) + min[ǫ̂(f ′) + h(ml, δ), λ(f ′) + g(ml, δ)] ]

satisfies err(f) ≤ minf ′ [err(f ′) + min[ǫ̂(f ′) + h(ml, δ), λ(f ′) + g(ml, δ)]].

6On the other hand, for certain compatibility notions and under certain natural assumptions, one
can use unlabeled error rate directly, e.g., see e.g., [Sridharan and Kakade 2008].
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Note that one could also derive bounds based on other distribution dependent
complexity measures and using other concentration results (see e.g. [Boucheron
et al. 2005]).

3.2 ǫ-Cover-based Bounds

The results in the previous section are uniform convergence bounds: they provide
guarantees for any algorithm that optimizes over the observed data. In this section,
we consider stronger bounds based on ǫ-covers that apply to algorithms that behave
in a specific way: they first use the unlabeled examples to choose a “representative”
set of compatible hypotheses, and then use the labeled sample to choose among
these. Bounds based on ǫ-covers exist in the classical PAC setting, but in our
framework these bounds and algorithms of this type are especially natural, and the
bounds are often much lower than what can be achieved via uniform convergence.
For simplicity, we restrict ourselves in this section to the realizable case. However
one can combine ideas in Section 3.1.3 with ideas in this section in order to derive
bounds in the agnostic case as well. We first present our generic bounds. In
Section 3.2.1 we discuss natural settings in which they can be especially useful, and
in then Section 3.2.2 we present even tighter bounds for co-training.

Recall that a set Cǫ ⊆ 2X is an ǫ-cover for C with respect to D if for every f ∈ C
there is a f ′ ∈ Cǫ which is ǫ-close to f . That is, Prx∼D(f(x) 6= f ′(x)) ≤ ǫ.

Theorem 13. Assume c∗ ∈ C and let p be the size of a minimum ǫ-cover for
CD,χ(errunl(c

∗) + 2ǫ). Then using mu unlabeled examples and ml labeled examples
for

mu = O
(

max[V Cdim(C), V Cdim(χ(C))]

ǫ2
ln

1

ǫ
+

1

ǫ2
ln

2

δ

)
and ml = O

(
1

ǫ
ln

p

δ

)
,

we can with probability 1 − δ identify a hypothesis f ∈ C with err(f) ≤ 6ǫ.

Proof. Let t = errunl(c
∗). Now, given the unlabeled sample SU , define C′ ⊆ C

as follows: for every labeling of SU that is consistent with some f in C, choose a hy-
pothesis in C for which êrrunl(f) is smallest among all the hypotheses corresponding
to that labeling. Next, we obtain Cǫ by eliminating from C′ those hypotheses f
with the property that êrrunl(f) > t + ǫ. We then apply a greedy procedure on Cǫ

to obtain Gǫ = {g1, · · · , gs}, as follows:
Initialize C1

ǫ = Cǫ and i = 1.

(1) Let gi = argmin
f∈Ci

ǫ

êrrunl(f).

(2) Using the unlabeled sample SU , determine Ci+1
ǫ by deleting from Ci

ǫ those

hypotheses f with the property that d̂(gi, f) < 3ǫ.

(3) If Ci+1
ǫ = ∅ then set s = i and stop; else, increase i by 1 and goto 1.

We now show that with high probability, Gǫ is a 5ǫ-cover of CD,χ(t) with respect
to D and has size at most p. First, our bound on mu is sufficient to ensure that
with probability ≥ 1 − δ

2 , we have (a) |d̂(f, g) − d(f, g)| ≤ ǫ for all f, g ∈ C and (b)
|êrrunl(f) − errunl(f)| ≤ ǫ for all f ∈ C. Let us assume in the remainder that this
(a) and (b) are indeed satisfied. Now, (a) implies that any two functions in C that
agree on SU have distance at most ǫ, and therefore C′ is an ǫ-cover of C. Using
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(b), this in turn implies that Cǫ is an ǫ-cover for CD,χ(t). By construction, Gǫ is a
3ǫ-cover of Cǫ with respect to distribution SU , and thus (using (a)) Gǫ is a 4ǫ-cover
of Cǫ with respect to D, which implies that Gǫ is a 5ǫ-cover of CD,χ(t) with respect
to D.

We now argue that Gǫ has size at most p. Fix some optimal ǫ-cover {f1, . . . , fp}
of CD,χ(errunl(c

∗) + 2ǫ). Consider function gi and suppose that gi is covered by
fσ(i). Then the set of functions deleted in step (2) of the procedure include those
functions f satisfying d(gi, f) < 2ǫ which by triangle inequality includes those
satisfying d(fσ(i), f) ≤ ǫ. Therefore, the set of functions deleted include those
covered by fσ(i) and so for all j > i, σ(j) 6= σ(i); in particular, σ is 1-1. This
implies that Gǫ has size at most p.

Finally, to learn c∗ we simply output the function f ∈ Gǫ of lowest empirical error
over the labeled sample. By Chernoff bounds, the number of labeled examples is
enough to ensure that with probability ≥ 1 − δ

2 the empirical optimum hypothesis
in Gǫ has true error at most 6ǫ. This implies that overall, with probability ≥ 1− δ,
we find a hypothesis of error at most 6ǫ.

Note that Theorem 13 relies on knowing a good upper bound on errunl(c
∗). If

we do not have such an upper bound, then one can perform a stratification as
in Sections 3.1.2 and 3.1.3. For example, if we have a desired maximum error
rate ǫ and we do not know a good upper bound for errunl(c

∗) but we have the
ability to draw additional labeled examples as needed, then we can simply run the
procedure in Theorem 13 for various values of p, testing on each round to see if
the hypothesis f found indeed has zero empirical labeled error rate. One can show
that ml = O

(
1
ǫ ln p

δ

)
labeled examples are sufficient in total for all the “validation”

steps.7 If the number of labeled examples ml is fixed, then one can also perform a
stratification over the target error ǫ.

3.2.1 Some illustrative examples. To illustrate the power of ǫ-cover bounds, we
now present two examples where these bounds allow for learning from significantly
fewer labeled examples than is possible using uniform convergence.

Graph-based learning: Consider the setting of graph-based algorithms (e.g.,
Example 3). In particular, the input is a graph G where each node is an example
and C is the class of all boolean functions over the nodes of G. Let us define the
incompatibility of a hypothesis to be the fraction of edges in G cut by it. Suppose
now that the graph G consists of two cliques of n/2 vertices, connected together by
ǫn2/4 edges. Suppose the target function c∗ labels one of the cliques as positive
and one as negative, so the target function indeed has unlabeled error rate less than
ǫ. Now, given any set SL of ml < ǫn/4 labeled examples, there is always a highly-
compatible hypothesis consistent with SL that just separates the positive points
in SL from the entire rest of the graph: the number of edges cut will be at most
nml < ǫn2/4. However, such a hypothesis has true error nearly 1/2 since it has

7Specifically, note that as we increase t (our current estimate for the unlabeled error rate of the
target function), the associated p (which is an integer) increases in discrete jumps, p1, p2, . . .. We
can then simply spread the “δ” parameter across the different runs, in particular run i would use
δ/i(i + 1). Since pi ≥ i, this implies that ml = O

`

1
ǫ

ln p
δ

´

labeled examples are sufficient for all
the “validation” steps.
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less than ǫn/4 positive examples. So, we do not yet have uniform convergence over
the space of highly compatible hypotheses, since this hypothesis has zero empirical
error but high true error. Indeed, this illustrates an overfitting problem that can
occur with a direct minimum-cut approach to learning [Blum and Chawla 2001;
Joachims 2003; Blum et al. 2004]. On the other hand, the set of functions of
unlabeled error rate less than ǫ has a small ǫ-cover: in particular, any partition of
G that cuts less than ǫn2/4 edges must be ǫ-close to (a) the all-positive function,
(b) the all-negative function, (c) the target function c∗, or (d) the complement of
the target function 1− c∗. So, ǫ-cover bounds act as if the concept class had only 4
functions and so by Theorem 13 we need only O(1

ǫ ln 1
δ ) labeled examples to learn

well.8 (In fact, since the functions in the cover are all far from each other, we really
need only O(ln 1

δ ) examples. This issue is explored further in Theorem 15).

Simple co-training: For another case where ǫ-cover bounds can beat uniform-
convergence bounds, imagine examples are pairs of points in {0, 1}d, C is the class
of linear separators, and compatibility is determined by whether both points are
on the same side of the separator (i.e., the case of Example 4). Now suppose for
simplicity that the target function just splits the hypercube on the first coordinate,
and the distribution is uniform over pairs having the same first coordinate (so the
target is fully compatible). We then have the following.

