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Abstract: We present approximation and online algorithms for problems of pricing a
collection of items for sale so as to maximize the seller’s revenue in an unlimited supply
setting. Our first result is anO(k)-approximation algorithm for pricing items to single-
minded bidders who each want at mostk items. This improves over work of Briest and
Krysta (2006) who achieve anO(k2) bound. For the casek = 2, where we obtain a 4-
approximation, this can be viewed as the followinggraph vertex pricingproblem: given
a (multi) graphG with valuationswi j on the edges, find pricespi ≥ 0 for the vertices to
maximize

∑
{(i, j):wi j≥pi+p j}

(pi + p j) .

We also improve the approximation of Guruswami et al. (2005) for the “highway problem”
in which all desired subsets are intervals on a line, fromO(logm+ logn) to O(logn), where
m is the number of bidders andn is the number of items. Our approximation algorithms can
be fed into the generic reduction of Balcan et al. (2005) to yield an incentive-compatible
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auction with nearly the same performance guarantees so long as the number of bidders is
sufficiently large. In addition, we show how our algorithms can be combined with results
of Blum and Hartline (2005) and Kalai and Vempala (2003) to achieve good performance
in the online setting, where customers arrive one at a time and each must be presented a set
of item prices based only on knowledge of the customers seen so far.

1 Introduction

Consider the problem of a retailer trying to price its products to make the most profit. If customers had
valuations over individual items only, then the problem of setting prices would be relatively easy: for
each producti, the optimal price for that product is such that the profit marginpi per item sold, times
the number of customers who would buy at that price, is maximized. So, each item can be considered
separately, and assuming the company knows its market well, thecomputationalproblem of setting
prices is fairly trivial.

However, suppose that customers have valuations overpairsof items (e.g., a computer and a monitor,
or a tank of gas and a cup of coffee), and will only purchase if the combined price of the items in their
pair is below their value. In this case, we can model the problem as a (multi)graph, where each edgee
has some valuationwe, and our goal is to set pricespi ≥ 0 on the vertices of the graph to maximize total
profit: that is,1

Profit(p) = ∑
e:we≥price(e)

price(e),

where price(e) = ∑i∈e pi , andp is the vector of individual prices.
We call this thegraph vertex pricingproblem. More generally, if customers have valuations over

larger subsets, we can model our computational problem as one of pricing vertices in ahypergraph,
or in more standard terminology, the problem of pricing items in an unlimited-supply combinatorial
auction with single-minded bidders. Guruswami et al. [15] show anO(logm+ logn)-approximation
for the general problem, wheren is the number of items (vertices) andm is the number of customers
(hyperedges). They also show that even thegraphvertex pricing problem is APX-hard — and this is true
even when all valuations are identical (if customers wanting just one item are allowed) or all valuations
are either 1 or 2 (if such customers are not allowed). In related work, Hartline and Koltun [16] give
a (1+ ε)-approximation that runs in time exponential in the number of vertices, but that is near-linear
time when the total number of vertices in the hypergraph is constant. Recently, Demaine et al. [10] have
shown that it is hard to approximate the hypergraph vertex pricing problem within a factor of logδ n, for
someδ > 0, assuming that NP6⊆ BPTIME

(
2nε )

for someε > 0.
In this paper, we give a 4-approximation for the graph vertex pricing problem, and more generally

we present anO(k)-approximation for the case of hypergraphs in which each edge has size at mostk

1This formula corresponds to a model in which items have zero marginal cost to the retailer (digital goods) so that an item
sold at pricepi generates profitpi . Alternatively, if products have a fixed marginal cost, and we cannot sell them below cost
(say, due to the presence of resellers), then we can think ofpi as the profit margin on itemi and simply subtract our costs for
the endpoints from each valuationwe.
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(i.e., all customers’ valuations are over subsets of size at mostk). The latter result improves over the
work of Briest and Krysta [7] who give a bound ofO(k2).

We also consider the highway problem studied in [15]. This problem is the special case of the
hypergraph pricing problem where vertices are numbered 1, . . . ,n and each customer wants an interval
[i, j].2 For this problem, we give anO(logn)-approximation, improving slightly over theO(logm+ logn)
approximation of [15], and also give anO(1)-approximation for the case that all users want thesame
numberof items up to a constant factor. In addition, we give a fully polynomial time approximation
scheme (FPTAS) for the case that the desired subsets of different customers form a hierarchy (this is
defined more precisely in Section7).

Finally, we consider the question of what happens if we are allowed to price some itemsbelowtheir
cost, and give an example in the context of graph vertex pricing in which such pricing can produce an
Ω(logn) factor more profit than possible if all items must be priced above cost. However, we do not
have any good (o(logn)) approximation algorithms for that setting.

