
Trading off Mistakes and Don’t-Know Predictions

Amin Sayedi∗

Tepper School of Business
CMU

Pittsburgh, PA 15213
ssayedir@cmu.edu

Morteza Zadimoghaddam†

CSAIL
MIT

Cambridge, MA 02139
morteza@mit.edu

Avrim Blum ‡

Department of Computer Science
CMU

Pittsburgh, PA 15213
avrim@cs.cmu.edu

Abstract

We discuss an online learning framework in which the agent isallowed to say “I
don’t know” as well as making incorrect predictions on givenexamples. We an-
alyze the trade off between saying “I don’t know” and making mistakes. If the
number of don’t-know predictions is required to be zero, themodel reduces to
the well-known mistake-bound model introduced by Littlestone [Lit88]. On the
other hand, if no mistakes are allowed, the model reduces to KWIK framework
introduced by Li et. al. [LLW08]. We propose a general, though inefficient, algo-
rithm for general finite concept classes that minimizes the number of don’t-know
predictions subject to a given bound on the number of allowedmistakes. We then
present specific polynomial-time algorithms for the concept classes of monotone
disjunctions and linear separators with a margin.

1 Introduction

Motivated by [KS02, KK99] among others, Li, Littman and Walsh [LLW08] introduced the KWIK
framework for online learning, standing forknows what it knows. Roughly stated, in the KWIK
model, the learning algorithm is required to make only accurate predictions, although it can opt
out of predictions by saying “I don’t know”(⊥). After predicting (or answering⊥) it is then told
the correct answer. The algorithm is not allowed to make any mistakes; still, it learns from those
examples on which it answers⊥. The goal of the algorithm is to minimize the number of examples
on which it answers⊥. Several aspects of the model are discussed in [LLW08], and there are many
other papers, including [WSDL, DLL09, SL08], using the framework. It is worth mentioning that
the idea of forcing the algorithm to say “I don’t know” instead of making a mistake has also appeared
in earlier work such as [RS88], and referred to asreliable learning.

Generally, it is highly desirable to have an algorithm that learns a concept in the KWIK framework
using a few, or even polynomial, number of⊥s. But unfortunately, for many concepts, no such
algorithm exists. In fact, it turns out that even for many basic classes which are very easy to learn in
the Mistake-bound model [Lit88], e.g. the class of singletons or disjunctions, the KWIK algorithm
needs to say⊥ exponentially many times. The purpose of our paper is to relax the assumption of
not making any mistakes, by allowing a few mistakes, to get much better bounds on the number of
⊥s. Or, in the other direction, our aim is to produce algorithms that can make substantially fewer
mistakes than in the standard Mistake-Bound model, by trading off some of those for (presumably
less costly) don’t-know predictions.

In [LLW08], the authors show, through a non-polynomial timeenumeration algorithm, that a finite
classH of functions can be learned in the KWIK framework with at most|H | − 1 number of⊥s.

∗Part of this work was done when the author was an intern in Microsoft Research New England, MA.
†Part of this work was done when the author was an intern in Microsoft Research Cambridge, UK.
‡This work was supported in part by NSF grant CCF-0830540.

1

We show that if only one mistake is allowed, that number can bereduced to
√

2|H |. Furthermore,
we show that the problem is equivalent to the famous egg-dropping puzzle, defined formally in
Section 2, hence getting bound(k + 1)H

1
k+1 whenk mistakes are allowed. Our algorithm does not

in general run in polynomial time in the description length of the target function since its running
time depends on|H |; however, we propose polynomial versions of our algorithm for two important
classes: monotone disjunctions and linear separators.

Allowing the algorithm to make mistakes in the KWIK model is equivalent to allowing the algorithm
to say “I don’t know” in the Mistake-bound model introduced in [Lit88]. In fact, one way of looking
at the algorithms presented in section 3 is that we want to decrease the number of mistakes in
Mistake-bound model by allowing the algorithm to say⊥. The rest of the paper is structured as
follows. First we define the model and describe the limits of KWIK model. Then in section 2, we
describe how would the bounds on the number of⊥s change if we allow a few mistakes in KWIK
model. Finally, we give two polynomial algorithms for important classes, Monotone Disjunctions
and Linear Separators with a margin, in Section 3.

