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Abstract: We present approximation and online algorithms for problems of pricing a
collection of items for sale so as to maximize the seller’s revenue in an unlimited supply
setting. Our first result is a®(k)-approximation algorithm for pricing items to single-
minded bidders who each want at mé&stems. This improves over work of Briest and
Krysta (2006) who achieve a®(k?) bound. For the cask = 2, where we obtain a 4-
approximation, this can be viewed as the followigigph vertex pricingproblem: given

a (multi) graphG with valuationsw;; on the edges, find pricgs > O for the vertices to
maximize

(pi+pj)-
{053):wij = pi+pj }
We also improve the approximation of Guruswami et al. (2005) for the “highway problem”
in which all desired subsets are intervals on a line, f@fogm-+logn) to O(logn), where
mis the number of bidders amds the number of items. Our approximation algorithms can
be fed into the generic reduction of Balcan et al. (2005) to yield an incentive-compatible
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auction with nearly the same performance guarantees so long as the number of bidders is
sufficiently large. In addition, we show how our algorithms can be combined with results

of Blum and Hartline (2005) and Kalai and Vempala (2003) to achieve good performance

in the online setting, where customers arrive one at a time and each must be presented a set
of item prices based only on knowledge of the customers seen so far.

1 Introduction

Consider the problem of a retailer trying to price its products to make the most profit. If customers had
valuations over individual items only, then the problem of setting prices would be relatively easy: for
each product, the optimal price for that product is such that the profit maggiper item sold, times
the number of customers who would buy at that price, is maximized. So, each item can be considered
separately, and assuming the company knows its market weldimputationalproblem of setting
prices is fairly trivial.

However, suppose that customers have valuationsgaiesof items (e.g., a computer and a monitor,
or a tank of gas and a cup of coffee), and will only purchase if the combined price of the items in their
pair is below their value. In this case, we can model the problem as a (igwalgh where each edge
has some valuatiowe, and our goal is to set pricgs > 0 on the vertices of the graph to maximize total
profit: that is}

Profit(p) = z price(e),

ewe>price(e)

where pricée) = Sic. pi, andp is the vector of individual prices.

We call this thegraph vertex pricingproblem. More generally, if customers have valuations over
larger subsets, we can model our computational problem as one of pricing verticéyper@raph
or in more standard terminology, the problem of pricing items in an unlimited-supply combinatorial
auction with single-minded bidders. Guruswami et &b][show anO(logm+ logn)-approximation
for the general problem, whereis the number of items (vertices) andis the number of customers
(hyperedges). They also show that evengrahvertex pricing problem is APX-hard — and this is true
even when all valuations are identical (if customers wanting just one item are allowed) or all valuations
are either 1 or 2 (if such customers are not allowed). In related work, Hartline and Kalugiye
a (14 ¢)-approximation that runs in time exponential in the number of vertices, but that is near-linear
time when the total number of vertices in the hypergraph is constant. Recently, Demainé&@tredve
shown that it is hard to approximate the hypergraph vertex pricing problem within a facto of. ffog
some$ > 0, assuming that NE BPTIME(Z”S) for somee > 0.

In this paper, we give a 4-approximation for the graph vertex pricing problem, and more generally
we present a®(k)-approximation for the case of hypergraphs in which each edge has size &t most

1This formula corresponds to a model in which items have zero marginal cost to the retailer (digital goods) so that an item
sold at pricep; generates profip;. Alternatively, if products have a fixed marginal cost, and we cannot sell them below cost
(say, due to the presence of resellers), then we can thipkad the profit margin on itefinand simply subtract our costs for
the endpoints from each valuation.
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(i.e., all customers’ valuations are over subsets of size at k)osthe latter result improves over the
work of Briest and Krystaq] who give a bound 0D(k?).

We also consider the highway problem studied 18][ This problem is the special case of the
hypergraph pricing problem where vertices are numbered ,h and each customer wants an interval
[i, j].2 For this problem, we give aB(logn)-approximation, improving slightly over tf@(logm-+-logn)
approximation of 15], and also give a©(1)-approximation for the case that all users wantshene
numberof items up to a constant factor. In addition, we give a fully polynomial time approximation
scheme (FPTAS) for the case that the desired subsets of different customers form a hierarchy (this is
defined more precisely in Sectigh

Finally, we consider the question of what happens if we are allowed to price somebitdmagheir
cost, and give an example in the context of graph vertex pricing in which such pricing can produce an
Q(logn) factor more profit than possible if all items must be priced above cost. However, we do not
have any goodq(logn)) approximation algorithms for that setting.