Theorem 14. Given poly(d) unlabeled examples SU and 1
4 log2 d labeled exam-

ples SL, with high probability there will exist functions of true error 1/2 − 2−
1
2

√
d

that are consistent with SL and compatible with SU .

Proof. Let V be the set of all variables (not including x1) that (a) appear in
every positive example of SL and (b) appear in no negative example of SL. In other
words, these are variables xi such that the function f(x) = xi correctly classifies
all examples in SL. Over the draw of SL, each variable has a (1/2)2|SL| = 1/

√
d

chance of belonging to V , so the expected size of V is (d−1)/
√

d and so by Chernoff
bounds, with high probability V has size at least 1

2

√
d. Now, consider the hypothesis

corresponding to the conjunction of all variables in V . This correctly classifies the
examples in SL, and with probability at least 1−2|SU |2−|V | it classifies every other
example in SU negative because each example in SU has only a 1/2|V | chance of
satisfying every variable in V . Since |SU | = poly(d), this means that with high
probability this conjunction is compatible with SU and consistent with SL, even

though its true error is at least 1/2 − 2−
1
2

√
d.

So, given only a set SU of poly(d) unlabeled examples and a set SL of 1
4 log2 d

labeled examples we would not want to use a uniform convergence based algorithm
since we do not yet have uniform convergence. In contrast, the cover-size of the set
of functions compatible with SU is constant, so ǫ-cover based bounds again allow
learning from just only O(1

ǫ ln 1
δ ) labeled examples (Theorem 13). In fact as we

show in Theorem 15 we only need O
(
log 1

ǫ

1
δ

)
labeled examples in this case.

8Effectively, ǫ-cover bounds allow one to rule out a hypothesis that, say, just separates the positive
points in SL from the rest of the graph by noting that this hypothesis is very close (with respect
to D) to the all-negative hypothesis, and that hypothesis has a high labeled-error rate.

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 ·
3.2.2 Learning from even fewer labeled examples. In some cases, unlabeled data

can allow us to learn from even fewer labeled examples than given by Theorem 13.
In particular, consider a co-training setting where the target c∗ is fully compatible
and D satisfies the property that the two views x1 and x2 are conditionally inde-
pendent given the label c∗(〈x1, x2〉). As shown by [Blum and Mitchell 1998], one
can boost any weak hypothesis from unlabeled data in this setting (assuming one
has enough labeled data to produce a weak hypothesis). Related sample complexity
results are given in [Dasgupta et al. 2001]. In fact, we can use the notion of ǫ-covers
to show that we can learn from just a single labeled example. Specifically, for any
concept classes C1 and C2, we have:

Theorem 15. Assume that err(c∗) = errunl(c
∗) = 0 and D satisfies indepen-

dence given the label. Then for any τ ≤ ǫ/4, using mu unlabeled examples and ml

labeled examples we can find a hypothesis that with probability 1 − δ has error at
most ǫ, for

mu = O
(

1

τ

[
(V Cdim(C1) + V Cdim(C2)) ln

1

τ
+ ln

2

δ

])
and ml = O

(
log 1

τ

1

δ

)
.

Proof. We will assume for simplicity the setting of Example 3, where c∗ = c∗1 =
c∗2 and also D1 = D2 = D̃ (the general case is handled similarly, but just requires
more notation).

We start by characterizing the hypotheses with low unlabeled error rate. Recall
that χ(f, D) = Pr〈x1,x2〉∼D[f(x1) = f(x2)], and for concreteness assume f predicts
using x1 if f(x1) 6= f(x2). Consider f ∈ C with errunl(f) ≤ τ and let us define
p− = Prx∈D̃ [c∗(x) = 0], p+ = Prx∈D̃ [c∗(x) = 1] and for i, j ∈ {0, 1} define pij =
Prx∈D̃ [f(x) = i, c∗(x) = j]. We clearly have err (f) = p10 +p01. From errunl(f) =
Pr(x1,x2)∼D [f (x1) 6= f (x2)] ≤ τ , using the independence given the label of D, we
get

2p10p00

p10 + p00
+

2p01p11

p01 + p11
≤ τ.

In particular, the fact that 2p10p00

p10+p00
≤ τ implies that we cannot have both p10 > τ

and p00 > τ , and the fact that 2p01p11

p01+p11
≤ τ implies that we cannot have both

p01 > τ and p11 > τ . Therefore, any hypothesis f with errunl(f) ≤ τ falls in one
of the following categories:

(1) f is “close to c∗”: p10 ≤ τ and p01 ≤ τ ; so err(f) ≤ 2τ .

(2) f is “close to c∗”: p00 ≤ τ and p11 ≤ τ ; so err(f) ≥ 1 − 2τ .

(3) f “almost always predicts negative”: for p10 ≤ τ and p11 ≤ τ ; so Pr[f(x) =
0] ≥ 1 − 2τ .

(4) f “almost always predicts positive”: for p00 ≤ τ and p01 ≤ τ ; so Pr[f(x) =
0] ≤ 2τ .

Let f1 be the constant positive function and f0 be the constant negative function.
Now note that our bound on mu is sufficient to ensure that with probability ≥ 1− δ

2 ,

we have (a) |d̂(f, g)−d(f, g)| ≤ τ for all f, g ∈ C and (b) all f ∈ C with êrrunl(f) = 0
satisfy errunl(f) ≤ τ . Let us assume in the remainder that this (a) and (b) are
indeed satisfied. By our previous analysis, there are at most four kinds of hypotheses
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consistent with unlabeled data: those close to c∗, those close to its complement
c∗, those close to f0, and those close to f1. Furthermore, c∗, c∗, f0, and f1 are
compatible with the unlabeled data.

So, algorithmically, we first check to see if there exists a hypothesis g ∈ C with
êrrunl(g) = 0 such that d̂(f1, g) ≥ 3τ and d̂(f0, g) ≥ 3τ . If such a hypothesis g
exists, then it must satisfy either case (1) or (2) above. Therefore, we know that
one of {g, g} is 2τ -close to c∗. If not, we must have p+ ≤ 4τ or p− ≤ 4τ , in which
case we know that one of {f0, f1} is 4τ -close to c∗. So, either way we have a set of
two functions, opposite to each other, one of which is at least 4τ -close to c∗. We
finally use O(log 1

τ

1
δ ) labeled examples to pick one of these to output, namely the

one with lowest empirical labeled error. Lemma 16 below then implies that with
probability 1 − δ the function we output has error at most 4τ ≤ ǫ.

Lemma 16. Consider τ < 1
8 . Let Cτ =

{
f, f

}
be a subset of C containing two

opposite hypotheses with the property that one of them is τ-close to c∗. Then,
ml > 6 log( 1

τ )
(

1
δ

)
labeled examples are sufficient so that with probability ≥ 1 − δ,

the concept in Cτ that is τ-close to c∗ in fact has lower empirical error.

Proof. See Appendix E.

In particular, by reducing τ to poly(δ) in Theorem 15, we can reduce the number
of labeled examples needed ml to one. Note however that we will need polynomially
more unlabeled examples.

In fact, the result in Theorem 15 can be extended to the case that D+ and D−

merely satisfy constant expansion rather than full independence given the label, see
[Balcan et al. 2004].

Note: Theorem 15 illustrates that if data is especially well behaved with respect to
the compatibility notion, then our bounds on labeled data can be extremely good.
In Section 4.3, we show for the case of linear separators and independence given the
label, we can give efficient algorithms, achieving the bounds in Theorem 15 in terms
of labeled examples by a polynomial time algorithm. Note, however, that both these
bounds rely heavily on the assumption that the target is fully compatible. If the
assumption is more of a “hope” than a belief, then one would need an additional
sample of 1/ǫ labeled examples just to validate the hypothesis produced.

4. ALGORITHMIC RESULTS

In this section we give several examples of efficient algorithms in our model that
are able to take advantage of unlabeled data and learn using sample sizes com-
parable to those described in Section 3. We begin in Section 4.1 by considering
the problem of learning disjunctions in the doubly realizable case for a simple
compatibility notion, presenting an algorithm achieving the sample-size bounds in
Section 3.1.1. Next in Section 4.2 we give a more interesting example showing how
we can efficiently perform data dependent structural risk minimization in a natural
transductive graph-based learning setting, illustrating the bounds of Section 3.1.3.
Finally, in section 4.3 we present a new efficient algorithm for Co-Training with
linear separators that, if the distribution satisfies independence given the label, re-
quires only a single labeled example to learn to any desired error rate ǫ, matching
the ǫ-cover labeled sample bounds in Section 3.2.
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Note that our focus is on achieving a low-error hypothesis (also called minimizing

0-1 loss). Another common practice in machine learning (both for supervised and
semi-supervised learning) is to instead try to minimize a surrogate convex loss
that is easier to optimize [Chapelle et al. 2006]. While this does simplify the
computational problem, it does not in general solve the true goal of achieving low
error since in general the minimizer of the surrogate loss can have a large 0-1 loss.