1.1 Model

We want to learn a concept classH consisting of functionsf : X → {+,−}. In each stage, the
algorithm is given an examplex ∈ X and is asked to predict the target functionh∗(x), where we
assumeh∗ ∈ H . The algorithm might answer,+, − or ⊥ representing “I don’t know”. After the
prediction, even if it is⊥, the value ofh∗(x) is revealed to the algorithm. For a given integerk, we
want to design an algorithm such that for any sequence of examples, the number of timesM that it
makes a mistake is not more thank, and the number of timesI that it answers⊥ is minimized.

For example, the special case ofk = 0 is equivalent to the KWIK framework. Also, ifk ≥ log(|H |),
the majority vote algorithm can learn the class with no⊥ responses, i.e.I = 0.

Since we want to derive worst-case bounds, we assume that thesequence of the examples, as well as
the target functionh∗ are selected by an adversary. The adversary sends the examples one by one.
For each examplex ∈ X , our algorithm decides what to answer; then, the adversary revealsh∗(x).

1.2 The KWIK Model

Although the idea of the KWIK framework is quite useful, there are very few problems that can be
solved effectively in this framework. The following example demonstrates how an easy problem in
the Mistake-bound model can turn into a hard problem in the KWIK model.

Example 1 Suppose thatH is the class of singletons. In other words, forhi ∈ H , wherehi :
{0, 1}n → {−, +}, we havehi(x) = + if x is the binary representation ofi, andhi(x) = −
otherwise. ClassH can be learned in Mistake-bound model with mistake bound of only 1. The
algorithm simply predicts− on all examples until it makes a mistake. As soon as the algorithm
makes a mistake, it can easily figure out what the target function is.

However, classH needs exponentially many⊥’s in the KWIK framework to be learned. Since the
algorithm does not know the answer until it has seen its first positive example, it must keep answering
⊥ on all examples that it has not seen yet. Therefore, in the worst case, it answers⊥ and finds out
that the answer is− on all the first2n − 1 examples that it sees.

The situation in Example 1 happens for many other classes of functions, e.g. conjunctions or dis-
junctions, as well.

Next, we review an algorithm (called theenumeration algorithmin [LLW08]) for solving problems
in the KWIK framework. This algorithm is the main ingredientof most of the algorithms proposed
in [LLW08].

Algorithm 1 Enumeration

The algorithm looks at all the functions in classH ; if they all agree on the label of the current
examplex ∈ X , the algorithm outputs that label, otherwise the algorithmoutputs⊥. Upon receiving
the true label ofx, the algorithm then removes fromH those functionsh that answered incorrectly

2

on x and continues to the next example. Note that at least one function gets removed fromH each
time that algorithm answers⊥; therefore, the algorithm finds the target function with at most|H |−1
number of⊥’s.

2 The KWIK Model with Mistakes

Example 1 shows how hard it can be to learn in the KWIK model. Toaddress this, we give the
following relaxation of the framework that allows conceptsto be learned much more effectively and
at the same time preserves the original motivation of the KWIK model—it’s better saying “I don’t
know” rather than making a mistake.

Specifically, we allow the algorithm to make at mostk mistakes. Even for very small values ofk,
this can allow us to get much better bounds on the number of times that the algorithm answers⊥.
For example, by lettingk = 1, i.e. allowing one mistake, the number of⊥’s decreases from2n − 1
to 0 for the class of singletons. Of course, this case is not so interesting sincek = 1 is the mistake
bound for the class. Our main interest is the case thatk > 0 and yet is much smaller than the number
of mistakes needed to learn in the pure Mistake Bound model.

We saw, in Algorithm 1, how to learn a concept classH with no mistakes and withO(|H |) number
of ⊥’s. In many cases,O(|H |) is tight; in fact, if for every subsetS ⊆ H with |S| > 1 there exists
somex ∈ X for which |{h ∈ S|h(x) = +}| ∈ {1, |S| − 1}, then the bound is tight. This condition,
for example, is satisfied by the class of intervals: that is,H = {[0, a] : a ∈ {0, 1, 2, . . . , 2n − 1}}.