Incentive-compatibility Our results described above assume the seller “understands the market”: how
many customers will buy different sets of items and at what prices. Thus, we are simply left with a
computational problem. If we do not understand the market and are in the setting of an unlimited-
supply combinatorial auction, we would instead want an algorithm thaténtive-compatibleneaning

that it is in bidders’ self-interest to reveal their true valuations. Fortunately, a generic reduction of
[3] shows that if there are sufficiently many bidders, then for problems of this type one can convert
any approximation to the computational problem into a nearly-as-good approximation to the incentive-
compatible auction problem. In particulﬁ,(%‘) bidders are sufficient for this reduction to produce
only a factor(1+ €) loss in approximation ratio when all valuations lie in the rafigé]. Essentially,

the idea of the reduction is to randomly partitions bidders into twoSeasdS,, run the approximation
algorithm separately on each set, and then use the prices fouSddarS, and vice-versa (making the
process incentive-compatible); the results3hthen show thaﬁ(%‘) bidders are sufficient to ensure
that the resulting profit is nearly as large as if one had used prices determined @ a&attat set itself.
Related results ofl4, 13] give bounds of this form for the case of a single digital good. Thus, if one has
sufficiently many bidders, one can focus attention on the computational approximation problem.

The above results assume a one-shot mechanism (sealed-bid auction) in which all bidders are present
at the same time. We also consider the more demanding case that bidders arrive online, and one must
present to each bidder a set of item prices that depend only on bidders seen in the past. We show how
methods of p, 6] for the online digital-good auction can be applied to our algorithms for graphk-(or
hypergraph) vertex pricing to achieve good performance for these problems in the online setting as well.
For the highway problem, we need a somewhat more involved argument using an algorithm of Kalai and
Vempala [L§].

Organization The rest of this paper is organized as follows. We begin with basic definitions in Sec-
tion 2. We then present our 4-approximation algorithm for the graph vertex problem in Sgetimhour

2previous work 16, 15] uses ‘i’ to denote the number of items and™to denote the number of customers, viewing the
itemsas edges in some network. Since we are viewing items as vertices and customers as (hyper)edges, we have reversed this
notation.
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O(k)-approximation algorithm for thi-Hypergraph Vertex Pricing problem in Sectidn We discuss
pricing below cost in Sectioh, and present a®(logn) approximation for the highway problem in Sec-

tion 6. We present a fully polynomial time approximation scheme (FPTAS) for the case that the desired
subsets of different customers form a hierarchy in Secticemd we show how our algorithms can be
adapted to achieve good performance in the online setting in Sextidfe finish with a discussion of
open questions in Sectiéh

2 Notation and Definitions

We consider the following model introduced by Guruswami etldd]. [We assume we havacustomers

(or “bidders™) andn items (or “products”). We are in amlimited supplysetting, which means that the
seller is able to sell any number of units of each item, and they each have zero marginal cost to the seller
(or if they have some fixed marginal cost, we have subtracted that from all valuations and the seller may
not sell any item below cost). We consid#ngle-minded biddersvhich means that each customer is
interested in only a single bundle of items and has valuation 0 for all other bundles. Therefore, valuations
can be summarized by a set of pgieswe) indicating that a customer is interested in bundle (hyperedge)

e and values it atve. Given the hyperedgesand valuationsve, we wish to compute a pricing of the
items that maximizes the seller’s profit. We assume that if the total price of the itemis @&t mostwe,

then the customefe,we) will purchase all of the items i, and otherwise the customer will purchase
nothing. That is, we want the price vecE (py, ..., pn) with p; > O for all i that maximizes

Profit(p) = Z price(e), where pric¢e) = Z pi-

ewe>price(e) lee

Let p* be the price vector with the maximum profit and let ORPProfit(p*).

Let us denote bf the set of customers, aitthe set of items, and lét= maXecg We. LetG= (V,E)
be the induced hypergraph, whose vertices represent the set of items, and whose hyperedges represent
the customers. Notice th& might contain multi-edges since several customers might want the same
subset of items. In the special case that all customers want at most two ite@ds somulti-graph
(possibly with self-loops), we call this ttgraph vertex pricingoroblem. As mentioned in Sectidh
this pricing problem was shown to be APX-hard Irf]. If all customers want at mostitems, we call
this thek-hypergraph vertex pricingroblem. Guruswami et allp] present a simpl©(logm+logn)
approximation algorithm for the general hypergraph vertex pricing proBledur goal is to achieve
better guarantees for the graphkenypergraph case whén= o(logn).

