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ABSTRACT
We consider the problem of pricingn items to maximize revenue
when faced with a series of unknown buyers with complex prefer-
ences, and show that a simple pricing scheme achieves surprisingly
strong guarantees.

We show that in the unlimited supply setting, a random single
price achieves expected revenue within a logarithmic factor of the
total social welfare for customers withgeneral valuation functions,
which may not even necessarily be monotone. This generalizes
work of Guruswami et. al [18], who show a logarithmic factor
for only the special cases of single-minded and unit-demandcus-
tomers.

In the limited supply setting, we show that forsubadditive val-
uations, a random single price achieves revenue within a factor of
2O(

√
log n log log n) of the total social welfare, i.e., the optimal rev-

enue the seller could hope to extract even if the seller couldprice
each bundle differently for every buyer. This is the best approxi-
mation known for any item pricing scheme for subadditive (oreven
submodular) valuations, even using multiple prices. We comple-
ment this result with a lower bound showing a sequence of subad-
ditive (in fact, XOS) buyers for which any single price has approx-

imation ratio2Ω(log1/4 n), thus showing that single price schemes
cannot achieve a polylogarithmic ratio. This lower bound demon-
strates a clear distinction between revenue maximization and social
welfare maximization in this setting, for which [12, 10] show that
a fixed price achieves a logarithmic approximation in the case of
XOS [12], and more generally subadditive [10], customers.
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We also consider the multi-unit case examined by [11] in the
context of social welfare, and show that so long as no buyer re-
quires more than a1 − ǫ fraction of the items, a random single
price now does in fact achieve revenue within anO(log n) factor
of the maximum social welfare.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: General

General Terms
Algorithms, Theory, Economics.

Keywords
Approximation Algorithms, Combinatorial Auctions

1. INTRODUCTION
Item pricing is one of the most fundamental problems in Eco-

nomics, and to a large extent describes today’s trading practices.
From a theoretical perspective, the issue of market equilibrium prices
has received enormous attention over the years. In this workwe do
not consider the equilibrium issues of market pricing, but rather
concentrate on the basic problem of revenue maximization. We
consider a single seller whose goal is to maximize his revenue,
who must set prices on items before the arrival of a sequence of cus-
tomers with complex, unknown preferences (e.g., think of a store or
a yard sale). We prove that a simple posted single pricing scheme
produces the best revenue guarantees known for this problemfor
two important classes of settings: buyers withgeneral valuations
for the case of items in unlimited supply, and buyers withsubaddi-
tive valuations for the case of items in limited supply. Note thatno
good approximation is possible for general valuations withlimited
supply.

Formally, the problem we analyze is the following. We consider
a single seller who hasn items each in limited or unlimited supply.
We assume there arem buyers with quasi-linear utilities who arrive
in an arbitrary order and who have unknown and potentially highly
complex valuations over subsets of these items.1 We consider the
revenue maximization objective—the goal of the seller is tomake
as much money as possible—and analyze a natural and ubiquitous
setting in which the seller first posts prices on the items andthen
buyers enter one at a time and purchase whatever subset of there-
maining items they want most. Since prices are fixed before buyers
1Quasi-linear utilities means that buyers prefer the set maximizing
the difference between its cost and its value. We assume the usual
oblivious adversary model in which the sequence and valuations of
buyers is determined in advance of any randomization made bythe
seller.



arrive, all upper bounds we present for our pricing scheme will
also apply to the problem of designingtruthful mechanisms with
revenue guarantees in the setting of combinatorial auctions. Note
that while much work on combinatorial auctions considers bundle-
pricing mechanisms (such as based on VCG), the vast majorityof
transactions in today’s world are conducted via pricing on items,
and thus it is important to understand what guarantees are possible
in such a setting. As an upper bound on the revenue that the seller
can hope to extract from the buyers we use the optimum social
welfare, which is the maximum possible sum of buyers’ valuations
in any allocation. This is is the most revenue the seller could ex-
tract even if the seller could price each bundle differentlyfor every
buyer.

In the limited supply setting, we consider important classes of
valuations functions which have previously been studied inthe con-
text of maximizing social welfare: submodular, XOS, and more
generally, subadditive valuation functions [14, 24, 22, 12, 26, 10].
We show here that for buyers with subadditive valuation functions,
a random single price achieves revenue within a2O(

√
log n log log n)

factor of the maximum social welfare. We complement this result
with a lower bound showing a sequence of subadditive (in fact,
XOS) buyers for which any single price has approximation ratio

2Ω(log1/4 n), thus showing that single prices cannot achieve a poly-
logarithmic ratio. Moreover, this lower bound holds even ifthe
price is determined based on advance knowledge of the order and
valuations of the buyers. The construction in this lower bound
demonstrates a clear distinction in this setting between revenue
maximization and social welfare maximization, for which [12, 10]
show that a fixed price achieves a logarithmic approximationin the
case of XOS [12], and more generally subadditive [10], customers.
We also show that even if we assume buyers arrive in arandom

order, there exists a set of buyers for which a2Ω(log1/4 n) lower
bound still holds. Note that our2O(

√
log n log log n) upper bound is

the best approximation known forany item pricing scheme for sub-
additive buyers, even if assigning different prices to different items
is allowed. We also show that for a special case we callsimple sub-
modular valuations (which generalizes unit-demand, additive, and
submodular symmetric valuations [23]), a random single price does
in fact achieve revenue within a logarithmic factor of the optimum
social welfare.

In the unlimited supply setting, we show that for buyers with
general valuation functions, there exists a single price one can as-
sign to all the items such that the retailer achieves revenuewithin a
logarithmic factor of the total social welfare (and furthermore this
holds in expectation if that price is chosen at random from anap-
propriate distribution).2 Our main result in the unlimited supply
setting (Theorem 9) turns out to provide a useful and convenient
structural characterization needed for proving the desired approxi-
mation for subadditive valuations in the limited supply case.

Finally, we consider the multi-unit auctions setting [11, 23] where
we have only one item and multiple copies of it, but buyers havear-
bitrarily complicated valuation functions over the number of copies
received. We show that under the assumption that the optimalallo-
cation gives at most a(1−ǫ) fraction of the items to any one buyer,
our single pricing scheme achieves a logarithmic approximation in
this setting as well.
Related work: Guruswami et al. [18] show that in an unlim-
ited supply combinatorial auction, if customers are unit-demand
or single-minded,3 then a random single price achieves expected

2An early version of our paper, with just this result, appearsas
CMU Tech Report CMU-CS-07-111 [4].
3A single-minded buyer is one who places some valuev on a single
setS or any superset ofS, and value 0 on any set that does not

revenue within a logarithmic factor of the total social welfare. In
this paper we show the restriction to single-minded or unit-demand
valuations is not required: in particular, we show that a random
single price achieves this guarantee for buyers withgeneral valu-
ation functions over bundles, which may not even necessarily be
monotone. Moreover, no item pricing scheme (even one that as-
signs each item a different price) can do better, even for a single
customer whose valuations are known to the seller.