4.1 An efficient semi-supervised algorithm for disjunctions

We give here a simple example to illustrate the bounds in Section 3.1.1, and for
which we can give a polynomial-time algorithm that takes advantage of them. Let
the instance space X = {0, 1}d, and for x ∈ X , let vars(x) be the set of variables
set to 1 by x. Let C be the class of monotone disjunctions (e.g., x1 ∨ x3 ∨ x6),
and for f ∈ C, let vars(f) be the set of variables disjoined by f . Now, suppose we
say an example x is compatible with function f if either vars(x) ⊆ vars(f) or else
vars(x) ∩ vars(f) = φ. This is a very strong notion of “margin”: it says, in essence,
that every variable is either a positive indicator or a negative indicator, and no
example should contain both positive and negative indicators.

We assume the “doubly realizable” case where we assume c∗ ∈ C and errunl(c
∗) =

0. Given this setup, we can give a simple learning algorithm for this pair (C, χ)
with sample size bounds matching those in Theorem 4. Specifically, we prove:

Theorem 17. The class C of monotone disjunctions is learnable in polynomial
time under the compatibility notion defined above with sample size bounds matching
those in Theorem 4.

Proof. We begin by using our unlabeled data to construct a graph on d vertices
(one per variable), putting an edge between two vertices i and j if there is any
example x in our unlabeled sample with i, j ∈ vars(x). We now use our labeled
data to label the components. If the target function is fully compatible, then no
component will get multiple labels (if some component does get multiple labels,
we halt with failure). Finally, we produce the hypothesis f such that vars(f) is
the union of the positively-labeled components. This is fully compatible with the
unlabeled data and has zero error on the labeled data, so by Theorem 4, if the sizes
of the data sets are as given in the bounds, with high probability the hypothesis
produced will have error at most ǫ.

Notice that if we want to view the algorithm as “purchasing” labeled data, then
we can simply examine the graph, count the number of connected components k,
and then request 1

ǫ [k ln 2 + ln 2
δ ] labeled examples. (Here, 2k = |CS,χ(0)|.) By the

proof of Theorem 4, with high probability 2k ≤ |CD,χ(ǫ)|, so we are purchasing no
more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “non-helpful”
distribution for this problem. An especially non-helpful distribution would be the
uniform distribution over all examples x with |vars(x)| = 1, in which there are d
components. In this case, unlabeled data does not help at all, and one still needs
Ω(d) labeled examples (or, even Ω

(
d
ǫ

)
if the distribution is non-uniform as in the

lower bounds of [Ehrenfeucht et al. 1989]). On the other hand, a helpful distribution
is one such that with high probability the number of components is small, such as
the case of features appearing independently given the label.
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For the semi-agnostic case, where c∗ ∈ C but errunl(c
∗) > 0, the natural approach

would be to solve for the consistent hypothesis of minimum unlabeled error over S.
Unfortunately, as shown in Appendix C, this problem is NP-hard. A different prob-
lem where one can efficiently solve for the most-compatible consistent hypothesis
is graph-based learning with a cut-size compatibility notion. Indeed, this is what
is done by the min-cut learning algorithm of [Blum and Chawla 2001]. In fact, for
this problem one can even do a full data-dependent structural risk minimization,
and we describe this in Section 4.2 below.

4.2 Efficient structural risk minimization for graph-based learning

We show here how we can apply the bounds of Theorem 11 in a natural graph-based
learning setting to yield an efficient algorithm for structural risk minimization. In-
terestingly, in this setting not only do we have a good upper bound on the penalty
term ǫ̂(f) with a nice functional form, but also because of this form, we can ef-
ficiently solve for the hypothesis of smallest empirical error plus penalty, without
needing to use a surrogate loss for the empirical error term. This allows us to effi-
ciently achieve an agnostic PAC guarantee, getting error nearly as good as the best
function of any given compatibility level, with a gap that degrades gracefully with
the degree of incompatibility and the number of labeled examples.

We assume our input is an unweighted graph G over the dataset S. This is a
transductive problem (see also Section 5.1): S is fixed and our goal is to do well with
respect to the uniform distribution over S. Our hypothesis class C consists of all
2|S| labelings of S, and we consider a cut-size notion of compatibility. Specifically,
we define errunl(f) to be the fraction of edges in G whose endpoints are assigned
different labels by f (i.e., the fraction of edges cut by f). For ease of discussion,
we assume that G is connected, so the only hypotheses of perfect compatibility are
the all-positive and all-negative labelings. Given a random labeled subset of S, our
goal in applying Theorem 11 is to identify the hypothesis f minimizing the sum
of its empirical labeled error êrr(f) and the regularization term ǫ̂(f). We show
here how for this problem we can produce a good bound on ǫ̂(f), and moreover we
can identify the desired hypothesis efficiently, yielding an efficient well-motivated
regularized semi-supervised learning algorithm. Specifically, we use Theorem 11 to
prove the following result. Let tmin be the fraction of edges cut by the minimum
nontrivial cut in G.

Theorem 18. If G has a partition of true error α and cutting a t fraction of
edges, then there exists an efficient algorithm that with probability at least 1 − δ

produces a hypothesis f of error at most α + O

(√
(1+t/tmin) ln(ml/δ)

ml

)
.

Proof. Algorithmically, to use Theorem 11 we have two tasks. The first is to
calculate or determine a good upper bound on the regularization term ǫ̂(f), and
the second is to efficiently find argminf [êrr(f) + ǫ̃(f)], where ǫ̃(f) is our computed
upper-bound on ǫ̂(f). (Note that if we required êrr(f) = 0, i.e. perfect behavior
on the given labeled data, we could easily compute the hypothesis minimizing
ǫ̂(f) by collapsing the labeled positive and negative examples into a source and
sink respectively and solving for the minimum cut. However, we instead want to
perform a tradeoff.)
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For the first task, we can use results of Kleinberg et al. [Kleinberg 2000; Kleinberg

et al. 2004] showing that for any connected graph G, the VC-dimension of the set
of partitions of unlabeled error rate at most t is O(1 + t/tmin) where tmin is the
fraction of edges cut by the minimum nontrivial cut in G.9 Therefore, by Sauer’s
lemma this implies that

ln (CS,χ(t)[ml, S]) = ln(m
O(1+t/tmin)
l ) = O((1 + t/tmin) lnml).

Notice that this is a graph-dependent quantity since tmin is a function of the graph

G. We define ǫ̃(f) = O
(√

(1 + t/tmin) ln(ml)/ml

)
to be the quantity ǫ̂(f) pro-

duced using this upper bound.
For the second task, we need to compute the function f minimizing empirical

error plus our estimation error bound. For this we can use the following approach.
First, connect a source vs to all labeled positive examples via edges of weight 1, a
sink vt to all labeled negative examples via edges of weight 1, and assign each edge
in G a weight of λ. If we now find the minimum vs-vt cut, this will produce the
function fλ minimizing the number of labeled mistakes plus λ times the number
of unlabeled mistakes (edges cut in G). Unfortunately, our estimation error bound
ǫ̃(f) is not a linear function of the number of unlabeled mistakes so we cannot
directly convert it to a scalar λ. However, it is a concave function, which means
that the argmin of êrr(f) + ǫ̃(f) must be the minimizer of êrr(f) + λ∗errunl(f)
for some value λ∗ (see Lemma 19 below). Therefore, we can scan through values
of λ to determine all distinct functions fλ produced (there are at most ml + 1 such
functions since each will have at least one more labeled mistake than the previous)
and then output the argmin among these.

Thus, we can use this approach to efficiently solve for our desired hypothesis.
This completes the proof.

Lemma 19. Let S = {(x1, y1), . . . , (xn, yn)} ⊂ R2, and let g(y) be a concave
increasing function. Then the point (xi, yi) ∈ S minimizing x + g(y) must be the
point in S minimizing x + λy for some λ > 0.