3 Graph Vertex Pricing

We begin by considering the Graph Vertex Pricing problem, and show a factor 4 approximation.

Theorem 3.1. There is ad-approximation for the Graph Vertex Pricing problem.

3In fact, it has been shown recently i that one can achieve @(logm+ logn) approximation for bidders witgeneral
valuation functiongnot only single-minded bidders).
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Proof. First notice that ifG is bipartite (with self-loops allowed as well), then there is a simple 2-
approximation algorithm. Specifically, consider the optimal price-vgzt@nd let OPT be the amount

of profit it makes from selling nodes on the left, and GWBE the amount it makes from selling nodes on
the right (so OPE= OPT_ + OPTR). Notice that if one takeg* and zeroes out all prices for nodes on the
right, then this has profit at least OP3ince all previous buyers still buy (and some new ones may*too).
Therefore, we can algorithmically make profit at least QBY setting all prices on the right to 0, and
then separately fixing prices for each node on the left so as to make the most profit possible from each
node. That is, for each nodgwe simply order the buyers who wairthy valuationwe, > We, > W, .. .,

and choose the priga = we; maximizing jwe;. (Since the graph is bipartite, the profit made from some
nodei on the left does not affect the optimal price for some other riode the left.) Similarly we can
make at least ORJ by setting prices on the left to 0 and optimizing prices of nodes on the right. So,
taking the best of both options, we make

OPT
max(OPT_,OPTr) > —

Now consider the general (non-bipartite) case. Defipg to be the amount of profit that OPT
makes from edge. We will think of opt; as theweightof edgee, though it is unknown to our algorithm.
Let E; be the set of edges that have two distinct endpoints, anB;lée the set of self-loops. Let
OPT; be the profit made bp* on edges irE; and let OP% be the profit made bp* on edges irE,,
SO Y ecg, Opte = OPT; for i = 1,2 and OPT + OPT, = OPT. Now,randomlypartition the vertices into
two setd. andR. Since each edgec E;, has a 50% chance of having its endpoints on different sides, in
expectation%OPTz weight is on edges with one endpointlirmnd one endpoint iR. Thus, if we simply
ignore edges i, whose endpoints are on the same side and run the algorithm for the bipartite case, the
profit we make in expectation is at least

1 PT. PT

2

This proves the desired result. O
Derandomization If desired, the above algorithm can be derandomized using the fact that our analysis
only needs the partitioning distribution to be pairwise-independent. In particular, pairwise-independent
distributions can be realized using small (polynomial-size) sample sp2@e2?]. Thus, given a prob-

lem instance, one can simply try each possibility in the sample space and then choose the one that
produces the highest profit.

4 k-Hypergraph Vertex Pricing

We now show how to extend the algorithm in Theor8rh to get anO(k)-approximation when each
customer wants at moktitems. This improves over th8(k?) bound of [7].

Theorem 4.1. There is an @Qk)-approximation algorithm for the k-Hypergraph Vertex Pricing problem.

4Note that it is essential in this argument tiat> O for alli.
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Proof. We can use the following procedure.

Step 1 Randomly partitiorV into V. andV,eg by placing each node intg with probability%.
Step 2 Let E’ be the set of edges wittkactlyone endpoint ify,_. Ignore all edges it — E’.
Step 3 Set prices iViest to 0 and set prices M. optimally with respect to edges H.

To analyze this algorithm, let ORd denote the profit made by* selling itemi to biddere. (So
OPTie € {0,pf} and OPT= Sy e OPTie.) Notice that the total profit made in Step 3&tleast
Yiew ecer OPTi e because setting 'prices‘i/rrbst to 0 can only increase the number of sales madp*tp
bidders inE’. Thus, we simply need to analyze the quanBt)y;c, ece' OPTie].