Our result for the unlimited supply case appears in an earlier
version of this paper [4]. It was also discovered independently in a
different context by Briest et al. [6] who study single priceschemes
in a network setting. In their setting, a buyer has certain subgraphs
of the network it is interested in purchasing. A seller, who owns
the network, first prices the edges and then the buyer purchases
the cheapest subgraph it is interested in. They show that a single
fixed price for all the edges guarantees the seller a revenue within
logarithmic factor of the highest possible revenue.

As mentioned above, the setting we analyze can be viewed as an
online version of combinatorial auctions. The literature on com-
binatorial auctions is extensive and spans the fields of Economics,
Operations Research and Computer Science [8, 26]. In the Com-
puter Science community, there have recently been two main threads
of work: designing good algorithms [18, 1, 7, 2, 9, 20] and mech-
anisms [15, 16, 3, 19] forrevenue maximization in the unlimited
supply setting,4 and designing algorithms [14, 23] and computa-
tionally efficient mechanisms [24, 22, 12, 26, 10] to optimize so-
cial welfare in the limited supply setting. For a detailed related
work section see Appendix B, and for excellent recent overviews
see [5, 26, 21, 19].

In the context of social welfare maximization, work most related
to ours is that of Dobzinski et al. [12, 10], who show that in the
limited supply setting, a fixed price achieves a logarithmicapprox-
imation in the case of XOS or subadditive [12, 10] customers.In
our work we analyze its power for maximizing revenue.
Structure of this paper: This paper is organized as follows. We

start with terminology and formal definitions in Section 2. We then
present our results for the limited-supply setting in Section 3: we
show that for subadditive buyers, a random single price (with buy-
ers arriving in an arbitrary order) achieves a ratio2O(

√
log n log log n),

along with a2Ω(log1/4 n) lower bound for any single-price scheme
(even if buyers’ valuations are known in advance and buyers arrive
in a random order). We then analyze the unlimited supply setting in
Section 4 and prove that a random single price achieves a logarith-
mic ratio for buyers withgeneral valuation functions. We consider
multi-unit auctions as well as a special case of submodular valua-
tions in Section 5 and finish with a discussion in Section 6.

2. PRELIMINARIES
We consider the following setting. A single seller has a setJ of

n items, and there is a sequenceB of m buyers or customers, who
are interested in buying the items.

Each buyeri ∈ B has a private valuationvi(S) for each bun-
dle S ⊆ J of items, which measures how much receiving bun-
dle S would be worth to him. The utility of the buyeri ∈ B
for purchasing the setT is ui(T ) = vi(T ) − P

j∈T pj , where
pj is the price of itemj ∈ J . (For a single pricep we have
ui(T ) = vi(T )−|T |p.) That is, we assume that a buyer’s utility is
quasi-linear. Note that we implicitly assume that there areno exter-
nalities since the buyers’ utilities are completely determined by the

containS. A unit-demand buyer is one who has separate valuesvj

on each itemj, and values any given setS atmaxj∈S vj .
4Note that the social welfare objective is trivial in this setting: one
simply gives everything away for free.



set of items purchased and the price paid; buyers do not care about
the happiness of theother buyers, for instance. Finally, given the
valuation functions of the buyers, we defineHi = max

S
(vi(S))

andH = max
i,S

(vi(S)).

A buyer’s valuation function might be quite complex since there
are2n possible bundles, but we make the minimal (standard) as-
sumption that given a vectorp of item prices and a set of items
J ′ ⊂ J , the customer can determine the subsetT ⊂ J ′ it most
wants at those prices. Formally, the buyer has a demand oracle[26],
such thatDemandPrices(i,p, J ′) returns the set

T = arg max
S⊂J′

ui(S).

We analyze important classes of valuation functions which have
received substantial attention in the combinatorial auctions litera-
ture [14, 10, 12, 5]: submodular, XOS, and more generally, subad-
ditive valuation functions. A valuation functionv is submodular if
v(S∪T )+v(S∩T ) ≤ v(S)+v(T ), for all S, T ⊆ J . A valuation
v is subadditive ifv(S ∪ T ) ≤ v(S) + v(T ), for all S, T ⊆ J .
Between these two classes (submodular and subadditive) lies the
class of “XOS” valuations. A valuationv is XOS if there are addi-
tive valuations{a1, ..., at} such thatv(S) = maxk ak(S), for all
S ⊆ J . Submodular is strictly more restrictive than XOS which is
strictly more restrictive than subadditive.

We study both the limited supply setting, where without lossof
generality we may assume that exactly one copy of each item is
available, and the unlimited setting where the number of copies of
each item is as large as the number of buyers. It is assumed that
each buyer wants at most one copy of each item.

The pricing scheme we analyze throughout most of this paper is
a single posted price mechanism. The seller starts by choosing a
single posted pricep at random from an appropriate distribution.
The buyers then arrive in an arbitrary order, and each buyer at his
turn buys his most preferred set at the given price ofp per item.
(The order of buyers does not matter in the unlimited supply case.)
The revenue of the seller is then the total number of items pur-
chased timesp. Clearly, since the posted pricep is chosen indepen-
dently of the buyers valuations, this scheme falls into the category
of incentive-compatible mechanisms. In fact, there is no commu-
nication from the buyers, other than selecting the subset ofitems
they will purchase. (Note that even if we allow buyers to purchase
at multiple different times, since the price does not change, his best
policy is to buy the set of items that he desires when he first arrives.)

In the limited supply setting, where one copy of each item is
available, we say that an allocationT1, . . . , Tn is feasible ifTi ∩
Tj = ∅ for i 6= j. The social welfare of a feasible allocation
T1, . . . , Tn is

P

i vi(Ti). The social optimum is the value of the
allocation which maximizes the social welfare, which upperbounds
the seller’s revenue under any mechanism (even if the sellercan
have a different price for each bundle and buyer). In the unlimited
supply setting thesocial optimum is

Pm
i=1 Hi. Our bounds will

compare the expected revenue of the seller to the social optimum.
For simplicity, we assume throughout the paper that we know

H , and we remark on how to overcome exactly knowingH in Ap-
pendix A.

3. LIMITED SUPPLY: CUSTOMERS WITH
SUBADDITIVE VALUATIONS

In this section we consider the case of buyers with subadditive
valuations and analyze the single posted price mechanismRAN-
DOM Single Price (Algorithm 1).

We start by proving our main upper bound for revenue maxi-
mization in the limited-supply setting, showing thatRANDOM Sin-

Algorithm 1 RANDOM Single Price

Input: H = max
i,S

(vi(S)), ands a parameter.

Step 1 Let ql = H
2l−1 , for l ∈ {1, . . . , s}.

Step 2 Pick a posted pricep uniformly at random in{q1, ..., qs};

Step 3 Buyers arrive in an arbitrary order and purchase their most
preferred bundle. I.e., setR = J and do:

ProcedureGenerate Allocation (p)

For buyeri, let Si = DemandPrice(i, p, R).

AllocateSi to buyeri and charge itp|Si|
Let R = R \ Si.

Step 4 The seller has a remainder set of itemsR.

gle Price achieves a2O(
√

log n log log n) approximation to the social
optimum, assuming the buyer’s valuations are subadditive.We be-
gin with a definition from [12].

DEFINITION 1. An allocation S = (S1, . . . , Sm) is supported
at price p if, for each buyer i and for every possible bundle Wi ⊆
Si, it holds that vi(Wi) ≥ p|Wi|.

