Trading off Mistakes and Don’t-Know Predictions

Amin Sayedi* Morteza Zadimoghaddamf Avrim Blum ¥
Tepper School of Business CSAIL Department of Computer Science
CmMU MIT CMU
Pittsburgh, PA 15213 Cambridge, MA 02139 Pittsburgh, PA 15213
ssayedi r @mu. edu norteza@rit. edu avri mas. cnu. edu
Abstract

We discuss an online learning framework in which the agentlisved to say “I
don’t know” as well as making incorrect predictions on givexamples. We an-
alyze the trade off between saying “I don’t know” and makingstakes. If the
number of don’t-know predictions is required to be zero, thedel reduces to
the well-known mistake-bound model introduced by Litttes [Lit88]. On the
other hand, if no mistakes are allowed, the model reducesWtkkframework
introduced by Li et. al. [LLWO08]. We propose a general, thougefficient, algo-
rithm for general finite concept classes that minimizes talmer of don’t-know
predictions subject to a given bound on the number of allomesdakes. We then
present specific polynomial-time algorithms for the conia#asses of monotone
disjunctions and linear separators with a margin.

1 Introduction

Motivated by [KS02, KK99] among others, Li, Littman and Wa[&LWO08] introduced the KWIK
framework for online learning, standing f&nows what it knowsRoughly stated, in the KWIK
model, the learning algorithm is required to make only aateipredictions, although it can opt
out of predictions by saying “I don’'t know’(). After predicting (or answering.) it is then told
the correct answer. The algorithm is not allowed to make arsakes; still, it learns from those
examples on which it answets. The goal of the algorithm is to minimize the number of exagspl
on which it answerd. . Several aspects of the model are discussed in [LLWO08], lagick tare many
other papers, including [WSDL, DLL09, SL08], using the frawork. It is worth mentioning that
the idea of forcing the algorithm to say “l don’t know” instkaf making a mistake has also appeared
in earlier work such as [RS88], and referred taelg@ble learning

Generally, it is highly desirable to have an algorithm tlearhs a concept in the KWIK framework
using a few, or even polynomial, number of. But unfortunately, for many concepts, no such
algorithm exists. In fact, it turns out that even for manyibatasses which are very easy to learn in
the Mistake-bound model [Lit88], e.g. the class of singhstor disjunctions, the KWIK algorithm
needs to say exponentially many times. The purpose of our paper is toxrla assumption of
not making any mistakeby allowing a few mistakes, to get much better bounds on theber of
Ls. Or, in the other direction, our aim is to produce algorightimat can make substantially fewer
mistakes than in the standard Mistake-Bound model, byrigadif some of those for (presumably
less costly) don't-know predictions.

In [LLWO8], the authors show, through a non-polynomial tisreumeration algorithpthat a finite
classH of functions can be learned in the KWIK framework with at mdgt — 1 number of Ls.

*Part of this work was done when the author was an intern in ddicft Research New England, MA.
fPart of this work was done when the author was an intern in ddicit Research Cambridge, UK.
#This work was supported in part by NSF grant CCF-0830540.

We show that if only one mistake is allowed, that number caredeced to,/2| H|. Furthermore,
we show that the problem is equivalent to the famous egggingppuzzle, defined formally in

Section 2, hence getting bouf+ I)Hﬁ whenk mistakes are allowed. Our algorithm does not
in general run in polynomial time in the description lengfttttee target function since its running
time depends ofH |; however, we propose polynomial versions of our algorittemtfvo important
classes: monotone disjunctions and linear separators.

Allowing the algorithm to make mistakes in the KWIK model gaéalent to allowing the algorithm
to say “l don’t know” in the Mistake-bound model introducedLit88]. In fact, one way of looking
at the algorithms presented in section 3 is that we want toedse the number of mistakes in
Mistake-bound model by allowing the algorithm to say The rest of the paper is structured as
follows. First we define the model and describe the limits 87K model. Then in section 2, we
describe how would the bounds on the numbet sfchange if we allow a few mistakes in KWIK
model. Finally, we give two polynomial algorithms for impant classes, Monotone Disjunctions
and Linear Separators with a margin, in Section 3.

1.1 Model

We want to learn a concept clagk consisting of functiong : X — {+, —}. In each stage, the
algorithm is given an example € X and is asked to predict the target functii(x), where we
assumer* € H. The algorithm might answe#-, — or L representing “| don’t know”. After the
prediction, even if it isL, the value of*(x) is revealed to the algorithm. For a given integewe
want to design an algorithm such that for any sequence of pbenthe number of times! that it
makes a mistake is not more thanand the number of timekthat it answersl is minimized.