Define indicator random variabl e = 1 if i € V| ande € E’, andX; ¢ = 0 otherwise. We have:

1 1 k-1
E[X.] =PrlieVLandec E'] > . (1— k) (4.1)

Therefore,

= E Xi,eOPTi,e
ieVeckE

= VZ E [Xi,e] OPTie
ieVieck

E| Y OPTe
i€V ,ecE’

1 1\ k-1

> = I

> k<1 k> OPT
OPT

> —

- ke

O]

Derandomization As with the algorithm of TheorerB.1, the above algorithm fde-hypergraph vertex
pricing can also be derandomized if desired, but in this case we need the tools of Eveth?t &irgt,

note that we are only interested in the case khato(logn+logm), since for larger values dfwe can

switch to the generic algorithm of Guruswami et dl5][ Thus, we can allow for a blowup o) in

our running time. Now, consider the algorithm in Theorérh and define indicator random variables
Xi=1ifi e VL andX; = 0 otherwise. So, eack = 1 with probability%, and notice that we need

only k-wise independence among tKeto calculateE[X; ¢] in Equation 4.1). Even et al. 12] give a
construction of small sample spaces that is especially well-suited to our needs. Their construction runs
in time polynomial in &, n, and%, and produces an explicit sample space with the following property:
for anyk-tuple (X,, ..., X, ) of the random variableX; and any assignmeitts, .. .,Vvy) to their values,

the fraction of points in their sample space under which these variables all take on those values is within
+¢ of the probability of this event under our product distribution. In particular,kt@ples we care

about are those corresponding to edgesE, with values of the forn{1,0,...,0) corresponding to the

event thafX; c = 1. Settinge =0 (%) we get that under the uniform distribution over their sample space,
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Equation 4.1) holds up to 1 o(1), which suffices for our bounds. Thus, we simply run the construction
of Even al. [L2] using such a value &f, and try each partitioning in their explicit sample space, choosing
the one that produces the highest profit.

5 Pricing below Cost

Following prior work [L5] we have so far required solutions to satigfy> 0 for alli. In fact, for the case

of digital goods, it does not make sense to allow negative prices since even custdoreshomi ¢ e

would purchase itemif p; < 0 (and moreover purchase infinitely many copies). However, in the case
of products of nonzero marginal cost, where we vigwas aprofit margin(the difference between sales

price and the retailer’s cost) it could make sense to aflpte be negative. In fact, a retailer might wish

to do so in order to induce more purchases of bundles containing both those and other more expensive
products. For example, consider four ite&$B, C, andD, and three customers: one who val§ésB}

at $10 above their combined cost, one who vallie<C} at $40 above their cost, and one who values
{C,D} at $10 above their cost. If no item can be priced at a loss, then it is not possible to have all three
customers buy at their valuations. On the other hand, by prigiagdD at $10 below cost, anB andC

at $20 above cost, the seller could extract full profit (assuming all costs are at least $10). More generally,
we present af2(logn) “positivity gap”™: a (bipartite) graph in which there is &y(logn) gap between

the optimal profit achievable without any items priced at a loss and the optimal profit if such pricing is
allowed. Specifically:

Theorem 5.1. For the graph vertex pricing problem, there exists @flogn) gap between the profit
achievable when pricing below cost is allowed and the profit achievable when pricing below cost is not
allowed.

Proof. Consider a bipartite graph with verticés ..., ¢, on the left and4,...,r, on the right, where

for convenience leh be a power of 2. A se$; of bidders each want bundles of the fofify,ri; 1} at

$1 above cost, a s& of bidders each want bundles of the foff),ri. 2} at $2 above cost, a s&;

of bidders each want bundles of the fofif,ri 4} at $4 above cost, and so forth, upSg,. Suppose
there argln— 1)n bidders inS; (n for each value of € {1,...,n— 1}), there ar§n—2)n/2 bidders in

S (n/2 for each value of € {1,...,n—2}), there arg§n— 4)n/4 bidders inS (n/4 for each value of

i €{1,...,n—4}) and so on, down t¢n/2)2 bidders inS,, (2 for eachi € {1,...,n/2}). In this case,

if negative profit margins are allowed, then one can price éaahprofit—i and eachr; at profiti and

have all bidders buy at exactly their valuations, extracting full p@fit?logn). On the other hand,

the structure of bidders is such that the set of bidders who want any given item form an “equal revenue
distribution”. In particular, for any pricing in which all items on one side (say on the right) are priced at
zero, any pricing of items on the other can produce at f®gsj profit per item, 0©(n?) total. This in

turn implies that it is not possible to get more tf@&(m?) profit using only non-negative profit margins,
since we know the optimal profit achievable using non-negative profit margins is within a factor of 2 of
the profit achievable when setting all items on one side of the graph to 0. O

Notice that our approximation algorithms in Sectichand4 only provide good guarantees with
respect to the best profit achievable when pricing below cost is not allowed. We do not know whether it
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is possible to achieve@logn) approximation when pricing below cost is allowed, even for the case of
bipartite graphs.
For the rest of the paper, we resume considering only the case that all prices must be nonnegative.