Before presenting the proof of our main result we first give two
useful lemmas. The first lemma states that if the valuation func-
tions are subadditive, then for every possible allocation it is pos-
sible to find a “contained” allocation and a pricep that supports it
such that if buyers purchased the supported allocation it would pro-
duce revenue comparable to the welfare of the original allocation.
(This is based on a result we prove in the next section.) Unfor-
tunately buyers left to their own devices might not purchasethe
supported allocation, however. The second lemma, though, states
that if Generate Allocation is run at pricep/2, then the allo-
cation produced at least will have large social welfare, even if the
revenue is not so high.

LEMMA 1. Assume that vi are subadditive. Let T1, . . . , Tm

be an arbitrary feasible allocation and let α = 1
4 log(2n2)

. There
exists a price p and subsets Li ⊆ Ti such that L1, . . . , Lm is an
allocation supported at price p and furthermore

m
X

i=1

vi(Ti) ≥
m

X

i=1

p|Li| ≥ α

m
X

i=1

vi(Ti).

The proof follows from Theorem 9 (which will be presented in
Section 4) and properties of subadditive valuation functions. In par-
ticular, we setLi = DemandPrice(i, p, Ti). The above lemma
suggests that if the seller can present every buyer a different setTi,
then its revenue would be close to the social welfare of theTis.
(For a full proof see Appendix A.)

The following lemma states that we have a reasonable chance
that the produced allocation has a high social value. The proof
follows along the lines of [12]. For completeness, we include it in
Appendix A.

LEMMA 2. Let L1, . . . , Lm be an allocation supported at price
p. Let S1, . . . , Sm be the allocation produced by Generate Allocation
with the price parameter p/2. Then:

m
X

i=1

vi(Si) ≥
m

X

i=1

(p/2)|Li|.



We now give our main upper bound for revenue maximization in
limited-supply setting, showing thatRANDOM Single Price achieves
a 2O(

√
log n log log n) approximation to the social optimum, assum-

ing the buyers’ valuations are subadditive. The high level idea of
the proof is the following. We first show that if we could limitthe
buyers to purchase only subsets of their assigned bundle in the so-
cial welfare-maximizing allocation, then we do achieve a logarith-
mic approximation using a random pricep. However, the problem
is that the buyers, when left to their own devices (i.e., whenthey are
allowed to purchase any subset they want), given a pricep might
buy a totally different subset, hurting the utility of subsequent buy-
ers. Here we might have two outcomes. The easy case is when
the number of items sold is sufficiently large, in which case we are
done. (Since we have a single price, the seller does not care which
items are sold, only how many.) The more difficult case is whenthe
number of items sold is fairly small. In this case we show thatwe
must have a small subset of the items such that its social welfare is
not too much less than the original. We then use the same argument
recursively on this smaller subset, and the recursive argument has
to be complete before we get to an empty set.

THEOREM 3. Assume that all the buyers have subadditive val-
uations, and let s = ⌊log2(2n2)⌋. The expected revenue of the
RANDOM Single Pricemechanism is OPT/2O(

√
log n log log n),

where OPT is the social optimum.

PROOF. Considerβ > 0, and letα̃ = α
2

whereα = 1
4 log(2n2)

.

Let T 1 = (T 1
1 , . . . , T 1

m) be an allocation that maximizes the total
social welfare. By Lemma 1 we know that there existsp1 and an al-
locationL1 = (L1

1, . . . , L
1
m), L1

i ⊆ T 1
i , such thatL1 is supported

at pricep1 and
Pm

i=1 p1|L1
i | ≥ α

Pm
i=1 vi(Ti) = α OPT. Let

S1
1 , . . . , S1

m be the allocation produced byGenerate Allocation
when run with the price parameterp1/2. By Lemma 2 we know
Pm

i=1 vi(S
1
i ) ≥ Pm

i=1 (p1/2)|L1
i |. So,

m
X

i=1

vi(S
1
i ) ≥ (α/2)

m
X

i=1

vi(T
1
i ) = α̃ OPT .

If we additionally have
Pm

i=1 |S1
i | ≥ β

Pm
i=1 |L1

i |, then the profit
of our algorithm at pricep1/2 is at leastα̃β OPT. Otherwise, if
Pm

i=1 |S1
i | < β

Pm
i=1 |L1

i |, let us denote byT 2 = (T 2
1 , . . . , T 2

m)

the allocationS1 = (S1
1 , . . . , S1

m). We now repeat this process
recursively onT 2.

In general, assume inductively that at iterationl of the argument
we have allocationT l with |T l| ≤ βl−1n and

Pm
i=1 vi(T

l
i ) ≥

α̃l−1 OPT. We know that there existspl and an allocationLl =
(Ll

1, . . . , L
l
m) with Ll

i ⊆ T l
i such thatLl is supported at pricepl

and
Pm

i=1 pl|Ll
i| ≥ α

Pm
i=1 vi(T

l
i ) ≥ αα̃l−1 OPT. LetSl

1, . . . , S
l
m

be the allocation produced byGenerate Allocation when run
with the price parameterpl/2. From Lemma 2 we know

m
X

i=1

vi(S
l
i) ≥

m
X

i=1

(pl/2)|Ll
i|.

So,
m

X

i=1

vi(S
l
i) ≥ (α/2)

m
X

i=1

vi(T
l
i ) = α̃l OPT .

If we additionally have
Pm

i=1 |Sl
i | ≥ β

Pm
i=1 |Ll

i|, then the profit
of our algorithm at pricepl/2 is at leastα̃lβ OPT. Otherwise, if
Pm

i=1 |Sl
i| < β

Pm
i=1 |Ll

i|, let us denote byT l+1 = (T l+1
1 , . . . , T l+1

m )

the allocationSl = (Sl
1, . . . , S

l
m), and we have|T l+1| ≤ βln,

maintaining the induction.

Considerβ = 1
nǫ . Then this process can continue for at most

l = 1/ǫ rounds and thus our argument above implies that the

profit of our algorithm is at leastOPT /(nǫ(8 log 2n2)
1
ǫ
+1). Set-

ting ǫ =
q

log log n
log n

, we obtain the desired competitive ratio of

2O(
√

log n log log n).

Note that in the argument above, the pricesp0, . . . , pl are mono-
tonically increasing. To better understand the argument and to mo-
tivate the lower bound given in Theorem 4 below, consider the
following interesting example with just one customer, whose val-
uation function is defined as follows. Partition then items into
setsS0, S1, S2, ..., St where setSi hasni = ni−1/X items
(so n = n0 + n0/X + . . . + n0/Xt; X ≫ 1 will be deter-
mined later). The valuation of our buyer is additive over items
within any given setSi and then the maximum over the setsSi

(so it is XOS). Assume that the value for each of the items in
Si is vi = ((X + 1 + ǫ)/2)i, so the value of thei-th bundle
nivi is approximatelyn/2i. The set of highest value isS0, so
suppose that as in the argument above, the seller chooses price
p = v0/2. Then, however, the buyer will purchaseS1 instead
becausen0(v0 − p) < n1(v1 − p), and then the seller makes a fac-
tor X less revenue. On the other hand, if the seller chooses price
p = v1/2 then the same reasoning shows that the buyer will instead
buyS2, and so on. This implies that if we limit ourselves to prices
of the formpi = vi/2, as our argument does, the best single price
is vt/2 which produces a revenue of only approximatelyn/2t. For
t =

√
log n andX = 2t = 2

√
log n we get a loss ofΩ(2

√
log n).