For example, the special casekof= 0 is equivalent to the KWIK framework. Also, if > log(|H]),
the majority vote algorithm can learn the class with.neesponses, i.e. = 0.

Since we want to derive worst-case bounds, we assume thsgdfuence of the examples, as well as
the target functiorh* are selected by an adversary. The adversary sends the esaond by one.
For each example € X, our algorithm decides what to answer; then, the adversasalsh* ().

1.2 The KWIK Model

Although the idea of the KWIK framework is quite useful, taare very few problems that can be
solved effectively in this framework. The following exareglemonstrates how an easy problem in
the Mistake-bound model can turn into a hard problem in thelKWiodel.

Example 1 Suppose thati is the class of singletons. In other words, for € H, whereh,; :
{0,1}™ — {—,+}, we haveh,;(x) = + if = is the binary representation af and h;(z) = —
otherwise. Clasd{ can be learned in Mistake-bound model with mistake bounchyf b The
algorithm simply predicts- on all examples until it makes a mistake. As soon as the dlgori
makes a mistake, it can easily figure out what the target fonas.

However, clasdi needs exponentially many's in the KWIK framework to be learned. Since the
algorithm does not know the answer until it has seen its fwsttive example, it must keep answering
1 on all examples that it has not seen yet. Therefore, in thestwoase, it answerg and finds out
that the answer is- on all the first2™ — 1 examples that it sees.

The situation in Example 1 happens for many other classesmaftibns, e.g. conjunctions or dis-
junctions, as well.

Next, we review an algorithm (called tlemumeration algorithnm [LLWOS8]) for solving problems
in the KWIK framework. This algorithm is the main ingredieftmost of the algorithms proposed
in [LLWOS8].

Algorithm 1 Enumeration

The algorithm looks at all the functions in clags, if they all agree on the label of the current
example: € X, the algorithm outputs that label, otherwise the algorithutputs! . Upon receiving
the true label ofr, the algorithm then removes froff those function& that answered incorrectly

onz and continues to the next example. Note that at least ondidungets removed fromil each
time that algorithm answers; therefore, the algorithm finds the target function with astj /| —1
number ofL’s.

2 The KWIK Model with Mistakes

Example 1 shows how hard it can be to learn in the KWIK model.address this, we give the
following relaxation of the framework that allows concefide learned much more effectively and
at the same time preserves the original motivation of the K\Wlodel—it's better saying “l don’t
know” rather than making a mistake.

Specifically, we allow the algorithm to make at mésmistakes. Even for very small values lof
this can allow us to get much better bounds on the number @stitihat the algorithm answets
For example, by letting = 1, i.e. allowing one mistake, the number bfs decreases fro™ — 1

to 0 for the class of singletons. Of course, this case is not ®vésting sincé&: = 1 is the mistake
bound for the class. Our main interest is the caseithat) and yet is much smaller than the number
of mistakes needed to learn in the pure Mistake Bound model.

We saw, in Algorithm 1, how to learn a concept cldgsvith no mistakes and wit (| H|) number
of L's. In many cases)(|H|) is tight; in fact, if for every subset C H with |S| > 1 there exists
somer € X forwhich|{h € S|h(z) = +}| € {1,|S| — 1}, then the bound is tight. This condition,
for example, is satisfied by the class of intervals: thatisz {[0,a] : a € {0,1,2,...,2" —1}}.

However, if we allow the algorithm to make one mistake, wevsltiwat the number ofl’'s can be
reduced ta)(+/|H|). In general, ift mistakes are allowed, there is an algorithm that can leayn an
classH with at most(k + 1)|H|*/*+1 number of L's. The algorithm is similar to the one for the
classic “egg game” puzzle (See [GF]). First suppose khat 1. We make a pool of all functions
in H, initially consisting of| H| candidates. Whenever an example arrives, we see how mahg of t
candidates label it-, and how many label it-. If the population of the minority is< \/W we
predict the label that the majority gives on the example; &, if the population of the minority
is> +/|H|, we sayL. Those functions that predict incorrectly on an exampleanegoved from the
pool in each step; so the pool is just the current versionespdave make a mistake in some step,
the size of the version space will reduce<to\/ﬁ. Hence, using Algorithm 1, we can complete
the learning with at mos{/| H | number of additional.’s after our first mistake. Furthermore, note
that before making any mistake, we remove at Ie@(@ of the functions from the pool each time
we answerl. Therefore, the total number af’s cannot exceed./|H|. This technique can be
generalized fok mistakes, but first we mention a connection between thislproland the classic
“egg game” puzzle.