6 The Highway Problem

A patrticular interesting case of the hypergraph pricing problem consideréé)iis[the highwayprob-
lem. In this problem we think of the items2, ..., n as segments of a highway, and each desired subset
eis an intervalli, j] of the highway. A special case of this problem shownlifj fo be solvable in poly-
nomial time is the case when all path requests share one common end-gainthis case, Guruswami
et al. [L5] give anO(n?) exact dynamic programming algorithm, which we will c&ll They also give
pseudo-polynomial dynamic programming algorithms for two particular case€®(lH?m"3)-time
exact dynamic programming algorithm for the case when all valuations are integral, @{tiaAm)
time exact dynamic programming algorithm for the case that furthermore all requests have path lengths
bounded by some constaatThe highway problem was recently shown to be weakly NP-hard by Briest
and Krysta].

We present below (Theoreg1) an O(logn) approximation algorithm for the highway problem,
improving over theD(logn+ logm) approximation guarantee of Guruswami et &bj[

Theorem 6.1. There is an Qlogn)-approximation algorithm for the highway problem.

Proof. For convenience we assumas a power of 2 (which we can always achieve by padding). We
begin by partitioning the customers into loggroups. Specifically, le§; be the set of all customers
who want item. Let S, be the set of all customers not$ who want either itend} or item 3. More

generally, lef§ be the set of customers not®uU- - -US_; who want some item i{ %, %, e, %}ﬂ

Now, for each se§ we can use algorithmil from [15] to get a 2-approximation to the optimal profit
over§. Specifically, for each € {1,.. 20— 1} let Sj be the subset of customers$who want item
'Zil‘. Notice that by design, customers in §gtdo not have any desired item in common with customers
in Sj- for j’ # j, which means we can consider each of them separately. Now, forSaske get a

2-approximation to OP(IS;) by running.A twice, first zeroing out all prices for itenzs< &1 and then

i
. 2
again zeroing out all prices for itenzs> Jzi,‘ and taking the best of the two cases. Since there are only
log, n groupsS, we simply use the algorithod from [15] to get a 2-approximation to the optimal profit

overS, and then take the best of all options, thus obtaining aAl@pproximation overall. O

6.1 Special cases

Using algorithmA we can also get a constant-factor approximation in the special case that everyone
wants exactlyk items, for any (not necessarily constahkt) To see this, split the items into groups
G1,Gy,...,Gp of sizek, whereG; consists of the firsk items,G, consists of the nextitems and so on,

and let OPEyenand OPT4q be the amount of money that OPT makes from the even-numbered groups
and from the odd-numbered groups respectively. We can make aﬂ%}gf as follows. We first set

all the prices on items in the odd groups to zero. Now notice that each customer wants items in at most
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one even-numbered group: let us associate that customer with that group. We can now partition the
customers in each even group into two types: those who want the leftmost item in the group and those
who want the rightmost item in the group (customers who want both can be assigned arbitrarily). We
then run the dynamic program separately over each type, and take the best outcome. In a similar way,
we can make at Iea&% by setting prices for items in the even groups to 0. So we try both and take
the best, thus obtaining a factor of 4 algorithm.

Similarly we can get a factor ofcdapproximation algorithm if for some value &f all customers
want betweer‘g andk elements.

7 When bidders form a hierarchy

We present a fully polynomial time approximation scheme for the case that the desired subsets of differ-
ent (single-minded) customers form a hierarchy, also known as a laminar family &f Speifically,

we consider the case of a hypergraph where for any two ezlgesve haveeC € oreD € orene = 0.

This means that the edges themselves can be viewed as forming a tree structure (actually, a forest) or-
dered by containment. L&t be the set of all bidders whose desired subset is containedNpte that

we can assume for simplicity that we have a binary hierarchy (if the hierarchy is not binary, then we can
transform it into a binary hierarchy by adding fake edgeimcreasing the size of the hypergraph by at

most a constant factor).