Note however that sincem = 1, weknow that there is a single price
which is log n competitive — see Theorem 9; e.g. the pricev1/4
would provide the desired ratio in this example.

This example raises the question of whether an alternative anal-
ysis could yield a better upper bound. We prove below a surprising
lower bound showing that even with just two buyers, due to the
interaction between them, one cannot achieve a polylog(n) ratio
by any single-price algorithm, even if the buyers’ valuations are
known in advance. This demonstrates a clear distinction between
the goals of revenue and social welfare maximization in the limited
supply, subadditive (or XOS) setting.

THEOREM 4. There exists a set of buyers with XOS valuations,
and an ordering of the buyers, such that any single posted price
(even chosen based on the buyers’ valuations) produces revenue at

most OPT/2(log n)1/4

.

PROOF. Let X = 2(log n)1/4

. Our goal is to show that no sin-
gle price can beat the ratioX. As we will see, it suffices to con-
sider only two buyers. The construction is inspired by the example
above, though it is a bit more intricate.

Let us partition the items into setsS0, S1, S2, ..., St where setSi

hasn/Xi items andt = logX (n) = (log n)3/4 (so, technically,
the total number of items is slightly larger thann). The valuation
of buyer2 will be additive over itemswithin any given setSi and
then max over the bundles. Notice that this implies that at any given
price, buyer2 will purchase items from at most one setSi.

We will define buyer2 so thatv2(Si) = (1−1/
√

log n)v2(Si−1).
The high level idea of the construction is that buyer2’s valuations
contain almost all of the total social welfare (the auctioneer can-
not hope to make sufficient revenue from buyer1). However, when
prices are such that buyer2 would ordinarily purchaseSi, and the
price is high enough so that this constitutes substantial revenue,
buyer1 (who arrives first) purchases just enough of setSi, i < t to
make buyer2 chooseSi+1 instead, reducing total revenue obtained
from buyer2 by a factor ofX. In addition, the final setSt has too

low total valuation since(1 − 1/
√

log n)t ≈ e−(log n)1/4

. Thus



the auctioneer cannot possibly receive enough revenue by having
buyer2 purchase the final set.

In order to make this work, we need for buyer1 to be able to
cause buyer2 to switch toSi+1 by purchasing only a1/X fraction
of Si (if buyer 1 purchased more than this fraction ofSi, then the
auctioneer would make too much revenue from buyer1). We do
this by defining buyer2’s valuations as follows. LetS′

i denote the
first |Si|/X elements withinSi and letLi = Xi(1 − 1/

√
log n)i.

We define buyer2 to have valueLi on each of the items inSi −S′
i

and valueLi(X − 1)/(
√

log n− 1) on each of the items inS′
i. So,

for instance, buyer2 has value1 on the items inS0 − S′
0 and value

(X − 1)/(
√

log n − 1) on items inS′
0. Thus,

v2(Si − S′
i) = n(1 − 1/X)(1 − 1/

p

log n)i

and

v2(S
′
i) = n(1 − 1/X)(1 − 1/

p

log n)i−1(1/
p

log n).

Putting these together we get:

v2(Si) = n(1 − 1/X)(1 − 1/
p

log n)i−1

= v2(Si−1 − S′
i−1).

In particular, the key points of this construction are the follow-
ing: (a) v2(Si+1) = v2(Si)(1 − 1/

√
log n), (b) v2(Si+1) =

v2(Si − S′
i), and (c)|S′

i| = |Si+1| = |Si|/X. In addition, buyer
2’s valuations are such that at any given price, it prefers to purchase
one of the setsSi in its entirety.

We will define buyer1’s valuations to be nonzero only over the
setsS′

0, S
′
1, . . . , S

′
t, and a max of sums just like buyer2. The prop-

erty we want from buyer1 is that it should purchaseS′
i when the

price is in the range[Li/X, 3Li/
√

log n] and furthermore it should
never produce much revenue for the seller. The reason we careonly
about this range is that below the lower end, we do not care if buyer
2 purchasesSi because the revenue to the auctioneer will be too
low (less thanv2(Si)/X). Above the upper end, we can show that
buyer2 prefersSi+1 − S′

i+1 to Si so he will not purchaseSi even
if buyer 1 purchasesS′

i+1. Specifically, the price at which buyer 2
is indifferent between setsSi andSi+1 − S′

i+1 is the pricep such
that:

n
`

1 − 1
X

´

“

1 − 1√
log n

”i−1

− p
n

Xi

= n
`

1 − 1
X

´

“

1 − 1√
log n

”i+1

− p n
Xi+1

`

1 − 1
X

´

.

Solving, we have

p = Xi
`

1 − 1
X

´

“

1 − 1√
log n

”i−1 “

1 −
“

1 − 1√
log n

”2 ”

“

X

X−(1− 1
X

)

”

≤ Xi
“

1 − 1√
log n

”i−1 “

2√
log n

− 1
log n

”

≤ Li

“

1√
log n

” “

2
√

log n−1√
log n−1

”

,

which is at most3Li/
√

log n for n ≥ 16. Moreover, we do not
need to worry that buyer 2 might prefer justS′

i to Si+1 − S′
i+1

since both sets have approximately the same size and yet items in
S′

i are much less valuable to buyer 2 than items inSi+1 − S′
i+1.

It remains to precisely define buyer1. To get the desired behavior
for this buyer we set its value on each of the items inS′

i to 4Li.
So v1(S

′
i) is 4(n/X)(1 − 1/

√
log n)i. We can now check that

buyer1 has the desired purchasing behavior: he purchasesS′
i when

prices are in the range[Li/X, 3Li/
√

log n], and yet he does not
provide enough profit to the auctioneer. To see that this is true
just notice that for allp = αLi, α ∈ [1/X, 3/

√
log n] we have

4(n/X)(1 − 1/
√

log n)i − α(n/Xi+1)Xi(1 − 1/
√

log n)i ≥
4(n/X)(1 − 1/

√
log n)j − α(n/Xj+1)Xi(1 − 1/

√
log n)i. for

all j 6= i. It’s easy to see that this true always forj > i and it is also
true whenj < i for large enoughn. Thus, buyer1 causes buyer
2 to purchase a set with a factorX less revenue to the auctioneer
than it would have purchased without the presence of buyer1, at
any price for which the auctioneer would have made substantial
revenue. This shows that any single price results in revenuethat is
a factorX worse than the total social welfare.

Note: It is easy to modify our example in Theorem 4 so that no
buyer has a significant fraction of the social welfare. Specifically,
we just need to maken “copies” of the example in Theorem 4, each
on a completely disjoint set of items (so there are2n buyers now,
andO

`

n2
´

items total), such that each buyer has valuation0 for all
items not from their own set. Then clearly all buyers have valuation
close to the average.