Example 2 Egg Game Puzde

You are giver identical eggs, and you have access teo-story building. The eggs can be very hard
or very fragile or anywhere in between: they may break if geqgh from the first floor or may not
break even if dropped from theth floor. You need to figure out the highest floor from whichgm e
can be dropped without breaking. The question is how manysdyou need to make. Note that you
can break only two eggs in the process.

The answer to this puzzle ig2n up to an additive constant. In fact, a thorough analysis@pilzzle
when there aré: eggs available, instead of just two eggs, is given in [GF]e Thminimization
problem whenrk mistakes are allowed is clearly related to the egg game puweizén the building
has|H | floors and there ark + 1 eggs available. As a result, with a slightly smarter aldwrithat
adjusts the threshold/| H | recursively each time an example arrives, we can decreaseuimber

of Lsfrom2./|H|to\/2|H]|.
Algorithm 2 Learning in the KWIK Model with at most & Mistakes

Lets = |H|ki+1, and letP denote the current version space: the pool of all functidwas might still
be the target. InitiallyP? = H, but during the learning process, we remove functions ffontfor
each example that arrives, examine how many functio@slabel it + and how many label it-. If

the minority population is> s, we answerl, otherwise, we answer the majority prediction. At the
end of each step, we remove the functions that made a mistéke llast step fron®. Whenever we

make a mistake, we update= | P| w177 wherei is the number of mistakes we have made so far.

Proposition 1 Algorithm 2 learns a concept clagg with at mostk mistakes andk + 1)|H|'/*+1
“I don't knows

Proof: After the first mistake, the size of the pool reducest¢H | 7T, Hence, using induction, we

can argue that after the first mistake, the learning can be dith & — 1 mistakes ané(|H | AT YL/k

“Idon’'tknow’s. There can exist at most% = |H|'/*+1 number of ’s before the first mistake.
|[H|FFT

Therefore, the total number af's will not exceed

|H|1/k+1 + k(|H|kL+Al)l/k _ (k—i— 1)|H|1/k+1.
O

Before moving to the next section, we should mention thatoAtgm 2 is not computationally
efficient. Particularly, ifi contains exponentially many functions in the natural paters of the
problem, which is often the case, the running time of Aldorit2 becomes exponential. In the next
section, we give polynomial-time algorithms for two impant concept classes.

3 The Mistake Bound Model with “I don’t know” predictions

We can look at the problem from another perspective: instdaatlding mistakes to the KWIK
framework, we can add “I don’t know” to the Mistake Bound mbde many cases, we prefer our
algorithm saying “I don’t know” rather than making a mistakéerefore, in this section, we try to
improve over optimal mistake bounds by allowing the aldomntto use a modest number.bfs, and

in general to consider the tradeoff between the number dfkes and the number dfs. Note that
an algorithm can always replace itss with random+’s and —'s, therefore, we must expect that
decreasing the number of mistakes by one requires incigéstnnumber ofL’s by at least one.

3.1 Monotone Disjunctions

We start with the concept class lfonotone DisjunctionsA monotone disjunction is a disjunction
in which no literal appears negated, that is, a function efftrm

flxr, .. xn) =2 Va, V... V.

Each example is a boolean vector of lengthand an example is labeled if and only if at least
one of the variables that belong to the target function igsétin the example. We know that this
class can be learned with at mesmistakes in Mistake-bound Model [Lit88] whereis the total
number of variables. This class is particularly interegtirecause results derived about monotone
disjunctions can be applied to other classes as well, sugkr@eral disjunctions, conjunctions, and
k-DNF formulas. We are interested in decreasing the numbenisfakes at the cost of having
(hopefully few)_L’s.

First, let’s not worry about the running time and see how wddjorithm 2 performs here We have

|H| = 2"; if we let k = n/i, the bound that we get on the numberId$ will be ~ 2=; this is not
bad, especially, for the case of smale.g.: = 2, 3. In fact, for the case of = 2, we are trading off
each mistake for four “I don’t know”s. But unfortunately gdrithm 2 cannot do this in polynomial
time. Our next goal is to design an algorithm which runs inypoimial time and guarantees the
same good bounds on the numberlds.