We start by presenting a pseudopolynomial algorithm for the case that the bidders have integral
valuations (between 0 arg). In this case, by the integrality lemma iq there exists an integral
optimal solution. For eack € E and nonnegative integer< h, let us denote by the number of
bidders with desired setwhose valuations are at leastNow, for eache € E and nonnegative integer
s<nh, letAls, € represent the maximum possible profit we get from biddefls imhen the total sum of
the prices on items iris exactlys. Our dynamic programming algorithm for computing the quantities
Als, €] can be now specified as follows.

Step 1 For each “leaf’e in the hierarchy (an edgethat does not contain any other edgbsnitialize
Als €] =s-ng.

Step 2 Consider any edge with childrene; ande, whoseA-values have been computed. Compute
Als.€] = max (Alsy, e +Alsz, €g]) +srE.

Step 3 Return r<nar1]>A[s, r]. (Herer is the root of the hierarchy).
s<n

After computing theA-values, we can then easily determine the optimal pricing vector by backtracking.
Clearly, the overall procedure above runs in time polynomial im andh.

If we do not want to have a polynomial dependencéowe can instead use the above pseudopoly-
nomial algorithm to obtain an FPTAS in a fairly standard way as follows.

Step 1 Givene > 0, letl = €N,

5Independently, Briest and Kryst#][show a similar result. They also show that this problem in NP-hard.
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Step 2 Definew, = ||, for each hyperedgec E.

Step 3 Run the dynamic programming algorithm on the instance specifi€l-byV, E) and valuations
W, and letp’ be the returned price vector.

Step 4 Output the price vectdd defined ap™=1-p/, fori e V.

Theorem 7.1. The above algorithm is an FPTAS, achieving profit at I¢&ast ) OPTin time polynomial
inn, m, and?.
1 ) 8

Proof. In the following discussion, let Profjt(p) denote the profit made by using the price vegior
in the rounded instance specified By= (V,E) and valuationsv,. In order to prove that the profit we
obtain by using in the original instance (given b3 = (V, E) and valuationsve) is at leas{1— &)OPT,
we first make some observations.

Let p be a price vector and I1&V be the set of winners under the pricing schamia the original
instance. Ifp” is the pricing vector defined g& = | &t | fori € V, then Profig (p”) > 1 - Profit(p) —
To see why this is true, notice first tR&tC W”, whereW” is the set of winners under the pricing scheme
p” in the rounded instance (specified By= (V,E) and the valuations/,). This follows from the fact
that 3 pi < weimplies Z p/’ _z | ] < | %] = W,. This implies

lce

ice

Profity (p”) = Z\/ (——1) I—l Profit(p) — nm
ecWiee

eeW” [ e e

as desired.

Letp’ be a pricing vector and I8’ be the set of winners under the pricing scheyhia the rounded
instance. Ifp is the pricing vector defined g% = | - p} for i € V, then Profitp) > | - Profity (p’). To see
why this is true, notice first th&’ C W, whereW is the set of winners undérin the original instance.
This follows from the fact thafc. pi < W, implies Jicefi =1 Yicep| < -We =1[%¢]| < We. This

implies
Profit(p Z\/Zm ;Zl P>y > ol pi = | - Profity (p'),

ice ice ecW’ ice

as desired.
We are now ready to show that Préfiij > (1— ¢)OPT. Letp* andp’ be the price vectors with the
maximum profit in the original and rounded instances respectively, akid‘landw be the correspond-
ing set of winners. Lep be the price vector defined g =1 p{ for i € V and letp” is the pricing
vector defined ag] = H—'J for i € V. According to the previous observations we have Ripfit-
| - Profity (p’). Sincep’ is the price vector with the maximum profit in the rounded instance we have
Profity (p) > Profity (p”). Combining these together with the fact that Pyefj”) > { - Profit(p*) —
we get Profitp) > Profit(p*) — Inm, which implies Profitp) > (1—¢)OPT, as deswed
Sincew, < " for all e € E, we also have that our procedure runs in polynomial time i, and%,
thus being an FPTAS for the hierarchy case.

O
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8 Online Pricing

As mentioned in Sectiod, results of Balcan et al.3] can be used to convert our algorithms into
incentive-compatible mechanisms in the offline “batch” setting (i.e., a sealed-bid auction). In this sec-
tion we consider a natural, more demandangine setting in which customers arrive one at a time, and
we must assign prices to the items for custotrtesed only on information about customers 1t — 1.