Clearly, the lower bound in Theorem 4 depends on a specific
adversarial ordering of the buyers. However, even if we assume
buyers arrive in arandom order, there exists a set of buyers for

which a2Ω(log1/4 n) bound still holds. Specifically:

THEOREM 5. There exists a set of buyers with XOS valuations,
such that any single posted price (even chosen based on the buy-
ers’ valuations) produces an expected revenue at most (m/X +
1/m)OPT , even under a random ordering of the buyers, where

X = 2(log n)1/4

. Setting m =
√

X we have a lower bound of

2Ω(log1/4 n).

Proof Sketch: We use a construction similar to the one in Theo-
rem 4, where instead of having only one buyer of type1, we have
m − 1 buyers of type1. For each type-1 buyerj and each bundle
S′

i there is a special shadow-copyS′
i,j that is only desired by this

particular buyer and has value justǫ less than the value ofS′
i. So, if

there is a type1 buyer before the type2 buyer, then the first type-1
buyer who arrives will act just like in the one Theorem 4 – he will
buy an identical bundle to the proof of Theorem 4 and will not take
the shadow copy, since its value is a tiny bit smaller; all later type-1
bidders will prefer their own shadow copy to any of the original
sets.

4. UNLIMITED SUPPLY: A LOGARITHMIC
APPROXIMATION

In this section we prove a logarithmic bound for the unlimited
supply case for buyers with general valuations (and we should also
remark that the proof of the limited supply case builds on theproof
here for a single buyer). By unlimited supply we mean that the
seller is able to sell any number of units of each item, and they each
have zero marginal cost to the seller. For simplicity, we assume that
no buyer is interested in more than a single copy of an item, and
therefore the valuation is still over subsets ofJ .

Unlike the previous section, in this section we make no assump-
tion about the valuation function being subadditive. We do not even
assume valuations are necessarily monotone (a monotone valuation
is one such that for allS ⊆ T , we havevi(S) ≤ vi(T ), also called
the free disposal property), so the maximum valuation for buyeri
may occur at someS 6= J . The only assumptions we will make are
that we are given the valueH = maxi,S vi(S) (though we will
relax this later) and that the empty set has zero value to all buyers,
i.e. vi(∅) = 0.

We prove that a random single price achieves anO(log m +
log n) approximation to the social optimum for buyers with gen-
eral valuation functions. Recall, that such an approximation im-



mediately implies an approximation for the maximum revenuethe
seller can extract from the buyers.

Before describing the argument, let us introduce some additional
useful notation. We denote byui,p the utility of buyeri when the
single posted price isp, and bySi,p the set of items that maximizes
its utility, i.e.,Si,p = DemandPrices(i, p, J).

The following lemma states that by decreasing the single posted
price, the seller never sells fewer items. (For a proof see appendix A.)

LEMMA 6. Let p, p′ ∈ R such that p > p′ ≥ 0. Then, for every
buyer i, |Si,p′ | ≥ |Si,p|.

For clarity we start by presenting the case of a single buyeri ∈
{1, ..., n}. Recall thatH = Hi = maxS vi(S) is the maximum
valuation of buyeri. Clearly, the profit we can extract from buyeri
is at mostH . Recall thatui,p is the maximum utility the buyer can
achieve for a single posted pricep, i.e.,ui,p = max

S⊆J
ui,p(S).

Let F(p) denote the number of items our buyer purchases un-
der the fixed single pricep.5 We will analyze thedemand curve
which is defined as follows: the horizontal axis measures the“mar-
ket price” p (the price we set on all of the items) and the vertical
axis measures the number of itemsF(p) the buyer purchases at this
price. Note that Lemma 6 implies that the functionF(p) is mono-
tonically non-increasing, as in Figure 1.

Let p0 = 0 < p1 < ... < pL ≤ H be such thatF(pl) =
F(p) for all p ∈ [pl, pl+1) andF(pl) < F(pl+1), for all l; in
other words,p0, ..., pL are all the relevant (transition) points on
the demand curve. Let us denote bynl = F(pl), for all l. (Note
that since the number of items decreases with eachpl, we have that
L ≤ n.)

Figure 1: The demand curve. The horizontal axis measures the “mar-
ket price” and the vertical axis measures how many items the buyer
will buy at each given market price.

We will prove next a fact which is essential to our analysis,
namely that the maximum valuationH of our buyer (which is also
the maximum revenue our seller can extract from the buyer) isex-
actly the area under theF− curve. Formally:

5In order to ensure thatF well defined, when there are ties we
assume for simplicity that the buyer purchases the smallestbundle
of maximum utility. So,F(p) = min{|S| : ui,p(S) = ui,p}. This
is the worst case for revenue to the mechanism.

LEMMA 7.

max
S

vi(S) = H =

L−1
X

l=0

nl · (pl+1 − pl).

PROOF. When the price increases fromp0 top1 our buyer switches
from buyingn0 items to buyingn1 items, and is exactly indifferent
at pricep1. Sinceui,pj = vi(Si,pj ) − njpj , this means we have
ui,p1

= ui,p1
(Si,p0

) = ui,p0
− n0 · (p1 − p0). In general, for

everyl > 1, since at pricepl our buyer switches from purchasing
nl−1 items to purchasingnl items (and is indifferent between the
two sets), we have

ui,pl = ui,pl−1
− nl−1 · (pl − pl−1) .

So, summing all these up we obtain the desired result,H = ui,p0
−

ui,pL =
L−1
P

l=0

nl · (pl+1 − pl).

Let us defineql = H
2l−1 , for l ≥ 1, l ∈ Z.6 We can prove (see

Appendix A) that for anys, the area underF is bounded above by

O(
s

P

l=1

ql · F(ql) + nH/2s). Formally:

LEMMA 8. For any s ≥ 1,

H =

L−1
X

l=0

nl · (pl+1 − pl) ≤ 2 ·
s

X

l=1

ql · F(ql) + n
H

2s
.

Let s = log (2n). Combining Lemma 7 and Lemma 8, we ob-
tain:

H ≤ 4 ·
s

X

l=1

ql · F(ql). (1)

Sinceql ·F(ql) represents the revenue obtained by the single posted
price ql, this implies that there exists a single posted pricep ∈
{ql|l ∈ {1, ..., s}} which gives anO(log n)-approximation forH .

Inequality (1) also implies thatRANDOM Single Price is4 log (2n)-
competitive with respect to the social optimum.

We can extend the analysis to multiple buyers in a direct way.
The only point to notice is that we are given onlyH = maxi Hi =
maxi,S vi(S) and not the individualsHi = maxS vi(S). Thus
we need to runRANDOM Single Price with s = ⌊log(2nm)⌋
and guarantee an approximation ofO (log (n) + log (m)). Specif-
ically, in Appendix A we prove,

THEOREM 9. In the case of a single buyer (m = 1), the RAN-
DOM Single PriceMechanism guarantees a 4 log (2n) approxi-
mation with respect to the social optimum. For any number of
buyers m it guarantees O (log (n) + log (m))-approximation with
respect to the social optimum.