Algorithm 3 Learning Monotone Digjunctions with at most n/2 Mistakes

Let P, Pt and P~ be three pools of variables. Initially? = {z1,...,2,} and PT™ = P~ = ¢.
During the process of learning, the variables will be movexnfP to P~ or P*. The poolP™
is the set of variables that we know must exist in the targattfan; the poolP~ is the set of the

variables that we know cannot exist in the target functidme Tearning process finishes by the time
that P gets empty.

In each step, an examptearrives. LetS C {z1,...,z,} be the set representationofi.e.,xz; € S
if and only ifz[i] = 1. If SN P*T # ¢, we can say for sure that the exampletfis If S C P,
we can say for sure that the example is negative. Othervtiseyst be the case th&tn P # ¢,
and we cannot be sure about our prediction. HereSify P| > 2 we answer-, otherwise, i.e. if
|S N P|=1,weanswerl.

If we make a mistake, we mogen P to P~. Every time we answer, we moveS N P to PT or
P~ depending on the correct label of the example.

Proposition 2 Algorithm 3 learns the class of Monotone Disjunctions witlnastA/ < n/2 mis-
takes andh — 20 number ofLs.

Proof: If we make a mistake, it must be the case that the answer had rigative while we
answered positive; for this to happen, we must h&ve P| > 2. So, after a mistake, we can move
SN PtoP~. The size ofP, therefore, decreases by at lest

Every time we sayl, it must be the case th& N P| = 1. Therefore, the label of the example is
positive iff S N P is contained in the target function, and so the algorithmemily movesS N P to
P or P~. Additionally, the size of” decreases by at least one on edcprediction. O

Algorithm 3, although very simple, has an interesting propelf in an online learning setting,
saying_L is cheaper than making a mistake, Algorithm 3 strictly doabés the best algorithm in
Mistake-bound model. Note that the sum of its and its mistakes is never more than More
precisely, if the cost of making a mistakelisind the cost of saying is < 1, the worst-case cost of
this algorithm is strictly smaller than.

Next we present an algorithm for decreasing the number dfakes tor /3.

Algorithm 4 Learning Monotone Digjunctions with at most n/3 Mistakes

Let P, P*, P~ be defined as in Algorithm 3. We have another pBblvhich consists of pairs of
variables such that for each pair we know at least one of thimisées belongs to the target function.
As before, the pools form a partition over the set of all vekes. In addition, a variable can belong
to at most one pair ifP’. Thus, any given variable is either in a single pair/@for else in exactly
one of the set®, P*, or P~.

Whenever an exampiearrives we do the following. L&t C {z1, ..., z,} be the set representation
ofz,i.e. z; € Sifand only ifx[i] = 1. If SN PT # ¢, we answer+. If S C P~, we answer-.
Also, if S contains both members of a pair I/, we can say that the label is.

If none of the above cases happen, we cannot be sure aboutagliction. In this case, ifSN P| >

3, we answer-. If |[SN(PUP’)| > 2and|SN P’| > 1 we again answe#-. Otherwise, we answer
. Description of how the algorithm moves variables betwests gpon receipt of the correct label
is given in the proof below.

Proposition 3 Algorithm 4 learns the class of Monotone Disjunction withratstd/ < n/3 mistake
and3n/2 — 3M number ofL’s.

Proof: If |S N P| > 3 and we make a mistake ¢ then the size of will be reduced by at lea$},
and the size oP~ will increase by at least. If [SN (P U P’)| > 2and|S N P’| > 1 and we make
a mistake onS, then at least two variables will be moved frqf®’ U P) to P—, and at least one
variable will be moved fromP’ to P (since whenever a variable moves frdfto P, the other
variable in its pair should move t87). Therefore, the size dP~ U P™ will increase by at least.
SinceP~ U P* < n, we will not make more than /3 mistakes.