Incentive-compatibility Our results described above assume the seller “understands the market”: how
many customers will buy different sets of items and at what prices. Thus, we are simply left with a
computational problem. If we do not understand the market and are in the setting of an unlimited-
supply combinatorial auction, we would instead want an algorithm that isincentive-compatible, meaning
that it is in bidders’ self-interest to reveal their true valuations. Fortunately, a generic reduction of
[3] shows that if there are sufficiently many bidders, then for problems of this type one can convert
any approximation to the computational problem into a nearly-as-good approximation to the incentive-
compatible auction problem. In particular,Õ

(
hn
ε2

)
bidders are sufficient for this reduction to produce

only a factor(1+ ε) loss in approximation ratio when all valuations lie in the range[1,h]. Essentially,
the idea of the reduction is to randomly partitions bidders into two setsS1 andS2, run the approximation
algorithm separately on each set, and then use the prices found forS1 on S2 and vice-versa (making the
process incentive-compatible); the results in [3] then show thatÕ

(
hn
ε2

)
bidders are sufficient to ensure

that the resulting profit is nearly as large as if one had used prices determined on eachSi on that set itself.
Related results of [14, 13] give bounds of this form for the case of a single digital good. Thus, if one has
sufficiently many bidders, one can focus attention on the computational approximation problem.

The above results assume a one-shot mechanism (sealed-bid auction) in which all bidders are present
at the same time. We also consider the more demanding case that bidders arrive online, and one must
present to each bidder a set of item prices that depend only on bidders seen in the past. We show how
methods of [5, 6] for the online digital-good auction can be applied to our algorithms for graph (ork-
hypergraph) vertex pricing to achieve good performance for these problems in the online setting as well.
For the highway problem, we need a somewhat more involved argument using an algorithm of Kalai and
Vempala [18].

Organization The rest of this paper is organized as follows. We begin with basic definitions in Sec-
tion 2. We then present our 4-approximation algorithm for the graph vertex problem in Section3 and our

2Previous work [16, 15] uses “m” to denote the number of items and “n” to denote the number of customers, viewing the
itemsas edges in some network. Since we are viewing items as vertices and customers as (hyper)edges, we have reversed this
notation.
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O(k)-approximation algorithm for thek-Hypergraph Vertex Pricing problem in Section4. We discuss
pricing below cost in Section5, and present anO(logn) approximation for the highway problem in Sec-
tion 6. We present a fully polynomial time approximation scheme (FPTAS) for the case that the desired
subsets of different customers form a hierarchy in Section7, and we show how our algorithms can be
adapted to achieve good performance in the online setting in Section8. We finish with a discussion of
open questions in Section9.

2 Notation and Definitions

We consider the following model introduced by Guruswami et al. [15]. We assume we havemcustomers
(or “bidders”) andn items (or “products”). We are in anunlimited supplysetting, which means that the
seller is able to sell any number of units of each item, and they each have zero marginal cost to the seller
(or if they have some fixed marginal cost, we have subtracted that from all valuations and the seller may
not sell any item below cost). We considersingle-minded bidders, which means that each customer is
interested in only a single bundle of items and has valuation 0 for all other bundles. Therefore, valuations
can be summarized by a set of pairs(e,we) indicating that a customer is interested in bundle (hyperedge)
e and values it atwe. Given the hyperedgese and valuationswe, we wish to compute a pricing of the
items that maximizes the seller’s profit. We assume that if the total price of the items ine is at mostwe,
then the customer(e,we) will purchase all of the items ine, and otherwise the customer will purchase
nothing. That is, we want the price vectorp = (p1, . . . , pn) with pi ≥ 0 for all i that maximizes

Profit(p) = ∑
e:we≥price(e)

price(e), where price(e) = ∑
i∈e

pi .

Let p∗ be the price vector with the maximum profit and let OPT= Profit(p∗).
Let us denote byE the set of customers, andV the set of items, and leth= maxe∈E we. LetG= (V,E)

be the induced hypergraph, whose vertices represent the set of items, and whose hyperedges represent
the customers. Notice thatG might contain multi-edges since several customers might want the same
subset of items. In the special case that all customers want at most two items, soG is a multi-graph
(possibly with self-loops), we call this thegraph vertex pricingproblem. As mentioned in Section1,
this pricing problem was shown to be APX-hard in [15]. If all customers want at mostk items, we call
this thek-hypergraph vertex pricingproblem. Guruswami et al. [15] present a simpleO(logm+ logn)
approximation algorithm for the general hypergraph vertex pricing problem.3 Our goal is to achieve
better guarantees for the graph ork-hypergraph case whenk = o(logn).

3 Graph Vertex Pricing

We begin by considering the Graph Vertex Pricing problem, and show a factor 4 approximation.