Lower bound, single buyer, multiple prices:We now give a sim-
ple lower bound that holds for a general posted price algorithm that
may have a different price for every item, even for the case ofjust
one buyer. Consider a single buyer whose valuation for a setS is
v(S) =

P|S|
i=1

1
i
. The seller has to set a pricepj for each item

j. Given his valuation functions, even though his total valuation
is Ω(log n), the buyer will never spend more than1. In particu-
lar, given the prices, the optimal strategy of the buyer is tosort the
items in increasing price order, and then buy a prefix of sizek such
that each item will have a cost at most1/k. Hence the revenue is
at most1. This establishes:

THEOREM 10. There is a single submodular valuation function
for which the revenue of any posted price mechanism has approxi-
mation ratio Ω(log n) with respect to the social optimum.

6Note thatpj increases withj while ql decreases withl.



5. LIMITED SUPPLY: SPECIAL CASES
We now return to the case of limited supply and present two

interesting classes of valuations for which a random singleprice
does in fact achieve a logarithmic approximation.

5.1 Simple Submodular Valuations
We show here that if we have buyers with a subclass of submod-

ular valuations that we callsimple submodular valuations, then a
random single pricedoes achieve revenue within a logarithmic fac-
tor of the optimum social welfare. We say thatv is simple sub-
modular if it is submodular and if for all setsS, the last itemx in
the greedy ordering ofS satisfiesv(x | S − {x}) ≤ v(x | T )
for all T 6∋ x such that|T | ≤ |S| − 1. Here, the “greedy order-
ing” is the ordering in which one first chooses the itemx1 in S
of highest individual valuation, then the itemx2 in S of highest
marginal valuation givenx1 and so on. This class generalizes the
unit-demand case (where for|S| ≥ 2 the last itemx in the greedy
ordering satisfiesv(x|S − x) = 0) as well as the additive case and
the submodular symmetric (multi-unit) setting [23].

THEOREM 11. Consider s = ⌊log2(2n2)⌋. If all the buyers
have simple submodular valuations, then the RANDOM Single
Pricemechanism achieves revenue within an O (log (n) + log (m))
factor of the optimum social welfare.

Proof Sketch: Lehmann et al. [23] show that for submodular val-
uations, if one gives items to buyers in the order of maximum
marginal valuation (i.e., at each step choose itemx and buyeri
to maximizevi(x|Si) whereSi is the set of items already given
to buyeri), then this greedy procedure produces an allocation with
social welfare within a constant factor of optimal. Let us call this
the LLN allocation.

Note that by submodularity, these marginal values are non-increasing.
Imagine that we halt this process once the marginal valuations drop
belowp, and letF(p) denote the number of items allocated by that
point. As in the proof of Theorem 9, the expected value ofp ·F(p)
is within a logarithmic factor of the social welfare of the overall
LLN allocation. Thus, it suffices to show that allowing buyers to
enter in an arbitrary order and purchase at pricep achieves revenue
within a constant factor ofp · F(p).

In particular, suppose that buyerj is assignedkj items of marginal
valuation at leastp in the LLN allocation. When buyerj arrives, the
claim is that he will either purchase all remaining items in thesec-
ond half of his assigned bundle or else purchase at leastkj/2 items
total. In particular, suppose not and letx be an unpurchased item in
the second half, letT be items purchased, and letS′

j be the items
in his assigned bundle up through itemx. By definition of the LLN
procedure we havevj(x | S′

j − x) > p and by definition of simple
submodular valuations we havevj(x | T ) ≥ vj(x | S′

j − x) since
|T | < |S′

j |. This in turn then implies by a standard matching argu-
ment that at leastF(p)/4 items are sold in total, as desired.

5.2 The Multi-Unit Case
We consider here the multi-unit setting [11], and we show how

the ideas from the unlimited supply setting (Section 4) can be ap-
plied to get a logarithmic approximation in this case as well. The
formal setting here is the following. Assume that we have only
one item for sale, butn copies of it. We also havem customers,
and each customeri has a valuation functionvi : {1, . . . n} → R,
wherevi(q) encodes his value for obtainingq items, and these valu-
ation functions can be arbitrarily complicated. The setting is essen-
tially the symmetric valuations case in combinatorial auctions as
described in Lehmann et al. [23] or in Vickery [27]; note however
that we are interested in general symmetric valuations, notonly the
submodular case.

We first point out that if we makeno assumptions, then no single
price can guarantee ano(n) approximation to the social welfare.
In particular, suppose that the first customer has value1 on any set
of size1, and the second customer has valuen on the entire set of
n items but value0 on any other set. In this case, the maximum
possible revenue is1. However, note that this case is a bit peculiar
because one buyer gets all the items in the optimal allocation. We
show here that this is the only barrier to good revenue. In particu-
lar, we show that under the assumption that the optimal allocation
gives at most a(1 − ǫ) fraction of the items to any one buyer, our
single pricing scheme can achieve a logarithmic approximation in
this setting as well. Specifically:

THEOREM 12. For the case of n identical items, under the as-
sumption that the optimal (or a near-optimal) allocation gives at
most a (1−ǫ) fraction of the items to any one buyer, the RANDOM
Single PriceMechanism guarantees an O

`

1
ǫ
log (n) + log (m)

´

-
approximation with respect to the social optimum.

Proof Sketch: Let ni be the number of items given to buyeri in the
optimal allocation (the one maximizing social welfare), and let vi

be the value of this set to buyeri (sovi = vi(ni)). By assumption,
all ni ≤ (1 − ǫ)n. Now, for each buyeri, imagine drawing the
monotone demand curveFi(p) of number of items desired versus
price, but where we cap the number of items atni. That is,Fi(p)
is the number of items buyeri would purchase in a store withni

items all at pricep. So, Fi(0) ≤ ni and it eventually drops to
0. The integral of this function is exactlyvi. If we sum up these
curves, we get a global curveF = F1 + F2 + ... + Fm whose
integral is the optimum social welfare.

Now, letp be a price whose rectangle has large areap ·F(p). The
claim is that if bidders arrive in an arbitrary order, the seller makes
at least anǫ fraction of this amountǫp ·F(p) by pricing items atp.
The reason is that by definition ofF, when a buyeri arrives, he will
purchase at leastFi(p) items if that many are available. Since the
only way it is possible for this number of items to not be available
is for at leastǫn to have been already sold, this means the total
number of items purchased is at leastmin(F(p), ǫn) ≥ ǫF(p).
This then implies the desired result.

We can also extend the above argument to the case that the seller
hasn copies ofk distinct items, so long as the optimal allocation
gives no buyer more than(1 − ǫ)n items total.

THEOREM 13. For the case of n copies of k distinct items, un-
der the assumption that the optimal allocation gives at most (1 −
ǫ)n items to any one buyer, the RANDOM Single PriceMechanism
guarantees an O

`

k
ǫ
(log (n) + log (m))

´

-approximation with re-
spect to the social optimum.

Proof Sketch: The same argument as above applies, whereni is
the total number of items given to buyeri in the optimal alloca-
tion. The difference is thatF(p) could now be as large asnk, so
min(F(p), ǫn) ≥ ǫF(p)/k.