There are three cases in which we may answelf |S N P| = 0and|S N P’| = 1, we answerlL;
however, after knowing the correct labsln P’ will be moved toP™ or P~. Therefore, the number
of “I don’t know”s of this type is bounded by — 3M. If |[SN P| = 1 and|S N P’| = 0, again,
after knowing the correct labefi N P will be moved toP™ or P—, so the same bound applies. If
|SNP|=2and|SNP’| =0, the correct label might be or —. If it is negative, then we can move

S N Pto P~ and use the same bound as before. If it is positive, the twiablas inS N P will be
moved toP’ as a pair. Note that there can be at mag2 of such_L’s; therefore, the total number
of L's cannotexceed/2 +mn —3M. O

3.2 Learning Linear Separator Functions

In this section, we analyze how we can useredictions to decrease the number of mistakes for
efficiently learning linear separators with marginThe high level idea is to use the basic approach
of the generic algorithm in Section 2 for finif€, but rather than explicitly enumerating over func-
tions, to instead efficiently estimate the measure of thetfans in the version space that prediet
versus those that prediet and to make prediction decisions based on the result.

Setting: We assume a sequenSeof n d-dimensional examples arrive one by one, and that these
examples are linearly separable: there exists a unitdesgptarator vectar* such thato* -« > 0 if

[w” x|

and only ifz is a positive example. Defingto beminmesw‘T. For convenience, we will assume
that all examples have unit length.

Below, we show how to formulate the problem with a Linear Paog to bound the number of
mistakes using some “l don’t know” answers.

Assume that examples:y, xo, - - - , ,, are in the sequencge These points arrive one at a time and
we have to answer when a point arrives. The objective is toenaagmall number of mistakes and
some “I don’t know” answers to find a separation veatosuch thato - x; is positive if and only if
x; IS a+ point. We can formulate the following linear program usihgtinstance (this sequence of
points).

w-xz; > 0If z; is a+ instance, and

w-xz; < 0If z; isa— instance

Note that there ard variables which are the coordinates of vectgrand there are: linear con-
straints one per input point. Clearly we do not know whichrp®iare thet points, so we can not
write this linear program explicitly and solve it. But theipts arrive one by one and the constraints
of this program are revealed over the time. Note that if amewtis a feasible solution of the above
linear program, any positive multiple af is also a feasible solution. In order to make the analysis
easier and bound the core (the set of feasible solutionsedirtbar program), we can assume that
the coordinates of the vectarare always in rangg-1 — v/v/d, 1 + /+/d]. We can ad@d linear
constraints to make sure that the coordinates do not vithetge properties. We will see later why
we are choosing the bounds to bél + ~/v/d) and1 + v/V/d.

Now assume that we are at the beginning and no point has duriye we do not have any of the
n constraints related to points. The core of the linear progis the set of vectors in [-1 —
v/Vd, 1+ ~v/V/d])* at the beginning. So we have a core (feasible set) of vol(@me 2v/v/d)¢ at
first. For now assume that we can not use the “l don’t know” arswWe show how to use them
later. The first point arrives. There are two possibilities this point. It is either a+ point or a—
point. If we add any of these two constraints to the lineagpain, we obtain a more restricted linear
program with a core of lesser volume. So we obtain one LP foh @ these two possibilities, and
the sum of the volumes of the cores of these two linear progiaraqual to the volume of the core
of our current linear program. We will show how to computesth@olumes, but for now assume
that they are computed. If the volume of the linear progranttfe + case is larger than the case,
we answer+. If our answer is true, we are fine, and we have passed the aquigryno mistake.
Otherwise we have made a mistake, but the volume of the carardinear program is halved. We
do the same for the case as well, i.e. we answerwhen the larger volume is for case.

Now there are two main issues we have to deal with. First ofaslhave to find a way to compute
the volume of the core of a linear program. Secondly, we haiatl a way to bound the number of
mistakes.

In fact computing the volume of a linear program#s”-hard [DF88]. There exists a randomized
polynomial time algorithm that approximates the volumehef tore of a linear program witt +¢)
approximation [DFK91], i.e. the relative errordsThe running time of this algorithm is polynomial
in n,d, and1/e. We can use this algorithm to get estimates of the volumekeofihear programs
we need. But note that we really do not need to know the volumdéisese linear programs. We
just need to know whether the volume of the linear programhefi case is larger or the case

is larger or if they are approximately equal. Lovasz and Valapresent a faster polynomial time
algorithm for sampling a uniformly random point in the corfeadinear program in [LVO6]. One
way to estimate the relative volumes of both sides is to saraplniformly random point from the
core of our current linear program (without taking into agnbthe new arrived point), and see if the
sampled pointis in the- side or the— side. If we sample a sufficiently large number of points (here
2log(n)/e? is large enough), and if the majority of them are in th¢—) side, we can say that the
volume of the linear program for (—) case is at Ieast§1— e fraction of our current linear program
with high probability. So we can answer based on the majafithese sampled points, and if we
make a mistake, we know that the volume of the core of the tipeegram is multiplied by at most
l1-(-¢=3+e

Suppose we have already processed the(fiesamples and now thie+ 1st example arrives. We
have the linear program with the firstonstraints. We sample points from the core of this linear

program, and based on the majority of them we answar — for this new example. Using the
following Theorem, we can bound the number of mistakes.