Theorem 3.1. There is a4-approximation for the Graph Vertex Pricing problem.

3In fact, it has been shown recently in [4] that one can achieve anO(logm+ logn) approximation for bidders withgeneral
valuation functions(not only single-minded bidders).
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Proof. First notice that ifG is bipartite (with self-loops allowed as well), then there is a simple 2-
approximation algorithm. Specifically, consider the optimal price-vectorp∗ and let OPTL be the amount
of profit it makes from selling nodes on the left, and OPTR be the amount it makes from selling nodes on
the right (so OPT= OPTL +OPTR). Notice that if one takesp∗ and zeroes out all prices for nodes on the
right, then this has profit at least OPTL since all previous buyers still buy (and some new ones may too).4

Therefore, we can algorithmically make profit at least OPTL by setting all prices on the right to 0, and
then separately fixing prices for each node on the left so as to make the most profit possible from each
node. That is, for each nodei, we simply order the buyers who wanti by valuationwe1 ≥ we2 ≥ we3 . . .,
and choose the pricepi = wej maximizing jwej . (Since the graph is bipartite, the profit made from some
nodei on the left does not affect the optimal price for some other nodei′ on the left.) Similarly we can
make at least OPTR by setting prices on the left to 0 and optimizing prices of nodes on the right. So,
taking the best of both options, we make

max(OPTL,OPTR)≥ OPT
2

.

Now consider the general (non-bipartite) case. Defineopte to be the amount of profit that OPT
makes from edgee. We will think of opte as theweightof edgee, though it is unknown to our algorithm.
Let E2 be the set of edges that have two distinct endpoints, and letE1 be the set of self-loops. Let
OPT1 be the profit made byp∗ on edges inE1 and let OPT2 be the profit made byp∗ on edges inE2,
so∑e∈Ei

opte = OPTi for i = 1,2 and OPT1 +OPT2 = OPT. Now,randomlypartition the vertices into
two setsL andR. Since each edgee∈ E2 has a 50% chance of having its endpoints on different sides, in
expectation1

2OPT2 weight is on edges with one endpoint inL and one endpoint inR. Thus, if we simply
ignore edges inE2 whose endpoints are on the same side and run the algorithm for the bipartite case, the
profit we make in expectation is at least

1
2

[
OPT1 +

OPT2

2

]
≥ OPT

4
.

This proves the desired result.

Derandomization If desired, the above algorithm can be derandomized using the fact that our analysis
only needs the partitioning distribution to be pairwise-independent. In particular, pairwise-independent
distributions can be realized using small (polynomial-size) sample spaces [20, 22]. Thus, given a prob-
lem instance, one can simply try each possibility in the sample space and then choose the one that
produces the highest profit.

4 k-Hypergraph Vertex Pricing

We now show how to extend the algorithm in Theorem3.1 to get anO(k)-approximation when each
customer wants at mostk items. This improves over theO(k2) bound of [7].

Theorem 4.1. There is an O(k)-approximation algorithm for the k-Hypergraph Vertex Pricing problem.

4Note that it is essential in this argument thatp∗i ≥ 0 for all i.
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Proof. We can use the following procedure.

Step 1 Randomly partitionV into VL andVrest by placing each node intoVL with probability 1
k .

Step 2 Let E′ be the set of edges withexactlyone endpoint inVL. Ignore all edges inE−E′.

Step 3 Set prices inVrest to 0 and set prices inVL optimally with respect to edges inE′.

To analyze this algorithm, let OPTi,e denote the profit made byp∗ selling item i to biddere. (So
OPTi,e ∈ {0, p∗i } and OPT= ∑i∈V,e∈E OPTi,e.) Notice that the total profit made in Step 3 isat least
∑i∈VL,e∈E′ OPTi,e because setting prices inVrest to 0 can only increase the number of sales made byp∗ to
bidders inE′. Thus, we simply need to analyze the quantityE

[
∑i∈VL,e∈E′ OPTi,e

]
.

Define indicator random variableXi,e = 1 if i ∈VL ande∈ E′, andXi,e = 0 otherwise. We have:

E[Xi,e] = Pr[i ∈VL ande∈ E′]≥ 1
k

(
1− 1

k

)k−1

(4.1)

Therefore,

E

[
∑

i∈VL,e∈E′
OPTi,e

]
= E

[
∑

i∈V,e∈E

Xi,eOPTi,e

]
= ∑

i∈V,e∈E

E [Xi,e]OPTi,e

≥ 1
k

(
1− 1

k

)k−1

OPT

≥ OPT
ke

.