Proof. Let S′ ⊆ S be the set of points in S that minimize x + λy for some
λ > 0. Then S′ is exactly the points (xk, yk) on the convex hull of S such that for all
j 6= k, either xj > xk or yj > yk. Now, suppose (xi, yi) is the point in S minimizing
x + g(y). Then clearly there cannot be (xj , yj) 6= (xi, yi) such that xj ≤ xi and
yj ≤ yi because then xj + g(yj) < xi + g(yi) since g is an increasing function.
Furthermore, (xi, yi) must be on the convex hull of S. In particular, suppose not.
Then there must be some (xj , yj), (xk, yk) ∈ S with xi = αxj + (1 − α)xk for
α ∈ [0, 1] but yi > αyj + (1 − α)yk. In that case we have

xi + g(yi) > αxj + (1 − α)xk + g(αyj + (1 − α)yk)

≥ αxj + (1 − α)xk + αg(yj) + (1 − α)g(yk)

≥ min(xj + g(yj), xk + g(yk)),

9Typically one would state this using t and tmin as the number of edges cut rather than the
fraction, but we will normalize both here (which doesn’t affect their ratio) to be consistent with
the terminology used throughout this paper.
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where the first “≥” follows from concavity of g. This in turn contradiction the
definition of (xi, yi). Therefore, (xi, yi) must minimize x + λy for some λ > 0.

4.3 Co-training with linear separators: an efficient cover based algorithm

In this section we consider the problem of learning the class C of linear separa-
tors under the Co-training compatibility notion, in the doubly-realizable case. For
simplicity we focus first on the case of Example 4: the target function is a linear
separator in Rd and each example is a pair of points, both of which are assumed to
be on the same side of the separator (i.e., an example is a line-segment that does
not cross the target hyperplane). We then show how our results can be extended
to the more general setting.

Unfortunately, unlike the previous examples, the consistency problem here even
with double realizability is NP-hard: given a graph G embedded in Rd with two
distinguished points s and t, it is NP-hard to find the linear separator with s on
one side and t on the other that cuts the minimum number of edges, even if the
minimum is zero [Flaxman 2003]. For this reason, we will make an additional as-
sumption, that the two points in an example are each drawn independently given
the label. That is, there is a single distribution D̃ over Rd, and with some proba-
bility p+, two points are drawn i.i.d. from D̃+ (D̃ restricted to the positive side of
the target function) and with probability 1 − p+, the two are drawn i.i.d from D̃−
(D̃ restricted to the negative side of the target function). Note that our sample
complexity results in Section 3.2 extend to weaker assumptions such as distribu-
tional expansion introduced by [Balcan et al. 2004], but we need true independence
for our algorithmic results. [Blum and Mitchell 1998] also give positive algorithmic
results for co-training when (a) the two views of an example are drawn indepen-
dently given the label (which we are assuming now), (b) the underlying function
is learnable via Statistical Query algorithms10 (which is true for linear separators
[Blum et al. 1998]), and (c) we have enough labeled data to produce a weakly-useful
hypothesis (defined below) on one of the views to begin with. We give here an im-
provement over that result by showing how we can run the algorithm in [Blum
and Mitchell 1998] with only a single labeled example, thus obtaining an efficient
algorithm in our model. It is worth noticing that in the process, we also somewhat
simplify the results of [Blum et al. 1998] on efficiently learning linear separators
with noise without a margin assumption.

For the analysis below, we need the following definition. A weakly-useful predictor
is a function f such that for some β that is at least inverse polynomial in the input
size we have:

Pr[f(x) = 1|c∗(x) = 1] > Pr[f(x) = 1|c∗(x) = 0] + β. (2)

It is equivalent to the usual notion of a “weak hypothesis” [Kearns and Vazirani
1994] when the target function is balanced, but requires the hypothesis give more
information when the target function is unbalanced [Blum and Mitchell 1998]. Also,
we will assume for convenience that the target separator passes through the origin,
and let us denote the separator by c∗ · x = 0.

10For a detailed description of the Statistical Query model see [Kearns 1998] and [Kearns and
Vazirani 1994].
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We now describe an efficient algorithm to learn to any desired error rate ǫ in

this setting from just a single labeled example. For clarity, we first describe an
algorithm whose running time depends polynomially on both the dimension d and
1/γ, where γ is a soft margin of separation between positive and negative examples.
Formally, in this case we assume that at least some non-negligible probability mass
of examples x satisfy

|x · c∗|
|x||c∗| ≥ γ.

I.e., they have distance at least γ to the separating hyperplane x · c∗ = 0 after
normalization. This is a common type of assumption in machine learning (in fact,
often one makes the much stronger assumption that nearly all probability mass is
on examples x satisfying this condition). We then show how one can replace the
dependence on 1/γ with instead a polynomial dependence on the number of bits
of precision b in the data, using the Outlier Removal Lemma of [Blum et al. 1998]
and [Dunagan and Vempala 2001].

Algorithm 1 Co-training with Linear Separators. The Soft Margin Case.

Input: ǫ, δ, T , a set SL of ml labeled examples drawn i.i.d from D, a set SU

of mu unlabeled examples drawn i.i.d from D.

Let hp be the all-positive function. Let hn be the all-negative function.
Let τ = ǫ/6, ǫ1 = τ/4.

(1) For i = 1, . . . , T do
- Choose a random halfspace fi going through the origin.
- Feed fi, SU , the error parameters ǫ1, and the confidence parameter δ/6

into the bootstrapping procedure of [Blum and Mitchell 1998] to produce
hypothesis hi.

(2) Let h be argminhi

{
êrrunl(hi)|d̂(h, hp) ≥ 3τ, d̂(h, hn) ≥ 3τ

}
.

If êrrunl(hi) ≥ 3ǫ1, then let h = hp.

(3) Use SL to output either h or h̄: output the hypothesis with lowest empirical
error on the set SL.

Theorem 20. Assume that at least an α probability mass of examples x have

margin |x·c∗|
|x||c∗| ≥ γ with respect to the target separator c∗. There is a polynomial-

time algorithm (polynomial in d, 1/γ, 1/α, 1/ǫ, and 1/δ) to learn a linear separator
under the above assumptions to error rate ǫ with probability 1−δ, from a polynomial
number of unlabeled examples and a single labeled example.

Proof. Let ǫ and δ be the desired accuracy and confidence parameters. Let T =

O
(

1
α·γ ln

(
1
δ

))
, mu = poly(1/γ, 1/α, 1/ǫ, 1/δ, d), and ml = 1. We run Algorithm 1

with the inputs ǫ, δ, T SL, SU , and ml = 1. Let τ = ǫ/6, ǫ1 = τ/4.
In order to prove the desired result, we start with a few facts.
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We first note that our bound on mu is sufficient to ensure that with probability
≥ 1 − δ

3 , we have (a) |d̂(f, g) − d(f, g)| ≤ τ for all f, g ∈ C and (b) all f ∈ C have
|êrrunl(f) − errunl(f)| ≤ ǫ1.

We now argue that if at least an α probability mass of examples x have margin
|x·c∗|
|x||c∗| ≥ γ with respect to the target separator c∗, then a random halfspace has at

least a poly(α, γ) probability of being a weakly-useful predictor. (Note that [Blum
et al. 1998] uses the Perceptron algorithm to get weak learning; here, we need
something simpler since we need to save our labeled example to the very end.)
Specifically, consider a point x of margin γx ≥ γ. By definition, the margin is the
cosine of the angle between x and c∗, and therefore the angle between x and c∗ is

π/2 − cos−1(γx) ≤ π/2 − γ.

Now, imagine that we draw f at random subject to f · c∗ ≥ 0 (half of the f ’s will
have this property) and define f(x) = sign(f · x). Then,

Prf (f(x) 6= c∗(x)|f · c∗ ≥ 0) ≤ (π/2 − γ)/π = 1/2 − γ/π.

Moreover, if x does not have margin γ then at the very least we have Prf (f(x) 6=
c∗(x)|f · c∗ ≥ 0) ≤ 1/2.

Now define distribution D∗ = 1
2D+ + 1

2D−; that is D∗ is the distribution D but
balanced to 50% positive and 50% negative. With respect to D∗ at least an α/2
probability mass of the examples have margin at least γ, and therefore:

Ef [errD∗(f)|f · c∗ ≥ 0] ≤ 1/2 − (α/2)(γ/π).