However, if we allow the algorithm to make one mistake, we show that the number of⊥’s can be
reduced toO(

√

|H |). In general, ifk mistakes are allowed, there is an algorithm that can learn any
classH with at most(k + 1)|H |1/k+1 number of⊥’s. The algorithm is similar to the one for the
classic “egg game” puzzle (See [GF]). First suppose thatk = 1. We make a pool of all functions
in H , initially consisting of|H | candidates. Whenever an example arrives, we see how many of the
candidates label it+, and how many label it−. If the population of the minority is<

√

|H |, we
predict the label that the majority gives on the example; however, if the population of the minority
is≥

√

|H |, we say⊥. Those functions that predict incorrectly on an example areremoved from the
pool in each step; so the pool is just the current version space. If we make a mistake in some step,
the size of the version space will reduce to<

√

|H |. Hence, using Algorithm 1, we can complete
the learning with at most

√

|H | number of additional⊥’s after our first mistake. Furthermore, note
that before making any mistake, we remove at least

√

|H | of the functions from the pool each time
we answer⊥. Therefore, the total number of⊥’s cannot exceed2

√

|H |. This technique can be
generalized fork mistakes, but first we mention a connection between this problem and the classic
“egg game” puzzle.

Example 2 Egg Game Puzzle

You are given2 identical eggs, and you have access to an-story building. The eggs can be very hard
or very fragile or anywhere in between: they may break if dropped from the first floor or may not
break even if dropped from then-th floor. You need to figure out the highest floor from which an egg
can be dropped without breaking. The question is how many drops you need to make. Note that you
can break only two eggs in the process.

The answer to this puzzle is
√

2n up to an additive constant. In fact, a thorough analysis of the puzzle
when there arek eggs available, instead of just two eggs, is given in [GF]. The ⊥ minimization
problem whenk mistakes are allowed is clearly related to the egg game puzzle when the building
has|H | floors and there arek + 1 eggs available. As a result, with a slightly smarter algorithm that
adjusts the threshold

√

|H | recursively each time an example arrives, we can decrease the number
of ⊥s from2

√

|H | to
√

2|H |.

Algorithm 2 Learning in the KWIK Model with at most k Mistakes

Lets = |H | k
k+1 , and letP denote the current version space: the pool of all functions that might still

be the target. InitiallyP = H , but during the learning process, we remove functions fromP . For
each example that arrives, examine how many functions inP label it + and how many label it−. If

3

the minority population is> s, we answer⊥, otherwise, we answer the majority prediction. At the
end of each step, we remove the functions that made a mistake in the last step fromP . Whenever we

make a mistake, we updates = |P | k−i
k+1−i , wherei is the number of mistakes we have made so far.

Proposition 1 Algorithm 2 learns a concept classH with at mostk mistakes and(k + 1)|H |1/k+1

“I don’t know”s.

Proof: After the first mistake, the size of the pool reduces to< |H | k
k+1 . Hence, using induction, we

can argue that after the first mistake, the learning can be done withk−1 mistakes andk(|H | k
k+1)1/k

“I don’t know”s. There can exist at most|H|
|H|

k
k+1

= |H |1/k+1 number of⊥’s before the first mistake.

Therefore, the total number of⊥’s will not exceed

|H |1/k+1 + k(|H | k
k+1)1/k = (k + 1)|H |1/k+1.

2

Before moving to the next section, we should mention that Algorithm 2 is not computationally
efficient. Particularly, ifH contains exponentially many functions in the natural parameters of the
problem, which is often the case, the running time of Algorithm 2 becomes exponential. In the next
section, we give polynomial-time algorithms for two important concept classes.