Derandomization As with the algorithm of Theorem3.1, the above algorithm fork-hypergraph vertex
pricing can also be derandomized if desired, but in this case we need the tools of Even et al. [12]. First,
note that we are only interested in the case thatk is o(logn+ logm), since for larger values ofk we can
switch to the generic algorithm of Guruswami et al. [15]. Thus, we can allow for a blowup of 2O(k) in
our running time. Now, consider the algorithm in Theorem4.1 and define indicator random variables
Xi = 1 if i ∈ VL andXi = 0 otherwise. So, eachXi = 1 with probability 1

k , and notice that we need
only k-wise independence among theXi to calculateE[Xi,e] in Equation (4.1). Even et al. [12] give a
construction of small sample spaces that is especially well-suited to our needs. Their construction runs
in time polynomial in 2k, n, and 1

ε
, and produces an explicit sample space with the following property:

for anyk-tuple (Xi1, . . . ,Xik) of the random variablesXi and any assignment(v1, . . . ,vk) to their values,
the fraction of points in their sample space under which these variables all take on those values is within
±ε of the probability of this event under our product distribution. In particular, thek-tuples we care
about are those corresponding to edgese∈ E, with values of the form(1,0, . . . ,0) corresponding to the
event thatXi,e = 1. Settingε = o

(
1
k

)
, we get that under the uniform distribution over their sample space,
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Equation (4.1) holds up to 1−o(1), which suffices for our bounds. Thus, we simply run the construction
of Even al. [12] using such a value ofε, and try each partitioning in their explicit sample space, choosing
the one that produces the highest profit.

5 Pricing below Cost

Following prior work [15] we have so far required solutions to satisfypi ≥ 0 for all i. In fact, for the case
of digital goods, it does not make sense to allow negative prices since even customerse for whom i 6∈ e
would purchase itemi if pi < 0 (and moreover purchase infinitely many copies). However, in the case
of products of nonzero marginal cost, where we viewpi as aprofit margin(the difference between sales
price and the retailer’s cost) it could make sense to allowpi to be negative. In fact, a retailer might wish
to do so in order to induce more purchases of bundles containing both those and other more expensive
products. For example, consider four itemsA, B, C, andD, and three customers: one who values{A,B}
at $10 above their combined cost, one who values{B,C} at $40 above their cost, and one who values
{C,D} at $10 above their cost. If no item can be priced at a loss, then it is not possible to have all three
customers buy at their valuations. On the other hand, by pricingA andD at $10 below cost, andB andC
at $20 above cost, the seller could extract full profit (assuming all costs are at least $10). More generally,
we present anΩ(logn) “positivity gap”: a (bipartite) graph in which there is anΩ(logn) gap between
the optimal profit achievable without any items priced at a loss and the optimal profit if such pricing is
allowed. Specifically:

Theorem 5.1. For the graph vertex pricing problem, there exists anΩ(logn) gap between the profit
achievable when pricing below cost is allowed and the profit achievable when pricing below cost is not
allowed.

Proof. Consider a bipartite graph with vertices`1, . . . , `n on the left andr1, . . . , rn on the right, where
for convenience letn be a power of 2. A setS1 of bidders each want bundles of the form{`i , r i+1} at
$1 above cost, a setS2 of bidders each want bundles of the form{`i , r i+2} at $2 above cost, a setS4

of bidders each want bundles of the form{`i , r i+4} at $4 above cost, and so forth, up toSn/2. Suppose
there are(n−1)n bidders inS1 (n for each value ofi ∈ {1, . . . ,n−1}), there are(n−2)n/2 bidders in
S2 (n/2 for each value ofi ∈ {1, . . . ,n−2}), there are(n−4)n/4 bidders inS4 (n/4 for each value of
i ∈ {1, . . . ,n−4}) and so on, down to(n/2)2 bidders inSn/2 (2 for eachi ∈ {1, . . . ,n/2}). In this case,
if negative profit margins are allowed, then one can price each`i at profit−i and eachr i at profit i and
have all bidders buy at exactly their valuations, extracting full profitΘ(n2 logn). On the other hand,
the structure of bidders is such that the set of bidders who want any given item form an “equal revenue
distribution”. In particular, for any pricing in which all items on one side (say on the right) are priced at
zero, any pricing of items on the other can produce at mostΘ(n) profit per item, orΘ(n2) total. This in
turn implies that it is not possible to get more thanΘ(n2) profit using only non-negative profit margins,
since we know the optimal profit achievable using non-negative profit margins is within a factor of 2 of
the profit achievable when setting all items on one side of the graph to 0.

Notice that our approximation algorithms in Sections3 and4 only provide good guarantees with
respect to the best profit achievable when pricing below cost is not allowed. We do not know whether it
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is possible to achieve ao(logn) approximation when pricing below cost is allowed, even for the case of
bipartite graphs.