Since err(f) is a bounded quantity, by Markov inequality this means that at least
an Ω(αγ) probability mass of functions f must satisfy

errD∗(f) ≤ 1

2
− αγ

4π

which in turn implies that they must be useful weakly predictors with respect to
D as defined in Equation (2) with β = αγ

4π .
The second part of the argument is as follows. Note that in Step(1) of our algo-

rithm we repeat the following process for T iterations: pick a random fi, and plug
it into the bootstrapping theorem of [Blum and Mitchell 1998] (which, given a dis-
tribution over unlabeled pairs 〈xj

1, x
j
2〉, will use fi(x

j
1) as a noisy label of xj

2, feeding

the result into a Statistical Query algorithm). Since T = O
(

1
α·γ ln

(
1
δ

))
, using the

above observation about random halfspaces being weak predictors, we obtain that
with high probability at least 1 − δ/6, at least one of the random hypothesis fi

was a weakly-useful predictor; and since mu = poly(1/γ, 1/α, 1/ǫ, 1/δ, d) we also
have the associated hypothesis hi output by the bootstrapping procedure of [Blum
and Mitchell 1998] will with probability at least 1 − δ/6 satisfy err(hi) ≤ ǫ1. This
implies that with high probability at least 1 − 2δ/3, at least one of the hypothesis
hi we find in Step 1 has true labeled error at most ǫ1. For the rest of the hypotheses
we find in Step 1, we have no guarantees.

We now observe the following. First of all, any function f with small err(f) must
have small errunl(f); in particular,

errunl(f) = Pr(f(x1) 6= f(x2)) ≤ 2err(f).
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This implies that with high probability at least 1−2δ/3, at least one of the hypothe-
sis hi we find in Step 1 has true unlabeled error at most 2ǫ1, and therefore empirical
unlabeled error at most 3ǫ1. Secondly, because of the assumption of independence
given the label, as shown in Theorem 15, with high probability the only functions
with unlabeled error at most τ are functions 2τ -close to c∗, 2τ -close to ¬c∗, 2τ -close
to the “all positive” function, or 2τ -close to the “all negative” function.

In Step (2) we first examine all the hypotheses produced in Step 1, and we pick
the hypothesis h with the smallest empirical unlabeled error rate subject to being
empirically at least 3τ -far from the “all-positive” or “all-negative” functions. If the
the empirical error rate of this hypothesis h is at most 3ǫ1 we know that its true
unlabeled error rate is at most 4ǫ1 ≤ τ , which further implies that either h or ¬h
is 2τ close to c∗. However, if the empirical unlabeled error rate of h is greater than
3ǫ1, then we know that the target must be 4τ -close to the all-positive or all-negative
function so we simply choose h = “all positive” (this is true since the unlabeled

sample was large enough so that |d̂(f, g) − d(f, g)| ≤ τ).
So, we have argued that with probability at least 1 − 2δ/3 either h or ¬h is

4τ -close to c∗. We can now just use O
(
log( 1

τ )
(

1
δ

))
labeled examples to determine

which case is which (Lemma 16). This quantity is at most 1 and our error rate is
at most ǫ if we set τ ≤ ǫ/4 and τ sufficiently small compared to δ. This completes
the proof.

The above algorithm assumes one can efficiently pick a random unit-length vector
in Rd, but the argument easily goes through even if we do this to only O(ln 1/γ)
bits of precision.

We now extend the result to the case that we make no margin assumption.

Theorem 21. There is a polynomial-time algorithm (in d, b, 1/ǫ, and 1/δ,
where d is the dimension of the space and b is the number of bits per example)
to learn a linear separator under the agreement notion of compatibility if the dis-
tribution D satisfies independence given the label, from a polynomial number of
unlabeled examples and a single labeled example.

Proof. We begin by drawing a large unlabeled sample S (of size polynomial
in d and b). We then compute a linear transformation T that when applied to S
has the property that for any hyperplane w · x = 0, at least a 1/poly(d, b) fraction
of T (S) has margin at least 1/poly(d, b). We can do this via the Outlier Removal
Lemma of [Blum et al. 1998] and [Dunagan and Vempala 2001]. Specifically, the
Outlier Removal Lemma states that given a set of points S, one can algorithmically
remove an ǫ′ fraction of S and ensure that for the remaining set S′, for any vector
w, we have

max
x∈S′

(w · x)2 ≤ poly(d, b, 1/ǫ′)Ex∈S′ [(w · x)2, ]

where b is the number of bits needed to describe the input points. Given such a set
S′, one can then use its eigenvectors to compute a standard linear transformation
(also described in [Blum et al. 1998]) T : Rd → Rd′

, where d′ ≤ d is the dimension of
the subspace spanned by S′, such that in the transformed space, for all unit-length
w, we have Ex∈T (S′)[(w · x)2] = 1. In particular, since the maximum of (w · x)2 is
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bounded, this implies that for any vector w ∈ Rd′

, at least an α fraction of points
x ∈ T (S′) have margin at least α for some α ≥ 1/poly(b, d, 1/ǫ′).

Now, choose ǫ′ = ǫ/4, and let D′ be the distribution D̃ restricted to the space
spanned by S′. By VC-dimension bounds, |S| = Õ(d/α) is sufficient so that with
high probability, (a) D′ has probability mass at least 1 − ǫ/2, and (b) the vector
T (c∗) has at least an α/2 probability mass of T (D′) at margin ≥ α. Thus, the linear
transformation T converts the distribution D′ into one satisfying the conditions
needed for Theorem 20, and any hypothesis produced with error ≤ ǫ/2 on D′ will
have error at most ǫ on D. So, we simply apply T to D′ and run the algorithm for
Theorem 20 to produce a low-error linear separator.

Note: We can easily extend our algorithm to the standard co-training setting
(where c∗1 can be different from c∗2) as follows: we repeat the procedure in a sym-
metric fashion, and then just try all combinations of pairs of functions returned to
find one of small unlabeled error rate, not close to “all positive”, or “all negative”.

Finally we use O
(
log( 1

ǫ )
(

1
δ

))
labeled examples to produce a low error hypothesis

(and here we use only one part of the example and only one of the functions in the
pair).

5. RELATED MODELS

In this section we further discuss how to incorporate several existing transductive
semi-supervised learning approaches in our model, describe connections with gen-
erative models and other ways of using unlabeled data in Machine Learning, and
discuss the relationship between our model and the luckiness framework of [Shawe-
Taylor et al. 1998].

5.1 Transductive Semi-Supervised Learning

We show how a number of existing transductive graph-based learning algorithms
can be modeled in our framework. In the following we assume that there is weighted
graph G defined over S, which is given a-priori and encodes the prior knowledge.
We denote by W the weighted adjacency matrix of G and by C the set of all binary
functions over S.

Minimum Cut Suppose for f ∈ C we define the incompatibility of f to be the
weight of the cut in G determined by f . This is the implicit notion of compati-
bility considered in [Blum and Chawla 2001], and as discussed in Section 4.2, the
minimum-cut algorithm used by [Blum and Chawla 2001] finds the most compat-
ible hypothesis that is correct on the labeled data, solving the problem in the
semi-agnostic case.

Normalized Cut For f ∈ C define size(f) to be the weight of the cut in G deter-
mined by f , and let neg(f) and pos(f) be the number of points in S on which f pre-
dicts negative and positive, respectively. For the normalized cut setting of [Joachims

2003] we can define the incompatibility of f ∈ CS to be size(f)
neg(f)·pos(f) . This is the

penalty function used in [Joachims 2003], and again, in the semi-realizable case,
algorithmically the goal would be to find a highly compatible hypothesis that is cor-
rect on the labeled data. Unfortunately, the corresponding optimization problem is
in this case is NP-hard. Still, several approximate solutions have been considered,
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leading to different semi-supervised learning algorithms. For instance, Joachims
[2003] considers a spectral relaxation that leads to the “SGT algorithm”; another
relaxation based on semidefinite programming is considered in [Bie and Cristianini
2004].

Harmonic Function We can also model the algorithms introduced in [Zhu et al.
2003c; 2003a] as follows. If we consider f to be a probabilistic prediction function
defined over S, then we can define the incompatibility of f to be

∑

i,j

wi,j (f(i) − f(j))
2

= fT Lf,

where L is the un-normalized Laplacian of G. Similarly we can model the algorithm
introduced by Zhao et al. [Zhou et al. 2004] by using an incompatibility of f given
by fTLf where L is the normalized Laplacian of G. More generally, all the Graph
Kernel methods can be viewed in our framework if we consider that the incompat-
ibility of f is given by ||f ||K = fT Kf where K is a kernel derived from the graph
(see for instance [Zhu et al. 2003b]).