3 The Mistake Bound Model with “I don’t know” predictions

We can look at the problem from another perspective: insteadof adding mistakes to the KWIK
framework, we can add “I don’t know” to the Mistake Bound model. In many cases, we prefer our
algorithm saying “I don’t know” rather than making a mistake. Therefore, in this section, we try to
improve over optimal mistake bounds by allowing the algorithm to use a modest number of⊥’s, and
in general to consider the tradeoff between the number of mistakes and the number of⊥’s. Note that
an algorithm can always replace its⊥’s with random+’s and−’s, therefore, we must expect that
decreasing the number of mistakes by one requires increasing the number of⊥’s by at least one.

3.1 Monotone Disjunctions

We start with the concept class ofMonotone Disjunctions. A monotone disjunction is a disjunction
in which no literal appears negated, that is, a function of the form

f(x1, . . . , xn) = xi1 ∨ xi2 ∨ . . . ∨ xik
.

Each example is a boolean vector of lengthn, and an example is labeled+ if and only if at least
one of the variables that belong to the target function is setto 1 in the example. We know that this
class can be learned with at mostn mistakes in Mistake-bound Model [Lit88] wheren is the total
number of variables. This class is particularly interesting because results derived about monotone
disjunctions can be applied to other classes as well, such asgeneral disjunctions, conjunctions, and
k-DNF formulas. We are interested in decreasing the number ofmistakes at the cost of having
(hopefully few)⊥’s.

First, let’s not worry about the running time and see how wellAlgorithm 2 performs here. We have
|H | = 2n; if we let k = n/i, the bound that we get on the number of⊥’s will be ≃ n2i

i ; this is not
bad, especially, for the case of smalli, e.g.i = 2, 3. In fact, for the case ofi = 2, we are trading off
each mistake for four “I don’t know”s. But unfortunately, Algorithm 2 cannot do this in polynomial
time. Our next goal is to design an algorithm which runs in polynomial time and guarantees the
same good bounds on the number of⊥’s.

Algorithm 3 Learning Monotone Disjunctions with at most n/2 Mistakes

Let P , P+ andP− be three pools of variables. Initially,P = {x1, . . . , xn} andP+ = P− = φ.
During the process of learning, the variables will be moved from P to P− or P+. The poolP+

is the set of variables that we know must exist in the target function; the poolP− is the set of the

4

variables that we know cannot exist in the target function. The learning process finishes by the time
thatP gets empty.

In each step, an examplex arrives. LetS ⊆ {x1, . . . , xn} be the set representation ofx, i.e.,xi ∈ S
if and only ifx[i] = 1. If S ∩ P+ 6= φ, we can say for sure that the example is+. If S ⊆ P−,
we can say for sure that the example is negative. Otherwise, it must be the case thatS ∩ P 6= φ,
and we cannot be sure about our prediction. Here, if|S ∩ P | ≥ 2 we answer+, otherwise, i.e. if
|S ∩ P | = 1, we answer⊥.

If we make a mistake, we moveS ∩ P to P−. Every time we answer⊥, we moveS ∩ P to P+ or
P− depending on the correct label of the example.

Proposition 2 Algorithm 3 learns the class of Monotone Disjunctions with at mostM ≤ n/2 mis-
takes andn − 2M number of⊥s.

Proof: If we make a mistake, it must be the case that the answer had been negative while we
answered positive; for this to happen, we must have|S ∩ P | ≥ 2. So, after a mistake, we can move
S ∩ P to P−. The size ofP , therefore, decreases by at least2.

Every time we say⊥, it must be the case that|S ∩ P | = 1. Therefore, the label of the example is
positive iff S ∩ P is contained in the target function, and so the algorithm correctly movesS ∩ P to
P+ or P−. Additionally, the size ofP decreases by at least one on each⊥ prediction. 2

Algorithm 3, although very simple, has an interesting property. If in an online learning setting,
saying⊥ is cheaper than making a mistake, Algorithm 3 strictly dominates the best algorithm in
Mistake-bound model. Note that the sum of its⊥s and its mistakes is never more thann. More
precisely, if the cost of making a mistake is1 and the cost of saying⊥ is < 1, the worst-case cost of
this algorithm is strictly smaller thann.