Lemma 4 With high probability { — ﬁ), for every mistake we make in our algorithm, the volume
of the core of the linear program decreases by a factc(r%oﬂ— €).

Proof: Without loss of generality, assume that we answerebut the correct answer was So we
sampled log /€2 functions uniformly at random from the core, and the majowitthem were pre-
dicting positive. If less than él— e fraction of the volume was indeed predicting positive, esam-
pled point would be from the positive-predicting part wittopability less thar% —e. So the expected
number of positive sampled points would be less thiar €)(2logn/e?) = (logn/e? —2logn/e).
Therefore, by Chernoff bounds, the chance of the samplengavimajority of positive-predicting
functions would be at mogt=(2leen/€)*/2(logn/c*~2logn/e) — g=2logn/(1-¢) — p~2/(1-9) Gjnce
there arex examples arriving, we can use the union bound to bound tHzapitity of failure on any
of these rounds: the probability that the volume of the cdio linear program is not multiplied by
at most} + ¢ on any mistakes is at mostx n~2/(1=<) = —_L_ Therefore with high probability
(at leastl — W), for every mistake we make, the volume of the core is mu#gpby at most
$+e O

Now we show that the core of the linear program after addihg &lonstraints (the constraints of
the variables) should have a decent volume in terms of

Lemma 5 If there is a unit-length separator vectar* with mz‘nmes% = ~, the core of the
complete linear program after adding all constraints of the points has volume at least+/d).

Proof: Clearlyw™ is in the core of our linear program. Consider a veatomhose all coordinates
are in rangd —v/v/d,v/+/d). We claim thatw* + w’) is a correct separator. Consider a paint

Without loss of generality assume that it is-gpoint. Sow* - z; is at leasty - |;|. We also know that
|w' - x;| is at least-|w’| - |2;|. Since all itsd coordinates are in rande-v/v/d, v/+/d), we can say
that|w’| is less thany. So(w* +w')-z; = w* -z, +w'-x; > v|z;| —|x;| is positive. We also know
that the coordinates af* 4w’ are in rangé—1 —~/v/d, 1 +~/+/d) becausev* has unit length (so

all its coordinates are betweenl and1), and the coordinates af’ are in rangd —v/v/d, v/v/d).
Therefore all vectors of fornv* + w’ are in the core. We conclude that the volume of the core is at
least(2v/v/d)?. O

Lemmas 4 and 5 give us the following folklore theorem.

Theorem 6 The total number of mistakes in the above algorithm is not emdhan

242y /Vd)* 1+y/Vd)?
10ga/(1+6) Tamrrgst = 1085110 o pa- = Old(log d +log 1/7)).

Proof: The proof easily follows from Lemmas 4 and 50

Now we make use of the “I don’t know” answers to reduce the nemolbmistakes. Assume that we
do not want to make more tharmistakes. Defin&; to be(2+2v/v/d)¢ which is the volume of the
core at the beginning before adding any of the constraintsepoints. Defin&? to be(2+y/v/d)?
whichis a Iower bound for the volume of the core after addith¢he constraints of the points. Let
R be the ratio}2. In the above algorithm, we do not make more thauy /1) 12 mistakes.

We want to use “I don’t know” answers to reduce this number @ftakes. Defing to be R'/*.
LetV, V1, andV; be the volumes of the cores of the current linear programijtiear program with
the additional constraint that the new point is-goint, and the linear program with the additional
constraint that the new point is-a point respectively. If; /V is at mostl /C, we can say that the
new point is a— point. In this case, even if we make a mistake the volume ottre is divided
by at least”, and by definition of”, this can not happen more thésg, R = k times. Similarly,

if V5/V is at mostl/C, we can say the new point isfapoint. If V1 /V andV2/V are both greater
than1/C, we answer “| don’t know”, and we know that the volume of theecis multiplied by at
mostl — 1/C.