5.2 Connections to Generative Models

It is also interesting to consider how generative models can be fit into our model.
As mentioned in Section 1, a typical assumption in a generative setting is that D
is a mixture with the probability density function

p(x|θ) = p0 · p0(x|θ0) + p1 · p1(x|θ1)

(see for instance [Ratsaby and Venkatesh 1995; Castelli and Cover 1995; 1996]).
In other words, the labeled examples are generated according to the following
mechanism: a label y ∈ {0, 1} is drawn according to the distribution of classes
{p0, p1} and then a corresponding random feature vector is drawn according to
the class-conditional density py. The assumption typically used is that the mix-
ture is identifiable. Identifiability ensures that the Bayes optimal decision border
{x : p0 · p0(x|θ0) = p1 · p1(x|θ1)} can be deduced if p(x|θ) is known, and there-

fore one can construct an estimate of the Bayes border by using p(x|θ̂) instead of
p(x|θ). Essentially once the decision border is estimated, a small labeled sample
suffices to learn (with high confidence and small error) the appropriate class labels
associated with the two disjoint regions generated by the estimate of the Bayes
decision border. To see how we can incorporate this setting in our model, consider
for illustration the setting in [Ratsaby and Venkatesh 1995]; there they assume that
p0 = p1, and that the class conditional densities are d-dimensional Gaussians with
unit covariance and unknown mean vectors θi ∈ Rd. The algorithm used is the
following: the unknown parameter vector θ = (θ0, θ1) is estimated from unlabeled
data using a maximum likelihood estimate; this determines a hypothesis which is a
linear separator that passes through the point (θ̂0 + θ̂1)/2 and is orthogonal to the

vector θ̂1 − θ̂0; finally each of the two decision regions separated by the hyperplane
is labeled according to the majority of the labeled examples in the region. Given
this setting, a natural notion of compatibility we can consider is the expected log-
likelihood function (where the expectation is taken with respect to the unknown
distribution specified by θ). Specifically, we can identify a legal hypothesis fθ with
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the set of parameters θ = (θ0, θ1) that determine it, and then we can define

χ(fθ, D) = Ex∈D[log(p(x|θ))].

[Ratsaby and Venkatesh 1995] show that if the unlabeled sample is large enough,
then all hypotheses specified by parameters θ which are close enough to θ, will
have the property that their empirical compatibilities will be close enough to their
true compatibilities. This then implies (together with other observations about
Gaussian mixtures) that the maximum likelihood estimate will be close enough to
θ, up to permutations. (This actually motivates χ as a good compatibility function
in our model.)

More generally, we can deal with other parametric families using the same com-
patibility notion; however, we will need to impose constraints on the distributions
allowed in order to ensure that the compatibility is actually well defined (the ex-
pected log-likelihood is bounded).

As mentioned in Section 1, this kind of generative setting is really at the extreme
of our model. The assumption that the distribution that generates the data is truly
a mixture implies that if we knew the distribution, then there are only two possible
concepts left (and this makes the unlabeled data extremely useful).

5.3 Connections to the Luckiness Framework

It is worth noticing that there is a strong connection between our approach and
the luckiness framework [Shawe-Taylor et al. 1998; Mendelson and Philips 2003].
In both cases, the idea is to define an ordering of hypotheses that depends on the
data, in the hope that we will be “lucky” and find that the target function ap-
pears early in the ordering. There are two main differences, however. The first
is that the luckiness framework (because it was designed for supervised learning
only) uses labeled data both for estimating compatibility and for learning: this is a
more difficult task, and as a result our bounds on labeled data can be significantly
better. For instance, in Example 4 described in Section 2, for any non-degenerate
distribution, a dataset of d

2 pairs can with probability 1 be completely shattered by
fully-compatible hypotheses, so the luckiness framework does not help. In contrast,
with a larger (unlabeled) sample, one can potentially reduce the space of compatible
functions quite significantly, and learn from o(d) or even O(1) labeled examples de-
pending on the distribution – see Section 3.2 and Section 4. Secondly, the luckiness
framework talks about compatibility between a hypothesis and a sample, whereas
we define compatibility with respect to a distribution. This allows us to talk about
the amount of unlabeled data needed to estimate true compatibility. There are also
a number of differences at the technical level of the definitions.

5.4 Relationship to Other Ways of Using Unlabeled Data for Learning

It is well known that when learning under an unknown distribution, unlabeled data
might help somewhat even in the standard discriminative models by allowing one
to use both distribution-specific algorithms [Benedek and Itai 1991], [Kaariainen
2005], [Sokolovska et al. 2008] and/or tighter data dependent sample-complexity
bounds [Bartlett and Mendelson 2002; Koltchinskii 2001]. However in many of these
methods one chooses a class of functions or a prior over functions before performing
the inference. This does not capture the power of unlabeled data in many practical
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semi-supervised learning methods, where typically one has some idea about what
the structure of the data tells about the target function, and where the choice of
prior can be made more precise after seeing the unlabeled data [Blum and Mitchell
1998; Joachims 1999; Leskes 2005; Rosenberg and Bartlett 2007]. Our focus in this
work has been to provide a unified discriminative framework for reasoning about
usefulness of unlabeled data in such settings in which one can analyze both sample
complexity and algorithmic results.

Another use of unlabeled data that has been studied is for model selection [Schu-
urmans and Southey 2002]. Here, unlabeled data is used to measure the distance
between hypotheses produced at different complexity levels, and serves as a form of
“sanity check” to indicate when clear overfitting has occurred. Note that as opposed
to our model, in this setting again, the hierarchy (or sequence of nested subclasses)
is fixed before the inference and it does not adjust based on the unlabeled data,
and in this sense the use of unlabeled data is weaker.

Finally, one other extremely popular setting studied for using unlabeled data
in concept learning is that of active learning. As in semi-supervised learning, in
active learning the algorithm initially sees only the unlabeled portion of a pool of
examples drawn from some underlying distribution. However, in active learning,
the algorithm then gets to choose which examples in the pool to have labeled for it
rather than just getting labels for a random subset of examples. There have recently
been a number of papers on algorithmic results (both theoretical and empirical)
and analysis frameworks for active learning – see e.g. [Freund et al. 1993; Tong
and Koller. 2001; Dasgupta 2005; Kääriäinen 2006; Balcan et al. 2007; Balcan
et al. 2008; Balcan et al. 2009; Dasgupta et al. 2007]. It is worth noting that
as opposed to the semi-supervised learning setting, and similarly to the classical
supervised learning discriminative settings (PAC and Statistical Learning Theory)
the only prior belief about the learning problem in the existing active learning
frameworks is that the target function (or a good approximation of it) belongs to a
given concept class. For simple concept classes such as linear separators on the line
one can achieve an exponential improvement (over the usual supervised learning
setting) in the labeled data sample complexity, under no additional assumptions
about the learning problem [Cohen et al. 1994; Dasgupta 2005; Balcan et al. 2009];
in general, however, for more complicated concept classes, the speed-ups achievable
in the active learning setting depend on the match between the distribution over
example-label pairs and the hypothesis class, and often on the target hypothesis
in the class [Balcan et al. 2009; Hanneke 2007; Balcan et al. 2008; Friedman 2009;
Koltchinskii 2009]. In terms of labeled data savings, in the active learning literature
the focus has been in reducing the 1/ǫ term while for most of this paper, with a few
exceptions (Theorem 15 and Theorem 20) we have focused on reducing the capacity
term.

6. CONCLUSIONS

The formulation of the PAC learning model by Valiant [1984] and the Statistical
Learning Theory framework by Vapnik [1982] were instrumental in the development
of machine learning and the design and analysis of algorithms for supervised learn-
ing. Many modern learning problems, however, call for semi-supervised methods
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that can take advantage of large quantities of unlabeled data that are often avail-
able, and while a large number of algorithms have been explored, there has been no
unifying theoretical framework. In this paper, we develop such a framework that
captures many of the ways unlabeled data is typically used, and the fundamental
assumptions underlying these approaches. This framework allows one to analyze
when and why unlabeled data can help and what the basic quantities are that these
data bounds depend on. The high level implication of our analysis is that unla-
beled data is useful if (a) we have a good notion of compatibility so that the target
function indeed has a low unlabeled error rate, (b) the distribution D is helpful in
the sense that not too many other hypotheses also have a low unlabeled error rate,
and (c) we have enough unlabeled data to estimate unlabeled error rates well. We
then make these statements precise through a series of sample-complexity results,
giving bounds as well as identifying the key quantities of interest. In addition, we
give several efficient algorithms for learning in this framework. One consequence of
our model is that if the target function and data distribution are both well behaved
with respect to the compatibility notion, then the sample-size bounds we get can
substantially beat what one could hope to achieve using labeled data alone, and we
have illustrated this with a number of examples through the paper.