Next we present an algorithm for decreasing the number of mistakes ton/3.

Algorithm 4 Learning Monotone Disjunctions with at most n/3 Mistakes

Let P , P+, P− be defined as in Algorithm 3. We have another poolP ′ which consists of pairs of
variables such that for each pair we know at least one of the variables belongs to the target function.
As before, the pools form a partition over the set of all variables. In addition, a variable can belong
to at most one pair inP ′. Thus, any given variable is either in a single pair ofP ′ or else in exactly
one of the setsP , P+, or P−.

Whenever an examplex arrives we do the following. LetS ⊆ {x1, . . . , xn} be the set representation
of x, i.e. xi ∈ S if and only ifx[i] = 1. If S ∩ P+ 6= φ, we answer+. If S ⊆ P−, we answer−.
Also, ifS contains both members of a pair inP ′, we can say that the label is+.

If none of the above cases happen, we cannot be sure about our prediction. In this case, if|S∩P | ≥
3, we answer+. If |S ∩ (P ∪P ′)| ≥ 2 and|S ∩P ′| ≥ 1 we again answer+. Otherwise, we answer
⊥. Description of how the algorithm moves variables between sets upon receipt of the correct label
is given in the proof below.

Proposition 3 Algorithm 4 learns the class of Monotone Disjunction with atmostM ≤ n/3 mistake
and3n/2 − 3M number of⊥’s.

Proof: If |S ∩ P | ≥ 3 and we make a mistake onS, then the size ofP will be reduced by at least3,
and the size ofP− will increase by at least3. If |S ∩ (P ∪ P ′)| ≥ 2 and|S ∩ P ′| ≥ 1 and we make
a mistake onS, then at least two variables will be moved from(P ′ ∪ P) to P−, and at least one
variable will be moved fromP ′ to P+ (since whenever a variable moves fromP ′ to P−, the other
variable in its pair should move toP+). Therefore, the size ofP− ∪ P+ will increase by at least3.
SinceP− ∪ P+ ≤ n, we will not make more thann/3 mistakes.

There are three cases in which we may answer⊥. If |S ∩ P | = 0 and|S ∩ P ′| = 1, we answer⊥;
however, after knowing the correct label,S∩P ′ will be moved toP+ or P−. Therefore, the number
of “I don’t know”s of this type is bounded byn − 3M . If |S ∩ P | = 1 and|S ∩ P ′| = 0, again,
after knowing the correct label,S ∩ P will be moved toP+ or P−, so the same bound applies. If
|S ∩P | = 2 and|S ∩P ′| = 0, the correct label might be+ or−. If it is negative, then we can move

5

S ∩ P to P− and use the same bound as before. If it is positive, the two variables inS ∩ P will be
moved toP ′ as a pair. Note that there can be at mostn/2 of such⊥’s; therefore, the total number
of ⊥’s cannot exceedn/2 + n − 3M . 2

3.2 Learning Linear Separator Functions

In this section, we analyze how we can use⊥ predictions to decrease the number of mistakes for
efficiently learning linear separators with marginγ. The high level idea is to use the basic approach
of the generic algorithm in Section 2 for finiteH , but rather than explicitly enumerating over func-
tions, to instead efficiently estimate the measure of the functions in the version space that predict+
versus those that predict− and to make prediction decisions based on the result.

Setting: We assume a sequenceS of n d-dimensional examples arrive one by one, and that these
examples are linearly separable: there exists a unit-length separator vectorw∗ such thatw∗ ·x > 0 if
and only ifx is a positive example. Defineγ to beminx∈S

|w∗·x|
|x| . For convenience, we will assume

that all examples have unit length.

Below, we show how to formulate the problem with a Linear Program to bound the number of
mistakes using some “I don’t know” answers.