6. CONCLUSIONS AND OPEN PROBLEMS
We show that single posted price mechanisms are surprisingly

powerful, achieving revenue within a logarithmic factor ofthe total
social welfare for unlimited supply settings for buyers with gen-
eral valuation functions (not just single-minded or unit-demand)
and achieving a2O(

√
log n log log n) approximation for the limited

supply case with subadditive buyers. These are the best revenue
guarantees known forany item-pricing scheme, and in the unlim-
ited supply setting match the best possible guarantee by anyitem
pricing scheme.



We also provide a2Ω(log1/4 n) lower bound on the revenue of any
single posted price mechanism for subadditive buyers (evenXOS
buyers) in the limited supply setting, showing that even forbuy-
ers with known valuation functions, the gap still exists. Since so-
cial welfaredoes have a logarithmic approximation using a single
price [12, 10], this demonstrates a clear distinction between rev-
enue maximization and social welfare maximization in the limited
supply setting.

Note that our lower bound for limited supply does not apply if
one allows the seller to use different prices on different items. An
interesting open question is whether an improved upper bound is
possible using multiple prices, or on the other hand whetheran al-
ternative lower bound can be given for that case. In particular, it
is an open question if the lower bound can be extended even to
the case where the seller is allowed to use justtwo prices. A sec-
ond open question is whether our lower bound (which uses XOS
buyers) can be extended to the more restricted class of submodular
buyers, or whether alternatively a polylog(n) upper bound can be
obtained in that case.
Acknowledgments:We thank Shahar Dobzinski and Jason D. Hart-
line for a number of useful discussions.
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APPENDIX

A. PROOFS
Lemma 1 Assume thatvi are all subadditive. LetT1, . . . , Tm

be an arbitrary feasible allocation and letα = 1
4 log(2n2)

. There
existsp and subsetsLi ⊆ Ti such thatL1, . . . , Lm is an allocation
supported at pricep and furthemore

m
X

i=1

p|Li| ≥ α

m
X

i=1

vi(Ti).



PROOF. ConsiderLi to be the subset ofTi that buyeri would
purchase if he were in a store where everything is priced atp and he
is only allowed to see the items inTi. The fact that

Pm
i=1 p|Li| ≥

α
Pm

i=1 vi(Ti) then follows from Theorem 9. The factL1, . . . , Lm

is an allocation supported at pricep follows from properties of
subadditive valuation functions. Specifically, consider an arbitrary
subsetWi of Li. SinceLi is the set that buyeri would purchase
with items inTi priced atp and items inJ \ Ti removed, we know
that

vi(Li) − vi (Li \ Wi) ≥ p · |Wi| .
(If the above were not the case, the buyer would have purchased the
setLi \ Wi instead ofLi.) In addition, sincevi is subadditive we
also have:

vi(Li) ≤ vi(Wi) + vi (Li \ Wi) .

Combining these together we get thatvi(Wi) ≥ p · |Wi| as de-
sired.

Lemma 2 Let L1, . . . , Lm be an allocation supported at price
p. Let S1, . . . , Sm be the allocation produced by Generate Alloca-
tion when run with the price parameterp/2. Then:

m
X

i=1

vi(Si) ≥
m

X

i=1

(p/2)|Li|.

PROOF. DefineALG(i, S1, .., Si−1) as the total valuation that
our algorithm acquires from the set of biddersi, ..., m on the set of
itemsJ\(S1∪S2 . . .∪Si−1). LetOPTrev(i, L1, ..., Lm, S1, .., Si−1)
be the total revenue obtained at pricep/2 from the set of bidders
i, ..., m if buyer j ≥ i would be allocated setLj \ (S1 ∪ S2... ∪
Si−1). We clearly have

ALG(i, S1, .., Si−1) = ALG(i + 1, S1, .., Si) + vi(Si)

and also

OPTrev(i, L1, ..., Lm, S1, .., Si−1)

≤ OPTrev(i + 1, L1, ..., Lm, S1, .., Si) +

(p/2)|Li \ (S1 ∪ S2... ∪ Si−1)| + (p/2)|Si|.
The second inequality follows from the fact that we lose at most
(p/2) |Li \ (S1 ∪ S2... ∪ Si−1)| from using up buyeri, and at most
(p/2) |Si| from using upSi sinceSi might contain items that are
in Lj \ (S1 ∪ S2... ∪ Si−1) for j > i. But

|Li \ (S1 ∪ S2... ∪ Si−1)| (p/2)

≤ vi(Li \ (S1 ∪ S2... ∪ Si−1))

− |Li \ (S1 ∪ S2... ∪ Si−1)| (p/2)

≤ vi(Si) − (p/2)|Si|.
The first inequality follows from the fact that the allocationL1, . . . , Lm

is supported at pricep and the second one from the fact that buyer
i prefersSi to the setLi \ (S1 ∪ S2... ∪ Si−1). So

vi(Si) ≥ (p/2)|Si| + |Li \ (S1 ∪ S2... ∪ Si−1)| · (p/2),

and therefore

ALG(i, T1, ..., Tm, S1, .., Si−1)

= ALG(i + 1, T1, ..., Tm, S1, .., Si) + vi(Si).

and

OPTrev(i, T1, ..., Tm, S1, .., Si−1)

≤ OPTrev(i + 1, T1, ..., Tm, S1, .., Si−1) + vi(Si).

We also haveOPTrev(1, L1, ..., Lm) =
Pm

i=1 (p/2)|Li|, and all
these imply:

m
X

i=1

vi(Si) ≥
m

X

i=1

(p/2)|Li|,

as desired.

Lemma 6 Let p, p′ ∈ R such thatp > p′. Then, for every buyer
i, |Si,p′ | ≥ |Si,p|.

PROOF. Let us fix a buyeri. Assume that|Si,p| = k. By defi-
nition, sinceSi,p is a set of items that maximizes the buyer’s utility
under the pricing vector~p = p1n, for all subsetsT ⊆ J we have:

ui,p(Si,p) = vi (Si,p) − p · k ≥ ui,p(T ) = vi(T ) − p · |T |.
Assume now thatp = p′+ǫ, ǫ > 0, and letT be an arbitrary subset
of J with |T | = k′, k′ < k. Then we clearly have:

vi (Si,p) − p′ · k = vi (Si,p) − (p − ǫ) · k
= vi (Si,p) − p · k + k · ǫ
> vi(T ) − p · k′ + k′ · ǫ
≥ vi(T ) − (p − ǫ) · k′

= vi(T ) − p′ · |T |.
Therefore, for all subsetsT ⊆ J with |T | = k′, k′ < k, we have:

ui,p′(Si,p) = vi (Si,p) − p′ · k > vi(T ) − p′ · |T | = ui,p′(T ).

This then implies that any set of itemsSi,p′ that maximizes buyer’s
i utility under the pricing vector~p′ satisfies|Si,p′ | ≥ |Si,p|, as
desired.

Lemma 8 For anys ≥ 1,

H =

L−1
X

l=0

nl · (pl+1 − pl) ≤ 2 ·
s

X

l=1

ql · F(ql) + n
H

2s
.