6.1 Subsequent Work

Following the conference version of this paper, several authors have used our frame-
work for reasoning about semi-supervised learning, as well as for developing new
algorithms and analyses of semi-supervised learning. For example [Shawe-Taylor
2006; Rosenberg and Bartlett 2007; Ganchev et al. 2008] use it in the context of
agreement-based multi-view learning for either classification with specific convex
loss functions (e.g., hinge loss) or for regression. Sridharan and Kakade [2008] use
our framework in order to provide a general analysis of multi-view learning for a
variety of loss functions and learning tasks (classification and regression) along with
characterizations of suitable notions of compatibility functions. Parts of this work
appear as a book chapter in [Chapelle et al. 2006] and as stated in the introduction
of that book, our framework can be used to obtain bounds for a number of the
semi-supervised learning methods used in the other chapters.

6.2 Open Problems and Future Directions

Our framework sets up the foundations for a broad range of theoretically funda-
mental and practically relevant questions, both specific and high-level.

One broad category of such questions is for what natural classes C and compatibil-
ity notions χ can one provide an efficient algorithm that learns the pair (C, χ) with
running time and sample sizes polynomial in the bounds of Theorem 4? For exam-
ple, a natural question of this form is: can one generalize the algorithm of Section
4.1 to allow for irrelevant variables that are neither positive nor negative indicators?
That is, suppose we define a “two-sided disjunction” h to be a pair of disjunctions
(h+, h−) where h is compatible with D iff for all examples x, h+(x) = −h−(x)
(and let us define h(x) = h+(x)). Can we efficiently learn the class of two-sided
disjunctions under this notion of compatibility?

Alternatively, as a different generalization of the problem analyzed in Section 4.1,
suppose that again every variable is either a positive or negative indicator, but we
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relax the “margin” condition. In particular, suppose we require that every example
x either contain at least 60% of the positive indicators and at most 40% of the
negative indicators (for positive examples) or vice versa (for negative examples).
Can this class be learned efficiently with bounds comparable to those from Theorem
4? Along somewhat different lines, can one generalize the cover-based algorithm
given for Co-Training with linear separators, to assume some condition weaker than
independence given the label, while maintaining computational efficiency?11 More
broadly, it would be interesting to further extend the development of efficient cover-
based algorithms for other interesting concept classes and notions of compatibility.

A particularly interesting consequence of this sample complexity analysis in Sec-
tion 3.1.3 is that it suggests a new broad class of semi-supervised learning pro-
cedures which could greatly improve on the existing (more heuristically justified)
regularization based semi-supervised learning procedures. We have exemplified the
use of this analysis in the context of graph-based learning algorithms with a cut-size
compatibility notion, but the question remains open for other learning problems.
An interesting open question here is to design computationally efficient algorithms
for learning using theoretically-justified regularization terms for other natural no-
tions of compatibility.

It would also be interesting to analyze an active semi-supervised learning setting.
As mentioned in Section 5.4, in the active learning model the only prior typically
used is that the target function (or a good approximation to it) belong to a certain
concept class, but the algorithm is allowed to query unlabeled examples of its own
choice. It would be interesting to combine this interactive capability with the type
of assumptions employed by semi-supervised learning, and derive a general theory
that captures improvements in labeled data sample complexity both in terms of the
1/ǫ and of the capacity term.

More broadly, our framework can also be viewed as falling under the general area
of learning with data-dependent hypothesis spaces, and it would be interesting to
analyze this for settings such as learning with weakly-labeled data or additional
information from world knowledge as in [Gabrilovich and Markovitch 2005].
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A. DIRECTORY OF NOTATION

For convenience, we summarize here the notation used throughout the paper.

Notation Definition and interpretation

C concept class
D distribution over unlabeled examples
S a sample, assumed drawn i.i.d. from D

S for a sample S, S is the uniform distribution over S
c∗ the target function
err(f) the zero-one error of f , err(f) = Prx∼D[f(x) 6= c∗(x)]
êrr(f) the empirical zero-one error of f
χ compatibility notion, χ : C × X → [0, 1]
χ(f, D) the compatibility of f w.r.t. the underlying distribution D

χ(f, S) the compatibility of f w.r.t S
errunl(f) the unlabeled error rate of f , i.e., errunl(f) = 1 − χ(f, D)
êrrunl(f) the empirical unlabeled error rate of f ,

i.e., errunl(f) = 1 − χ(f, S)
CD,χ(τ) the subset of functions in C whose incompatibility

is at most τ ; i.e., CD,χ(τ) = {f ∈ C : errunl(f) ≤ τ}
CS,χ(τ) the subset of functions in C whose empirical incompatibility

is at most τ ; i.e., CS,χ(τ) = {f ∈ C : êrrunl(f) ≤ τ}
χ(C) the class of functions induced by both C and χ

i.e., χ(C) = {χf : f ∈ C} where we define χf (x) = χ(f, x)
C[m, D] the expected number of splits of m points (drawn i.i.d.)

from D using concepts in C
C[m, S] the expected number of splits of m points from S

using concepts in C
C[m, S] the number of different partitions of the first m points in S

using concepts in C
CD,χ(τ)[m, D] the expected number of splits of m points drawn i.i.d.

from D using concepts in CD,χ(τ)

CS,χ(τ)
[
m, S

]
the expected number of splits of m points drawn i.i.d.
from S using concepts in CS,χ(τ)

CS,χ(τ)[m, S] the number of different partitions of the first m points in S
using functions in CS,χ(τ)

B. UNIFORM CONVERGENCE OF UNLABELED ERROR RATES: A LOWER BOUND

As mentioned in Section 3.1.2, in order to achieve uniform convergence of unlabeled
error rates, we need to consider the complexity of the set χ(C) and not just the set
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C. In this section we present an explicit lower bound giving a class C, compatibility
notion χ and distribution D where this lack of uniform convergence of unlabeled
error rates indeed results in a substantially larger number of labeled examples
being needed for uniform convergence of labeled error rates. Specifically, we prove
the following theorem.

Theorem 22. There exists a class C, compatibility notion χ, distribution D and
target c∗ ∈ CD,χ(0) such that given only poly(VCdim(C), 1/ǫ) unlabeled examples
and o(VCdim(C)/ǫ) labeled examples, with high probability there exist hypotheses
in C of zero empirical labeled error and zero empirical unlabeled error and yet with
true error ≥ 2ǫ. On the other hand, CD,χ(ǫ)[m, D] = 1, so given sufficient unlabeled
examples as in Theorem 7, with high probability all hypotheses in C of zero empirical
unlabeled error have true error 0.

Proof. We will present a class C, a compatibility notion χ, and a distribution D
such that (a) the target function belongs to CD,χ(0), (b) VCdim(χ(C)) is arbitrarily
higher than VCdim(C), which itself is arbitrarily higher than ln(CD,χ(ǫ)[m, D]), and
(c) given only poly(VCdim(C), 1/ǫ) unlabeled examples and o(VCdim(C)/ǫ) labeled
examples, with high probability there exist hypotheses in C of zero empirical labeled
error and zero empirical unlabeled error and yet with high true error.

We first need a few preliminaries. Let A1, A2, . . . , AN be a collection of subsets
of (0, 1) with the following properties: (1) every point z ∈ (0, 1) belongs to half
of the sets Aj , and (2) with high probability, the union of a random collection of

o(
√

N) of the sets Aj does not cover all of (0, 1). For example, we can do this
by defining Aj to be the set of points in z ∈ (0, 1) such that bit ⌈j/2⌉ in the
binary representation of z is equal to j − 1 mod 2; that is, A1 = (0, 1/2), A2 =
[1/2, 1), A3 = (0, 1/4) ∪ [1/2, 3/4), A4 = [1/4, 1/2) ∪ [3/4, 1), and so on. Note that
this satisfies property (2) since with high probability a random collection of o(

√
N)

of the sets will not include two sets for the same bit ⌈j/2⌉.
Now, let C be the class of homogeneous linear separators in Rd (i.e., of the form

w · x > 0) where wi ∈ (−1, 1) for all i. We define D to be the distribution that
puts 1−4ǫ probability mass on the origin and spreads the remaining 4ǫ probability
mass equally over all points x such that all coordinates of x are equal to 0 except
for one xi ∈ (1, 2); for example, points such as (0, 0, 1.27, 0). This is much like
the typical example used for VC-dimension lower bounds, but with the non-origin
points spread out a bit. Finally, we define our compatibility notion as follows:

—If all wi ≤ 0 or if x is the origin, then χ(w, x) = 1.

—Else, let xk be the first non-zero coordinate of x (for x in the support of D
there is only one) and let wi be the first positive coordinate of w. So, xk ∈
(1 + (j − 1)/N, 1 + j/N ] for some 1 ≤ j ≤ N . If wi ∈ Aj then χ(w, x) = 0, else
χ(w, x) = 1.

In other words, if not all coordinates in w are negative, then a random non-origin
example x will index a random set Aj and thereby have a 50% chance of causing
w to make an unlabeled mistake.