Assume thatn examplesx1, x2, · · · , xn are in the sequenceS. These points arrive one at a time and
we have to answer when a point arrives. The objective is to make a small number of mistakes and
some “I don’t know” answers to find a separation vectorw such thatw · xi is positive if and only if
xi is a+ point. We can formulate the following linear program using this instance (this sequence of
points).

w · xi > 0 If xi is a+ instance, and

w · xi ≤ 0 If xi is a− instance

Note that there ared variables which are the coordinates of vectorw, and there aren linear con-
straints one per input point. Clearly we do not know which points are the+ points, so we can not
write this linear program explicitly and solve it. But the points arrive one by one and the constraints
of this program are revealed over the time. Note that if a vector w is a feasible solution of the above
linear program, any positive multiple ofw is also a feasible solution. In order to make the analysis
easier and bound the core (the set of feasible solutions of the linear program), we can assume that
the coordinates of the vectorw are always in range[−1 − γ/

√
d, 1 + γ/

√
d]. We can add2d linear

constraints to make sure that the coordinates do not violatethese properties. We will see later why
we are choosing the bounds to be−(1 + γ/

√
d) and1 + γ/

√
d.

Now assume that we are at the beginning and no point has arrived. So we do not have any of the
n constraints related to points. The core of the linear program is the set of vectorsw in [−1 −
γ/

√
d, 1 + γ/

√
d]d at the beginning. So we have a core (feasible set) of volume(2 + 2γ/

√
d)d at

first. For now assume that we can not use the “I don’t know” answers. We show how to use them
later. The first point arrives. There are two possibilities for this point. It is either a+ point or a−
point. If we add any of these two constraints to the linear program, we obtain a more restricted linear
program with a core of lesser volume. So we obtain one LP for each of these two possibilities, and
the sum of the volumes of the cores of these two linear programs is equal to the volume of the core
of our current linear program. We will show how to compute these volumes, but for now assume
that they are computed. If the volume of the linear program for the+ case is larger than the− case,
we answer+. If our answer is true, we are fine, and we have passed the querywith no mistake.
Otherwise we have made a mistake, but the volume of the core ofour linear program is halved. We
do the same for the− case as well, i.e. we answer− when the larger volume is for− case.

Now there are two main issues we have to deal with. First of all, we have to find a way to compute
the volume of the core of a linear program. Secondly, we have to find a way to bound the number of
mistakes.

6

In fact computing the volume of a linear program is#P -hard [DF88]. There exists a randomized
polynomial time algorithm that approximates the volume of the core of a linear program with(1+ǫ)
approximation [DFK91], i.e. the relative error isǫ. The running time of this algorithm is polynomial
in n, d, and1/ǫ. We can use this algorithm to get estimates of the volumes of the linear programs
we need. But note that we really do not need to know the volumesof these linear programs. We
just need to know whether the volume of the linear program of the+ case is larger or the− case
is larger or if they are approximately equal. Lovasz and Vempala present a faster polynomial time
algorithm for sampling a uniformly random point in the core of a linear program in [LV06]. One
way to estimate the relative volumes of both sides is to sample a uniformly random point from the
core of our current linear program (without taking into account the new arrived point), and see if the
sampled point is in the+ side or the− side. If we sample a sufficiently large number of points (here
2 log(n)/ǫ2 is large enough), and if the majority of them are in the+ (−) side, we can say that the
volume of the linear program for+ (−) case is at least a12 − ǫ fraction of our current linear program
with high probability. So we can answer based on the majorityof these sampled points, and if we
make a mistake, we know that the volume of the core of the linear program is multiplied by at most
1 − (1

2 − ǫ) = 1
2 + ǫ.

Suppose we have already processed the firstl examples and now thel + 1st example arrives. We
have the linear program with the firstl constraints. We sample points from the core of this linear
program, and based on the majority of them we answer+ or − for this new example. Using the
following Theorem, we can bound the number of mistakes.

Lemma 4 With high probability (1− 1
nΩ(1)), for every mistake we make in our algorithm, the volume

of the core of the linear program decreases by a factor of(1
2 + ǫ).