PROOF. By Lemma 7 we haveH =
L−1
P

l=0

nl · (pl+1 − pl). Now

we can bound the sum as follows,

L−1
X

l=0

nl · (pl+1 − pl)

=

L
X

l=1

(nl−1 − nl) · pl

=
X

l:pl≥ H
2s

(nl−1 − nl) · pl +
X

l:pl<
H
2s

(nl−1 − nl) · pl

≤
X

l:pl≥ H
2s

(nl−1 − nl) · pl + n
H

2s

Consider the prices that fall in the range[ql, ql−1), and assume they
arepj ≤ · · · ≤ pj+k. Clearly we have that each price in the range
is at mostql−1. Since

Pj+k
b=j (nb−1−nb) = nj−1−nj+k ≤ F(ql),

we have,

H ≤
s

X

l=1

ql−1 · F(ql) + n
H

2s
= 2

s
X

l=1

ql · F(ql) + n
H

2s
,



as desired.

Theorem 9 In the case of a single buyer(m = 1), the RAN-
DOM Single Price Mechanism guarantees a4 log (2n) approxima-
tion with respect to the social optimum. For any number of buyers
m it guaranteesO (log (n) + log (m))-approximation with respect
to the social optimum.

PROOF. Form = 1, the desired competitive ratio follows from
(1) and from the fact that the expected profit of our mechanismis
1
s

s
P

l=1

ql · F(ql).

Assumem ≥ 1. Let Hi = max
S

(vi(S)), and letFi be the

curve corresponding to buyeri; soH = max
i

Hi. Let si = s −
log(H/Hi), which is the effective index for thei-th buyer.7 By
Lemma 8, applied to buyeri, we have,

Hi ≤ 2 ·
s

X

l=1

ql · Fi(ql)+n
Hi

2si
= 2 ·

s
X

l=1

ql · Fi(ql)+n
H

2s
. (2)

Summing over all the buyers we have:
m

X

i=1

Hi ≤ 2 ·
m

X

i=1

s
X

l=1

ql · Fi(ql) + nm
H

2s
. (3)

Since
m
P

i=1

Hi ≥ H , s = log(2nm), combining (3) together with

the fact that the expected profit of our mechanism is
m

X

i=1

`1

s

s
X

l=1

ql · Fi(ql)
´

,

we get an approximation ratio of4 log(2nm) = O(log n+log m).

Note: Note that theO(log(m)) factor is attributed directly to the
variation inHi. Assume thatHi = H for every buyeri. Then
Pm

i=1 Hi = mH and it is sufficient to sets = log(2n).

Removing the assumption of knownH : We have assumed so far
that the maximum valuationH (over all buyers and all bundles) is
known to the mechanism. We can remove this assumptions using
rather “standard tricks”. One immediate generalization isthat if
instead we are just given an upper-boundH ′ on H , with the guar-
antee thatH ′ ≤ αH for some given valueα, then the mechanism
RANDOM Single Price is anO(log n + log m + log α) approx-
imation. In particular, this implies that if we are simply given a
polynomial upper boundH ′ on H , i.e., H ′ ≤ poly(m, n) × H ,
then we still get anO(log n + log m) bound.

Alternatively, if we have no upper bound onH at all, but we as-
sume at least thatH ≥ 1, then selectH ′ at random from the proba-
bility distribution wherePr[H ′ = 2i] = c

i log2 i
, for some constant

c > 0. Now we can run mechanismRANDOM Single Price with
the selectedH ′and the parameters. The probability thatRANDOM
Single Price selects a given pricep = 2k is 1

s

Ps+k
i=k Pr[H ′ =

2i] ≥ c
(s+k) log2(s+k)

. This implies that the approximation ratio,

for s = log(2mn) andp ≤ H isO(log(nmH) log2(log(mnH))).

B. ADDITIONAL RELATED WORK
As noted in the Introduction, the setting we analyze is related to

the Combinatorial Auctions setting. In the Computer Science com-
munity, there have recently been two main threads of work in the
7For simplicity we assume thatlog(H/Hi) is an integer.

context of Combinatorial Auctions: designing good algorithms [18,
1, 7, 2, 9, 20] and mechanisms [15, 16, 3] forrevenue maximization
in the unlimited supply setting [19], and designing algorithms [14]
and computationally efficient mechanisms [24, 22, 12, 26, 10] to
optimizesocial welfare in the limited supply setting.

Substantial effort has been devoted to find a computationally effi-
cient combinatorial auction which approximates the socialwelfare
well [24, 22, 12, 26, 10]. On the other hand, as pointed out in [26],
much less is known about designing combinatorial auctions that
maximize the auctioneer’srevenue. In particular, as opposed to the
social welfare goal, where obtaining a truthful mechanism is easy
ignoring the computational constraints (due to the celebrated VCG
mechanism), for the revenue maximization goal no such mecha-
nism is known. The most notable positive result so far for revenue
maximization in the limited supply setting is due to Dobzinski,
Nisan and Schapira [12], who present a simple random-sampling
based truthful mechanism, that provides anO(

√
n)-approximation

for bidders with general valuation functions,both for the social
welfare and revenue maximization objectives. They additionally
show anO(log(n))-approximation tosocial welfare for the special
case of XOS bidders, recently generalized to the somewhat larger
class of subadditive bidders by [10]. At the heart of this mech-
anism is an item-pricing in which all items get the same random
price and then bidders enter one at a time and purchase what they
want most at that price, precisely the mechanism we have analyzed
throughout this paper. Dobzinski (personal communication) points
out that if one allows more general bundle-pricing mechanisms,
then the results of [10] can be adapted to provide polylogarithmic
revenue guarantees for subadditive buyers: the mechanism essen-
tially avoids the lower bound of Theorem 4 by refusing to sellsmall
bundles to any buyer. Hartline (personal communication) points out
that if furthermore computational efficiency is not an issue, then
VCG with a random offset will achieve logarithmic revenue guar-
antees for general buyers in the limited supply case. These mecha-
nisms, however, require pricingbundles, and so do not apply to the
setting in which objects must be priced per item, which includes
the vast majority of sales in the world today.

Revenue maximization in theunlimited supply setting has also
become increasingly popular in the past few years; for a recent
survey see [19]. Note that much of the work on revenue maxi-
mization in combinatorial auctions has focused onitem pricing, in
part because of its wide applicability. Some of these results are
truthful mechanisms and some are not [1, 2, 7, 17, 18, 13, 20],
though Balcan et al. [3] give a generic reduction to convert any
(non-truthful) item-pricing to a truthful mechanism when the num-
ber of bidders is sufficiently large as a function of various mea-
sure of complexity of the class of item pricings. Guruswami et
al. [18] give anO(log m + log n)-approximation both for the case
of single minded and unit-demand bidders; furthermore, Demaine,
Feige, Hajiaghayi, and Salavatipour [9] show that it is hardto ap-
proximate the maximum revenue within a factor oflogδ n, for some

δ > 0, assuming that NP6⊆ BPTIME
“

2nǫ
”

for someǫ > 0, even

for the case of single-minded bidders.
In the context of Bayesian mechanism design, Myerson derives

in a seminal paper [25] the optimal auction for selling a single item
given that the bidders’ true valuations for the item come from some
known prior distribution. His mechanism generalizes trivially to
any single-parameter agent setting with arbitrary supply constraints
or costs to the auctioneer for the outcome produced. However, no
such characterization is known for the more general case of multi-
parameter settings.