The target function has all wi ≤ 0 (i.e., is all-negative over the support of D),
which is perfectly compatible. We now show that this C, χ, and D satisfy the
conditions of the theorem.
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Let us fix ǫ and d = VCdim(C). First, for any given polynomial p we can set

N sufficiently large so that p(VCdim(C), 1/ǫ) = o(
√

N). Now notice that in the
above example, any hypothesis that is not all negative over the support of D (and
therefore has some wi ∈ (0, 1)) has incompatibility exactly 2ǫ since there is 4ǫ
probability mass on examples x that are not the origin, and given that x is not the
origin, all sets Aj are equally likely (so, by property (1) of the sets Aj , there is a
50% chance that wi ∈ Aj). Thus, given sufficiently many unlabeled examples as in
Theorem 7, we can with high probability reduce C down to a single compatible way
of labeling the support of D. On the other hand, by property (2) of the sets Aj ,

if we have o(
√

N/ǫ) unlabeled examples, then with high probability there is some
point z ∈ (0, 1) which is not in the union of the sets Aj chosen so far. This means
that, by setting any desired positive weight to z, the set CS,χ(0) contains all ways of
labeling the d line segments in the support of D. Thus, given o(VCdim(C)/ǫ) labeled
examples, with high probability there remains a hypothesis of zero empirical labeled
error and zero empirical unlabeled error and yet with true error ≥ (4ǫ)/2 = 2ǫ.

C. HARDNESS OF COMPATIBILITY OPTIMIZATION

We show here that for the setting of Section 4.1, finding the hypothesis f ∈ C of
minimum empirical unlabeled error subject to having zero empirical labeled error is
NP-hard. Recall that here C is the class of disjunctions over {0, 1}d, and an example
x is compatible with hypothesis f if vars(x) ⊆ vars(f) or vars(x) ∩ vars(f) = φ.

Theorem 23. For the compatibility notion as given in Section 4.1, it is NP-hard
to find the disjunction of minimum empirical unlabeled error subject to having zero
empirical labeled error.

Proof. We reduce from vertex cover. Given an instance G = (V, E) of vertex
cover on n = d − 1 vertices, create the following instance of the learning problem.
Make one variable for each vertex in G plus one new variable d. For each edge
(i, j) ∈ E, create a labeled positive example with ones in positions i and j. For
each i ∈ V , create n2 identical unlabeled examples with ones in positions i and d.
Finally create a single labeled negative example with a single one in position d.

Any disjunction consistent with all the labeled examples must be a vertex cover
of G because it has to correctly classify all the positive labeled examples, and it
cannot contain variable d since otherwise it would make a mistake on the negative
example. Considering now the unlabeled error, each variable in the disjunction
creates n2 unlabeled mistakes on the examples with ones in positions i and d,
plus it makes some number (at most |E| < n2 total) of unlabeled mistakes on
the examples corresponding to edges in G. Therefore, compatibility is optimized
when the disjunction is as small as possible, and so the most-compatible disjunction
consistent with the labeled examples is exactly the minimum vertex cover of G.

D. STANDARD RESULTS

We state here a few known generalization bounds and concentration results used
in our proofs. We start with several classic results. See, e.g., [Devroye et al. 1996].

Theorem 24. Suppose that C is a set of functions from X to {0, 1} with finite
VC-dimension V ≥ 1. For any distribution D over X, any target function (not
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necessarily in C), and any ǫ, δ > 0, if we draw a sample from D of size

m(ǫ, δ, V ) =
64

ǫ2

(
2V ln

(
12

ǫ

)
+ ln

(
4

δ

))
,

then with probability at least 1 − δ, we have |err(h) − êrr(h)| ≤ ǫ for all f ∈ C.

Theorem 25. Suppose that C is a set of functions from X to {0, 1} with fi-
nite VC-dimension V ≥ 1. For any probability distribution D over X, any target
function c∗, we have

PrS

[
sup

f∈C,derr(f)=0

|err(f) − êrr(f)| ≥ ǫ

]
≤ 2C[2m, D]e−mǫ/2.

So, for any ǫ, δ > 0, if we draw a sample from D of size

m ≥ 2

ǫ

(
2 ln (C[2m, D]) + ln

(
2

δ

))
,

then with probability at least 1−δ, we have that all functions with êrr(f) = 0 satisfy
err(f) ≤ ǫ.

Theorem 26. Suppose that C is a set of functions from X to {0, 1} with fi-
nite VC-dimension V ≥ 1. For any probability distribution D over X, any target
function c∗, we have

PrS

[
sup
f∈C

(err(f) − êrr(f)) ≥ ǫ

]
≤ 4C[2m, D]e−mǫ2/8.

So, for any ǫ, δ > 0, if we draw from D a sample satisfying

m ≥ 8

ǫ2

(
ln (C[m, D]) + ln

(
4

δ

))
,

then with probability at least 1 − δ all functions f satisfy err(f) − êrr(f) ≤ ǫ.

We now state a result from [Boucheron et al. 2000]. Let C[S] denote the number
of ways of labeling set S using functions in C.

Theorem 27. Suppose that C is a set of functions from X to {0, 1}. Let D be
an arbitrary, but fixed probability distribution over X. For any target function and
for any i.i.d. sample of S of size m from D, let fm be the function that minimizes
the empirical error over S. Then for any δ > 0, the probability that

err(fm) ≤ êrr(fm) +

√
6 lnC[S]

m
+ 4

√
ln(2/δ)

m

is greater than 1 − δ.

In fact the above statement is true even if in the right-hand side we use C[S′]
instead of C[S] where S′ is another i.i.d sample of size m drawn from D. Using the
notation introduced in section 3.1.3, since |S| = m, we can also use C[m, S] instead
of C[S] in the above statement.
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Theorem 28. For any class of functions we have:

PrS [ln(C[S]) ≥ E[ln(C[S])] + α] ≤ exp

[
− α2

2E[ln(C[S])] + 2α/3

]
. (3)

Also,

E[ln C[S]] ≤ lnE[C[S]] ≤ (e − 1)E[ln C[S]]. (4)

E. ADDITIONAL PROOFS

With the notations from Appendix D and in section 3.1.3 we have:

Theorem 29. For any class of functions we have:

PrS [ln(C[m, S]) ≥ 2 ln C[m, D] + α] ≤ e−α. (5)

Proof. Inequality (3) implies that:

PrS [ln(C[S]) ≥ 2E[ln(C[S])] + α] ≤ exp

[
− (α + E[ln(C[S])])2

2E[ln(C[S])] + 2(E[ln(C[S])] + α)/3

]
.

Since (α+a)2

2a+2(a+α)/3 ≥ α for any a ≥ 0 we get

PrS [ln(C[S]) ≥ 2E[ln(C[S])] + α] ≤ e−α.

Combining this together with the following fact (implied by Inequality (4))

PrS [ln(C[S]) ≥ 2 lnE[C[S]] + α] ≤ PrS [ln(C[S]) ≥ 2E[ln(C[S])] + α],

we get

PrS [ln(C[S]) ≥ 2 lnE[C[S]] + α] ≤ e−α.

Using the facts that for S of size m, C[m, S] = C[S] and ES [C[m, S]] = C[m, D], we
get the desired result.

We finally prove here a lemma used in Section 3.2.2.

Lemma 16. Consider τ < 1
8 . Let Cτ =

{
f, f

}
be a subset of C containing two

opposite hypotheses with the property that one of them is τ -close to c∗. Then,
ml > 6 log( 1

τ )
(

1
δ

)
labeled examples are sufficient so that with probability ≥ 1 − δ,

the concept in Cτ that is τ -close to c∗ in fact has lower empirical error.

Proof. We need to show that if ml > 6 log 1
τ

(
1
δ

)
, then

⌊ml

2
⌋∑

k=0

(
ml

k

)
τ (ml−k) (1 − τ)k ≤ δ.

Since τ < 1
8 we have:

⌊ml

2
⌋∑

k=0

(
ml

k

)
τ (ml−k) (1 − τ)

k ≤
⌊ml

2
⌋∑

k=0

(
ml

k

)
τ (ml−k) = τ⌊ml

2
⌋
⌊ml

2
⌋∑

k=0

(
ml

k

)
τ⌈ ml

2
⌉−k

and so S ≤ (
√

τ · 2)
ml . For τ < 1

8 and ml > 6
log2 ( 1

δ )
log2 ( 1

τ )
= 6 log( 1

τ )
(

1
δ

)
it’s easy to

see that (
√

τ · 2)
ml < δ, which implies the desired result.
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