Proof: Without loss of generality, assume that we answered+, but the correct answer was−. So we
sampled2 logn/ǫ2 functions uniformly at random from the core, and the majority of them were pre-
dicting positive. If less than a12 − ǫ fraction of the volume was indeed predicting positive, eachsam-
pled point would be from the positive-predicting part with probability less than12−ǫ. So the expected
number of positive sampled points would be less than(1

2 − ǫ)(2 logn/ǫ2) = (log n/ǫ2−2 logn/ǫ).
Therefore, by Chernoff bounds, the chance of the sample having a majority of positive-predicting
functions would be at moste−(2 log n/ǫ)2/2(log n/ǫ2−2 log n/ǫ) = e−2 log n/(1−ǫ) = n−2/(1−ǫ). Since
there aren examples arriving, we can use the union bound to bound the probability of failure on any
of these rounds: the probability that the volume of the core of our linear program is not multiplied by
at most12 + ǫ on any mistakes is at mostn×n−2/(1−ǫ) = 1

n1/(1−ǫ) . Therefore with high probability
(at least1 − 1

n1/(1−ǫ)), for every mistake we make, the volume of the core is multiplied by at most
1
2 + ǫ. 2

Now we show that the core of the linear program after adding all n constraints (the constraints of
the variables) should have a decent volume in terms ofγ.

Lemma 5 If there is a unit-length separator vectorw∗ with minx∈S
w∗·x
|x| = γ, the core of the

complete linear program after adding alln constraints of the points has volume at least(γ/
√

d)d.

Proof: Clearlyw∗ is in the core of our linear program. Consider a vectorw′ whose all coordinates
are in range(−γ/

√
d, γ/

√
d). We claim that(w∗ + w′) is a correct separator. Consider a pointxi.

Without loss of generality assume that it is a+ point. Sow∗ ·xi is at leastγ · |xi|. We also know that
|w′ · xi| is at least−|w′| · |xi|. Since all itsd coordinates are in range(−γ/

√
d, γ/

√
d), we can say

that|w′| is less thanγ. So(w∗+w′) ·xi = w∗ ·xi +w′ ·xi > γ|xi|−γ|xi| is positive. We also know
that the coordinates ofw∗ +w′ are in range(−1−γ/

√
d, 1+γ/

√
d) becausew∗ has unit length (so

all its coordinates are between−1 and1), and the coordinates ofw′ are in range(−γ/
√

d, γ/
√

d).
Therefore all vectors of formw∗ + w′ are in the core. We conclude that the volume of the core is at
least(2γ/

√
d)d. 2

Lemmas 4 and 5 give us the following folklore theorem.

Theorem 6 The total number of mistakes in the above algorithm is not more than

log2/(1+ǫ)
(2+2γ/

√
d)d

(2γ/
√

d)d
= log2/(1+ǫ)

(1+γ/
√

d)d

(γ/
√

d)d
= O(d(log d + log 1/γ)).

7

Proof: The proof easily follows from Lemmas 4 and 5.2

Now we make use of the “I don’t know” answers to reduce the number of mistakes. Assume that we
do not want to make more thank mistakes. DefineY1 to be(2+2γ/

√
d)d which is the volume of the

core at the beginning before adding any of the constraints ofthe points. DefineY2 to be(2γ/
√

d)d

which is a lower bound for the volume of the core after adding all the constraints of the points. Let
R be the ratioY2

Y1
. In the above algorithm, we do not make more thanlog2/(1+ǫ) R mistakes.

We want to use “I don’t know” answers to reduce this number of mistakes. DefineC to beR1/k.
Let V, V1, andV2 be the volumes of the cores of the current linear program, thelinear program with
the additional constraint that the new point is a+ point, and the linear program with the additional
constraint that the new point is a− point respectively. IfV1/V is at most1/C, we can say that the
new point is a− point. In this case, even if we make a mistake the volume of thecore is divided
by at leastC, and by definition ofC, this can not happen more thanlogC R = k times. Similarly,
if V2/V is at most1/C, we can say the new point is a+ point. If V1/V andV2/V are both greater
than1/C, we answer “I don’t know”, and we know that the volume of the core is multiplied by at
most1 − 1/C.