8.1 The model

We assume customers arrive one at a time. Each customer will be shown a set of item prices, and
will then decide whether to purchase or not at those prices. We assume customers cannot return and
cannot control their time of arrival, so any take-it-or-leave-it set of prices for custbinased only
on information received from customers.1,t — 1 is incentive-compatible. In addition, we assume
an oblivious adversarynodel: that is, our objective is to achieve good expected performance for any
sequence of customers, but this sequence cannot depend on the outcome of any probabilistic choices
made by our algorithm. As before, we usdo denote the total number of customers.

We consider two information models. In tfidl information model, we assume that after th¢h
customer departs, we learn his desiredes@ind valuations. In the more difficultposted-pricemodel,
we assume we only find out whether and what the customer purchased but not his actual valuations.
That is, if he purchases a subset at the current prices, we do not know if he still would have purchased
at higher prices, and if he does not purchase at the current prices, we do not know if (or what) he would
have purchased at lower prices. In both models, we will be interested in algorithms that perform well
compared to the best fixed setting of prices for the entire sequence. Thus, we are comparing to the same
notion of OPT as in the offline case.

8.2 The Online Graph andk-Hypergraph Pricing Problems

Our 4-approximation for graph vertex-pricing, and @k)-approximation fork-hypergraph vertex
pricing, can be directly adapted to the online setting by using the resuls @iffpr the online digital-
good auction. In particular, for the full-information setting, Blum and Hartlisieshow the following:

Theorem 8.1 (B]). Consider the online pricing problem for a single item=£ri) in the full-information
setting. There exists an online algorithm such that for any ga/en0, its expected profit on any input
sequence of maximum valuation h is at ledst €)OPT— O(%h Iog%).

We can now use this to prove the following result.

Theorem 8.2. Consider the online hypergraph vertex pricing problem in the full-information setting.
There exists an online algorithm such that for any gigen O, its expected profit on any input sequence
is at least(1— €)ALG — O(%h Iog%), whereALG is is the profit of theffline approximation algorithm

in Sectiord on that input.

Proof. Note that our algorithms in Sectiordsand 4 begin by selecting a subs€t of items to have
non-zero prices, and then achieve their approximation guarantees considering only profit made from
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customers who want exactly one itemMn Thus, we can view these algorithms as effectively perform-
ing |V| separate digital-good auctions, ignoring customers who want zero, or more than one, item from
VL. In particular, to apply these algorithms to the full-information online setting, we begin by randomly
choosing the se¥| as described in the algorithms, setting prices for item¥ inV to 0. We then
instantiate a separate copy of the online digital-good auction fisjrfof each itemi € V.. When a
customer arrives, if the customer wants exactly one itédrom V,, then his valuation is given to the
associated online auction algorithm. Let QRIEnote the optimal profit achievable using a fixed price
for itemi from customers whose bundles contain itebut no other item in/f.. By Theorem8.1, the
expected profit of the online auction for itarwill therefore be at leagtl — £)OPT, — 0(2 Iog%). Thus,
overall, we achieve profit at leagt — €) 5., OPT; — O(”g—h Iog%), wherey ., OPT; is the profit of the
offline approximation algorithm. Note that we need the assumption of an oblivious adversary for the
approximation ratios proved in SectioBand4 to apply. O

In particular, so long as the offline algorithm’s profi1§l$2—£1 Iog%), we lose only g1+ O(¢)) factor
in the conversion to the online setting. In the posted-price setting, we can obtain a similar result: we only
need to apply the associated posted-price algorithmS, @] The only tricky issue is that a customer
who chooses not to buy anything must be fed in as a non-buyat ¢d the online algorithms, in order
to ensure that the sequence of customers fed into algorithm superset of the true customers for that
item (so that the value of OPT for the sequence fed to the algorithm is at least as large as the true OPT
for that item). In addition, the algorithms for the posted-price scenario require that the upperfbound
on the maximum valuation be known in advance.

8.3 The Online Highway Problem

For the highway problem, we cannot decompose our solution into a collection of independent digital-
good auctions, so the reduction in Sect®@ does not apply. However, wean convert to the online
setting by placing this problem in the frameworkasfline geometric optimizatiostudied by Kalai and
Vempala [L8] as extended to the case of approximation algorithms by Kakade é&f7al.lh particular,

[17] gives a method to convert any efficient approximation algorithm for offline optimization into an
efficient algorithm foronline optimization with asymptotically the same approximation ratio, for any
problem of the following type:

1. There is a seS C RY of feasible pointsAt each time step we must pick some poir! € S; we
are then given an objective functishc RY, and we obtain profip! - v!.