Since we just need to estimate the rafiggV andV,/V, and in fact we want to see if any of them

is smaller thari /C' or not, we can simply sample points from the core of our cudigaar program.

But we have to sample at lea3{C logn) points to be able to have reasonable estimates with high
probability for these two specific tests (to se&if/V or 1, /V is at leastl /C). For example if we
samplel6C log n points, and there are at mciSIogn + points among them, we can say thayV’

is at mostl /C with probability at leastt — e¢—6410e” n/32losn — 1 _ L Byt if there are at least
8logn + points, an® logn — pomts among the samples, we can say that bV andV,/V are
at least; 1 with high probability using Chernoff bounds.

If we make a mistake in this algorithm, the volume of the cerdivided by at least’, so we do not
make more thai mistakes. We also know that for each “I don’t know” answeryibkime of the
core is multiplied by at mosit — % so after’C' “I don’t know” answers the volume of the core is
multiplied by at mostl /e. Therefore there are at moSX(C'log R) “I don’t know” answers. This
completes the proof of the following theorem.

Theorem 7 For any k > 0, we can learn a linear separator of marginin ¢ using the above
algorithm with k& mistakes and)(R'/* x log R) “I don’t know” answers, whereR is equal to
(try/Vd)?

(v/Vd)d

4 Conclusion

We have discussed a learning framework that combines timeesls of the KWIK and mistake-
bound models. From one perspective, we are allowing theithgoto make mistakes in the KWIK
model. We showed, using a version-space algorithm anddfwraweduction to the egg-game puzzle,
that allowing a few mistakes in the KWIK model can signifidprtecrease the number of don't-
know predictions.

From another point of view, we are letting the algorithm sag@dn’t know” in the mistake-bound
model. This can be particularly useful if don’t-know pretibos are cheaper than mistakes and
we can trade off some number of mistakes for a not-too-macyer number of “I don’t know”s
We gave polynomial-time algorithms that effectively redilee number of mistakes in the mistake-
bound model using don’t-know predictions for two concepssks: monotone disjunctions and
linear separators with a margin.

Acknowledgement

The authors are very grateful to Adam Kalai, Sham Kakade and Ralcan as well as anonymous
reviewers for helpful discussions and comments.

References

[DF88] Martin E. Dyer and Alan M. Frieze. On the complexity@mputing the volume of a
polyhedron.SIAM J. Comput.17(5):967-974, 1988.

[DFK91] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A dom polynomial time algorithm
for approximating the volume of convex bodiegs ACM 38(1):1-17, 1991.

[DLLO9] C. Diuk, L. Li, and B.R. Leffler. The adaptive k-metedogists problem and its appli-
cation to structure learning and feature selection in mcément learning. lProceed-
ings of the 26th Annual International Conference on Macliearning pages 249-256.
ACM, 20009.

[GF] Gasarch and Fletcher. The Egg Gamew. cs. und. edu/ ~gasar ch/ BLOGPAPERS/ egg. pdf .

[KK99] M. Kearns and D. Koller. Efficient reinforcement leamg in factored MDPs. Irinter-
national Joint Conference on Artificial Intelligencelume 16, pages 740-747. Citeseer,
1999.

[KS02] M. Kearns and S. Singh. Near-optimal reinforcemeathing in polynomial timeMa-
chine Learning49(2):209-232, 2002.

[Lit88] N. Littlestone. Learning quickly when irrelevanttabutes abound: A new linear-
threshold algorithmMachine learning2(4):285-318, 1988.

[LLWOS8] L. Li, M.L. Littman, and T.J. Walsh. Knows what it kmes: a framework for self-aware
learning. InProceedings of the 25th international conference on Magkearning pages
568-575. ACM, 2008.

[LVO6] Laszlb Lovasz and Santosh Vempala. Hit-and-ruond a corner. SIAM J. Comput.
35(4):985-1005, 2006.

[RS88] R.L.Rivestand R. Sloan. Learning complicated cpteeeliably and usefully. [#Pro-
ceedings AAAI-88ages 635—639, 1988.

[SLO8] A.L.Strehland M.L. Littman. Online linear regressiand its application to model-based
reinforcement learningAdvances in Neural Information Processing Systetfis2008.

[WSDL] T.J. Walsh, I. Szita, C. Diuk, and M.L. Littman. Explng compact reinforcement-
learning representations with linear regressionPtaceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence (UAI-Q2009b