Since we just need to estimate the ratiosV1/V andV2/V , and in fact we want to see if any of them
is smaller than1/C or not, we can simply sample points from the core of our current linear program.
But we have to sample at leastO(C log n) points to be able to have reasonable estimates with high
probability for these two specific tests (to see ifV1/V or V2/V is at least1/C). For example if we
sample16C log n points, and there are at most8 logn + points among them, we can say thatV1/V

is at most1/C with probability at least1 − e−64 log2 n/32 log n = 1 − 1
n2 . But if there are at least

8 logn + points, and8 logn − points among the samples, we can say that bothV1/V andV2/V are
at least 1

8C with high probability using Chernoff bounds.

If we make a mistake in this algorithm, the volume of the core is divided by at leastC, so we do not
make more thank mistakes. We also know that for each “I don’t know” answer thevolume of the
core is multiplied by at most1 − 1

8C , so after8C “I don’t know” answers the volume of the core is
multiplied by at most1/e. Therefore there are at mostO(C log R) “I don’t know” answers. This
completes the proof of the following theorem.

Theorem 7 For any k > 0, we can learn a linear separator of marginγ in ℜd using the above
algorithm with k mistakes andO(R1/k × log R) “I don’t know” answers, whereR is equal to
(1+γ/

√
d)d

(γ/
√

d)d
.

4 Conclusion

We have discussed a learning framework that combines the elements of the KWIK and mistake-
bound models. From one perspective, we are allowing the algorithm to make mistakes in the KWIK
model. We showed, using a version-space algorithm and through a reduction to the egg-game puzzle,
that allowing a few mistakes in the KWIK model can significantly decrease the number of don’t-
know predictions.

From another point of view, we are letting the algorithm say “I don’t know” in the mistake-bound
model. This can be particularly useful if don’t-know predictions are cheaper than mistakes and
we can trade off some number of mistakes for a not-too-much-larger number of “I don’t know”s.
We gave polynomial-time algorithms that effectively reduce the number of mistakes in the mistake-
bound model using don’t-know predictions for two concept classes: monotone disjunctions and
linear separators with a margin.

Acknowledgement

The authors are very grateful to Adam Kalai, Sham Kakade and Nina Balcan as well as anonymous
reviewers for helpful discussions and comments.

8

References

[DF88] Martin E. Dyer and Alan M. Frieze. On the complexity ofcomputing the volume of a
polyhedron.SIAM J. Comput., 17(5):967–974, 1988.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm
for approximating the volume of convex bodies.J. ACM, 38(1):1–17, 1991.

[DLL09] C. Diuk, L. Li, and B.R. Leffler. The adaptive k-meteorologists problem and its appli-
cation to structure learning and feature selection in reinforcement learning. InProceed-
ings of the 26th Annual International Conference on MachineLearning, pages 249–256.
ACM, 2009.

[GF] Gasarch and Fletcher. The Egg Game.www.cs.umd.edu/~gasarch/BLOGPAPERS/egg.pdf.

[KK99] M. Kearns and D. Koller. Efficient reinforcement learning in factored MDPs. InInter-
national Joint Conference on Artificial Intelligence, volume 16, pages 740–747. Citeseer,
1999.

[KS02] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.Ma-
chine Learning, 49(2):209–232, 2002.

[Lit88] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm.Machine learning, 2(4):285–318, 1988.

[LLW08] L. Li, M.L. Littman, and T.J. Walsh. Knows what it knows: a framework for self-aware
learning. InProceedings of the 25th international conference on Machine learning, pages
568–575. ACM, 2008.

[LV06] László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM J. Comput.,
35(4):985–1005, 2006.

[RS88] R.L. Rivest and R. Sloan. Learning complicated concepts reliably and usefully. InPro-
ceedings AAAI-88, pages 635–639, 1988.

[SL08] A.L. Strehl and M.L. Littman. Online linear regression and its application to model-based
reinforcement learning.Advances in Neural Information Processing Systems, 20, 2008.

[WSDL] T.J. Walsh, I. Szita, C. Diuk, and M.L. Littman. Exploring compact reinforcement-
learning representations with linear regression. InProceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence (UAI-09), 2009b.

9