For the rest of the paper, we resume considering only the case that all prices must be nonnegative.

6 The Highway Problem

A particular interesting case of the hypergraph pricing problem considered in [15] is thehighwayprob-
lem. In this problem we think of the items 1,2, . . . ,n as segments of a highway, and each desired subset
e is an interval[i, j] of the highway. A special case of this problem shown in [15] to be solvable in poly-
nomial time is the case when all path requests share one common end-pointr. For this case, Guruswami
et al. [15] give anO(m2) exact dynamic programming algorithm, which we will callA. They also give
pseudo-polynomial dynamic programming algorithms for two particular cases: anO(hh+2mh+3)-time
exact dynamic programming algorithm for the case when all valuations are integral, and anO(hk+1m)
time exact dynamic programming algorithm for the case that furthermore all requests have path lengths
bounded by some constantk. The highway problem was recently shown to be weakly NP-hard by Briest
and Krysta [7].

We present below (Theorem6.1) an O(logn) approximation algorithm for the highway problem,
improving over theO(logn+ logm) approximation guarantee of Guruswami et al. [15].

Theorem 6.1. There is an O(logn)-approximation algorithm for the highway problem.

Proof. For convenience we assumen is a power of 2 (which we can always achieve by padding). We
begin by partitioning the customers into log2n groups. Specifically, letS1 be the set of all customers
who want itemn

2. Let S2 be the set of all customers not inS1 who want either itemn
4 or item 3n

4 . More

generally, letSi be the set of customers not inS1∪·· ·∪Si−1 who want some item in
{

n
2i ,

3n
2i , . . . ,

(2i−1)n
2i

}
.

Now, for each setSi we can use algorithmA from [15] to get a 2-approximation to the optimal profit
overSi . Specifically, for eachj ∈ {1, . . . ,2i −1} let Si j be the subset of customers inSi who want item
jn
2i . Notice that by design, customers in setSi j do not have any desired item in common with customers
in Si j ′ for j ′ 6= j, which means we can consider each of them separately. Now, for eachSi j we get a
2-approximation to OPT(Si j ) by runningA twice, first zeroing out all prices for itemsz< jn

2i and then

again zeroing out all prices for itemsz> jn
2i and taking the best of the two cases. Since there are only

log2n groupsSi , we simply use the algorithmA from [15] to get a 2-approximation to the optimal profit
overSi , and then take the best of all options, thus obtaining a 2log2n approximation overall.

6.1 Special cases

Using algorithmA we can also get a constant-factor approximation in the special case that everyone
wants exactlyk items, for any (not necessarily constant)k. To see this, split the items into groups
G1,G2, . . . ,Gn

k
of sizek, whereG1 consists of the firstk items,G2 consists of the nextk items and so on,

and let OPTevenand OPTodd be the amount of money that OPT makes from the even-numbered groups
and from the odd-numbered groups respectively. We can make at leastOPTeven

2 as follows. We first set
all the prices on items in the odd groups to zero. Now notice that each customer wants items in at most
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one even-numbered group: let us associate that customer with that group. We can now partition the
customers in each even group into two types: those who want the leftmost item in the group and those
who want the rightmost item in the group (customers who want both can be assigned arbitrarily). We
then run the dynamic program separately over each type, and take the best outcome. In a similar way,
we can make at leastOPTodd

2 by setting prices for items in the even groups to 0. So we try both and take
the best, thus obtaining a factor of 4 algorithm.

Similarly we can get a factor of 4c approximation algorithm if for some value ofk, all customers
want betweenkc andk elements.

7 When bidders form a hierarchy

We present a fully polynomial time approximation scheme for the case that the desired subsets of differ-
ent (single-minded) customers form a hierarchy, also known as a laminar family of sets.5 Specifically,
we consider the case of a hypergraph where for any two edgese,e′, we havee⊆ e′ or e⊇ e′ or e∩e′ = /0.
This means that the edges themselves can be viewed as forming a tree structure (actually, a forest) or-
dered by containment. LetTe be the set of all bidders whose desired subset is contained ine. Note that
we can assume for simplicity that we have a binary hierarchy (if the hierarchy is not binary, then we can
transform it into a binary hierarchy by adding fake edgese, increasing the size of the hypergraph by at
most a constant factor).

We start by presenting a pseudopolynomial algorithm for the case that the bidders have integral
valuations (between 0 andh). In this case, by the integrality lemma in [15] there exists an integral
optimal solution. For eache∈ E and nonnegative integers≤ h, let us denote byne

s the number of
bidders with desired sete whose valuations are at leasts. Now, for eache∈ E and nonnegative integer
s≤ nh, let A[s,e] represent the maximum possible profit we get from bidders inTe when the total sum of
the prices on items ine is exactlys. Our dynamic programming algorithm for computing the quantities
A[s,e] can be now specified as follows.