2. Our goal is to perform nearly as well as the best ppiatSin hindsight. That is, we War¥ pt-vt

to be nearly as large as gn@p -Vt
peS T

3. We have an efficien&t-approximation algorithm for theffline optimization problem: given ob-
jective functionv € RY, find the pointp € Sthat maximizep - v.

Kalai and Vempalalg] (for the case of exact offline algorithms) and Kakade et &I [for the
case of approximation algorithms) give a procedure for choosing pditsline for any problem of the
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above type such that the total profit obtainggp' - V!, is within a(1— €) /o factor of the profit of the
bestp € Sin hindsight, minus an additive term that is polynomial in the diamet&aofd the maximum
L, magnitude of any'.

We can place the highway problem into the above setting as follows. First, for simplicity of exposi-
tion, let us assume all bidders have integral valuations between B, amdl that we are willing to have
an algorithm that runs in time polynomial mas opposed to Idy(the general case can be handled by
rounding and scaling as in Secti@h Now, let S be the set of all possible item prices represented in
the following way. Given a pricing of the items, letq;; denote the total cost of the bundlej]. We
representyj as a vector of length consisting ofg;; — 1 zeros followed by — g;; + 1 entries at value
aij. To represent the entire pricing of thétems, we just concatenate the®evectors together to create
a point inRY for d = n?h. A bidder who desires bundlg j] at valuew is represented as a vector of all
zero entries except for a 1 in theth coordinate of the block correspondingdg. By design, the dot
product of this vector with a vectqgr € Sis exactly the profit that would be obtained from this bidder
by the item-pricing corresponding to Finally, we can use the optimization algorithm from Secton
or from [15] as our offline optimization oracle. Since the diameteS&f polynomial inn andh, and the
maximumL; magnitude of any! is at most 1, the total profit obtained will be within a-l factor of
the approximation ratio guaranteed by the optimization algorithm, minus an additive loss term which is
polynomial inn andh.

Note that for the posted-price version, we just need to apply known extensions of the Kalai-Vempala
algorithm to the bandit setting.[21, 9, 17] in which only the profitp! - v! and not the actual vectet is
revealed to the algorithm.

9 Conclusions

We present approximation and online algorithms for a number of problems of pricing items to consumers
S0 as to maximize seller’'s revenue in an unlimited supply setting. We achie@¢kgrapproximation
algorithm for the case of single-minded bidders where each consumer wants &titeos, arO(logn)
approximation for the highway problem frorhg], and a constant factor approximation to the highway
problem when all bidders want approximately (up to a constant factor) the same number of items. We
also show how some of our approximation algorithms can be adapted to the more demanding online
setting in which customers arrive one at a time, in both the full-information and posted-price settings.

9.1 Subsequent Work

Following the initial publication of our work, Krauthgamer, Mehta and Rudi@} have provided im-

proved approximation guarantees for the graph vertex pricing problem in the special case when the range
of bidders’ valuations is small. Briest and Krysta obsejetifiat our algorithms in Sectiondand4

can be adapted to obtain similar guarantees for the case of unlimited supptemandombinatorial
auctions. Balcan et al2] further study how pricing certain items below their marginal cost can lead to

an improvement in overall profit. In particular, they developréteateandcouponmodels for analyzing

this issue and examine “profitability gaps” (to what extent can pricing below cost help to improve profit)
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as well as algorithms for pricing. Elbassioni et dl1] give a quasi-polynomial time approximation
scheme for the highway problem.

9.2 Open Questions

There are several natural open problems left by this work.

First, can one improve on the factor of 4 for the graph vertex-pricing problem? Any method able to
reduce the factor of 2 for the bipartite case would immediately result in an improved bound. Alterna-
tively, perhaps the reduction to the bipartite case can be improved. Second, can onea&hirehe
hypergraph vertex-pricing problem? Even for the general case there remains a gap between the known
upper bounds and the lower bound de].

Finally, an intriguing question related to this work is: what kind of approximation guarantees are
achievable if one allows the seller to price some items below cost (i.e., to have “loss leaders”)? Some
progress on this direction has been made&]njowever, we still do not know if there exists a constant-
factor approximation for the graph vertex pricing problem (even the bipartite case) when negative profit
margins on some items are allowed.
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