Step 1 For each “leaf”e in the hierarchy (an edgee that does not contain any other edgese′) initialize
A[s,e] = s·ne

s.

Step 2 Consider any edgee with childrene1 ande2 whoseA-values have been computed. Compute
A[s,e] = max

s1+s2=s
(A[s1,e1]+A[s2,e2])+sne

s.

Step 3 Return max
s≤nh

A[s, r]. (Herer is the root of the hierarchy).

After computing theA-values, we can then easily determine the optimal pricing vector by backtracking.
Clearly, the overall procedure above runs in time polynomial inn, m andh.

If we do not want to have a polynomial dependence onh, we can instead use the above pseudopoly-
nomial algorithm to obtain an FPTAS in a fairly standard way as follows.

Step 1 Givenε > 0, let l = εh
nm.

5Independently, Briest and Krysta [7] show a similar result. They also show that this problem in NP-hard.
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Step 2 Definew′
e =

⌊we
l

⌋
, for each hyperedgee∈ E.

Step 3 Run the dynamic programming algorithm on the instance specified byG= (V,E) and valuations
w′

e, and letp′ be the returned price vector.

Step 4 Output the price vector̃p defined as ˜pi = l · p′i , for i ∈V.

Theorem 7.1.The above algorithm is an FPTAS, achieving profit at least(1−ε)OPTin time polynomial
in n, m, and1

ε
.

Proof. In the following discussion, let Profitw′(p) denote the profit made by using the price vectorp
in the rounded instance specified byG = (V,E) and valuationsw′

e. In order to prove that the profit we
obtain by using̃p in the original instance (given byG= (V,E) and valuationswe) is at least(1−ε)OPT,
we first make some observations.

Let p be a price vector and letW be the set of winners under the pricing schemep in the original
instance. Ifp′′ is the pricing vector defined asp′′i =

⌊ pi
l

⌋
for i ∈V, then Profitw′(p′′)≥ 1

l ·Profit(p)−nm.
To see why this is true, notice first thatW⊆W′′, whereW′′ is the set of winners under the pricing scheme
p′′ in the rounded instance (specified byG = (V,E) and the valuationsw′

e). This follows from the fact
that ∑

i∈e
pi ≤ we implies ∑

i∈e
p′′i = ∑

i∈e

⌊ pi
l

⌋
≤

⌊we
l

⌋
= w′

e. This implies

Profitw′(p′′) = ∑
e∈W′′

∑
i∈e

p′′i ≥ ∑
e∈W

∑
i∈e

( pi

l
−1

)
≥ 1

l
·Profit(p)−nm,

as desired.
Let p′ be a pricing vector and letW′ be the set of winners under the pricing schemep′ in the rounded

instance. Ifp̃ is the pricing vector defined as ˜pi = l · p′i for i ∈V, then Profit(p̃)≥ l ·Profitw′(p′). To see
why this is true, notice first thatW′ ⊆W, whereW is the set of winners underp̃ in the original instance.
This follows from the fact that∑i∈e p′i ≤ w′

e implies ∑i∈e p̃i = l ·∑i∈e p′i ≤ l ·w′
e = l

⌊we
l

⌋
≤ we. This

implies

Profit(p̃) = ∑
e∈W

∑
i∈e

p̃i = ∑
e∈W

∑
i∈e

l · p′i ≥ ∑
e∈W′

∑
i∈e

l · p′i = l ·Profitw′(p′),

as desired.
We are now ready to show that Profit(p̃)≥ (1− ε)OPT. Letp∗ andp′ be the price vectors with the

maximum profit in the original and rounded instances respectively, and letW∗ andW be the correspond-
ing set of winners. Let̃p be the price vector defined as ˜pi = l · p′i for i ∈ V and letp′′ is the pricing

vector defined asp′′i =
⌊

p∗i
l

⌋
for i ∈ V. According to the previous observations we have Profit(p̃) ≥

l ·Profitw′(p′). Sincep′ is the price vector with the maximum profit in the rounded instance we have
Profitw′(p′)≥Profitw′(p′′). Combining these together with the fact that Profitw′(p′′)≥ 1

l ·Profit(p∗)−nm,
we get Profit(p̃)≥ Profit(p∗)− lnm, which implies Profit(p̃)≥ (1− ε)OPT, as desired.

Sincew′
e≤ nm

ε
for all e∈ E, we also have that our procedure runs in polynomial time inn, m, and1

ε
,

thus being an FPTAS for the hierarchy case.
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8 Online Pricing

As mentioned in Section1, results of Balcan et al. [3] can be used to convert our algorithms into
incentive-compatible mechanisms in the offline “batch” setting (i.e., a sealed-bid auction). In this sec-
tion we consider a natural, more demandingonlinesetting in which customers arrive one at a time, and
we must assign prices to the items for customert based only on information about customers 1, . . . , t−1.

8.1 The model

We assume customers arrive one at a time. Each customer will be shown a set of item prices, and
will then decide whether to purchase or not at those prices. We assume customers cannot return and
cannot control their time of arrival, so any take-it-or-leave-it set of prices for customert based only
on information received from customers 1, . . . , t − 1 is incentive-compatible. In addition, we assume
an oblivious adversarymodel: that is, our objective is to achieve good expected performance for any
sequence of customers, but this sequence cannot depend on the outcome of any probabilistic choices
made by our algorithm. As before, we usem to denote the total number of customers.

We consider two information models. In thefull information model, we assume that after thet-th
customer departs, we learn his desired setet and valuationvt . In the more difficultposted-pricemodel,
we assume we only find out whether and what the customer purchased but not his actual valuations.
That is, if he purchases a subset at the current prices, we do not know if he still would have purchased
at higher prices, and if he does not purchase at the current prices, we do not know if (or what) he would
have purchased at lower prices. In both models, we will be interested in algorithms that perform well
compared to the best fixed setting of prices for the entire sequence. Thus, we are comparing to the same
notion of OPT as in the offline case.

8.2 The Online Graph andk-Hypergraph Pricing Problems

Our 4-approximation for graph vertex-pricing, and ourO(k)-approximation fork-hypergraph vertex
pricing, can be directly adapted to the online setting by using the results of [5, 6] for the online digital-
good auction. In particular, for the full-information setting, Blum and Hartline [5] show the following:

Theorem 8.1 ([5]). Consider the online pricing problem for a single item (n= 1) in the full-information
setting. There exists an online algorithm such that for any givenε > 0, its expected profit on any input
sequence of maximum valuation h is at least(1− ε)OPT−O(nh

ε
log 1

ε
).

We can now use this to prove the following result.

Theorem 8.2. Consider the online hypergraph vertex pricing problem in the full-information setting.
There exists an online algorithm such that for any givenε > 0, its expected profit on any input sequence
is at least(1− ε)ALG−O(nh

ε
log 1

ε
), whereALG is is the profit of theoffline approximation algorithm

in Section4 on that input.

Proof. Note that our algorithms in Sections3 and4 begin by selecting a subsetVL of items to have
non-zero prices, and then achieve their approximation guarantees considering only profit made from
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customers who want exactly one item inVL. Thus, we can view these algorithms as effectively perform-
ing |VL| separate digital-good auctions, ignoring customers who want zero, or more than one, item from
VL. In particular, to apply these algorithms to the full-information online setting, we begin by randomly
choosing the setVL as described in the algorithms, setting prices for items inV −VL to 0. We then
instantiate a separate copy of the online digital-good auction from [5] for each itemi ∈ VL. When a
customer arrives, if the customer wants exactly one itemi from VL, then his valuation is given to the
associated online auction algorithm. Let OPTi denote the optimal profit achievable using a fixed price
for item i from customers whose bundles contain itemi but no other item inVL. By Theorem8.1, the
expected profit of the online auction for itemi will therefore be at least(1−ε)OPTi −O(h

ε
log 1

ε
). Thus,

overall, we achieve profit at least(1− ε)∑i∈VL
OPTi −O(nh

ε
log 1

ε
), where∑i∈VL

OPTi is the profit of the
offline approximation algorithm. Note that we need the assumption of an oblivious adversary for the
approximation ratios proved in Sections3 and4 to apply.

In particular, so long as the offline algorithm’s profit isΩ(nh
ε2 log 1

ε
), we lose only a(1+O(ε)) factor

in the conversion to the online setting. In the posted-price setting, we can obtain a similar result: we only
need to apply the associated posted-price algorithms of [5, 6]. The only tricky issue is that a customer
who chooses not to buy anything must be fed in as a non-buyer toall of the online algorithms, in order
to ensure that the sequence of customers fed into algorithmi is a superset of the true customers for that
item (so that the value of OPT for the sequence fed to the algorithm is at least as large as the true OPT
for that item). In addition, the algorithms for the posted-price scenario require that the upper-boundh
on the maximum valuation be known in advance.

8.3 The Online Highway Problem

For the highway problem, we cannot decompose our solution into a collection of independent digital-
good auctions, so the reduction in Section8.2 does not apply. However, wecan convert to the online
setting by placing this problem in the framework ofonline geometric optimizationstudied by Kalai and
Vempala [18] as extended to the case of approximation algorithms by Kakade et al. [17]. In particular,
[17] gives a method to convert any efficient approximation algorithm for offline optimization into an
efficient algorithm foronline optimization with asymptotically the same approximation ratio, for any
problem of the following type:

1. There is a setS⊆ Rd of feasible points. At each time stept we must pick some pointpt ∈ S; we
are then given an objective functionvt ∈ Rd, and we obtain profitpt ·vt .

2. Our goal is to perform nearly as well as the best pointp ∈ S in hindsight. That is, we want∑
t

pt ·vt

to be nearly as large as max
p∈S

∑
t

p ·vt .

3. We have an efficientα-approximation algorithm for theofflineoptimization problem: given ob-
jective functionv ∈ Rd, find the pointp ∈ S that maximizesp ·v.

Kalai and Vempala [18] (for the case of exact offline algorithms) and Kakade et al. [17] (for the
case of approximation algorithms) give a procedure for choosing pointspt online for any problem of the
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above type such that the total profit obtained,∑t pt · vt , is within a(1− ε)/α factor of the profit of the
bestp ∈ S in hindsight, minus an additive term that is polynomial in the diameter ofSand the maximum
L1 magnitude of anyvt .

We can place the highway problem into the above setting as follows. First, for simplicity of exposi-
tion, let us assume all bidders have integral valuations between 0 andh, and that we are willing to have
an algorithm that runs in time polynomial inh as opposed to logh (the general case can be handled by
rounding and scaling as in Section7). Now, let S be the set of all possible item prices represented in
the following way. Given a pricing of then items, letqi j denote the total cost of the bundle[i, j]. We
representqi j as a vector of lengthh consisting ofqi j −1 zeros followed byh−qi j + 1 entries at value
qi j . To represent the entire pricing of then items, we just concatenate thesen2 vectors together to create
a point inRd for d = n2h. A bidder who desires bundle[i, j] at valuew is represented as a vector of all
zero entries except for a 1 in thew-th coordinate of the block corresponding toqi j . By design, the dot
product of this vector with a vectorp ∈ S is exactly the profit that would be obtained from this bidder
by the item-pricing corresponding top. Finally, we can use the optimization algorithm from Section6
or from [15] as our offline optimization oracle. Since the diameter ofS is polynomial inn andh, and the
maximumL1 magnitude of anyvt is at most 1, the total profit obtained will be within a 1+ ε factor of
the approximation ratio guaranteed by the optimization algorithm, minus an additive loss term which is
polynomial inn andh.

Note that for the posted-price version, we just need to apply known extensions of the Kalai-Vempala
algorithm to the bandit setting [1, 21, 9, 17] in which only the profitpt ·vt and not the actual vectorvt is
revealed to the algorithm.

9 Conclusions

We present approximation and online algorithms for a number of problems of pricing items to consumers
so as to maximize seller’s revenue in an unlimited supply setting. We achieve anO(k)-approximation
algorithm for the case of single-minded bidders where each consumer wants at mostk items, anO(logn)
approximation for the highway problem from [15], and a constant factor approximation to the highway
problem when all bidders want approximately (up to a constant factor) the same number of items. We
also show how some of our approximation algorithms can be adapted to the more demanding online
setting in which customers arrive one at a time, in both the full-information and posted-price settings.

9.1 Subsequent Work

Following the initial publication of our work, Krauthgamer, Mehta and Rudra [19] have provided im-
proved approximation guarantees for the graph vertex pricing problem in the special case when the range
of bidders’ valuations is small. Briest and Krysta observe [8] that our algorithms in Sections3 and4
can be adapted to obtain similar guarantees for the case of unlimited supplyunit-demandcombinatorial
auctions. Balcan et al. [2] further study how pricing certain items below their marginal cost can lead to
an improvement in overall profit. In particular, they develop therebateandcouponmodels for analyzing
this issue and examine “profitability gaps” (to what extent can pricing below cost help to improve profit)
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as well as algorithms for pricing. Elbassioni et al. [11] give a quasi-polynomial time approximation
scheme for the highway problem.

9.2 Open Questions

There are several natural open problems left by this work.
First, can one improve on the factor of 4 for the graph vertex-pricing problem? Any method able to

reduce the factor of 2 for the bipartite case would immediately result in an improved bound. Alterna-
tively, perhaps the reduction to the bipartite case can be improved. Second, can one achieveo(k) for the
hypergraph vertex-pricing problem? Even for the general case there remains a gap between the known
upper bounds and the lower bound of [10].

Finally, an intriguing question related to this work is: what kind of approximation guarantees are
achievable if one allows the seller to price some items below cost (i.e., to have “loss leaders”)? Some
progress on this direction has been made in [2]; however, we still do not know if there exists a constant-
factor approximation for the graph vertex pricing problem (even the bipartite case) when negative profit
margins on some items are allowed.
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