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ABSTRACT

We consider the problem of pricing items to maximize revenue
when faced with a series of unknown buyers with complex prefe
ences, and show that a simple pricing scheme achievessinglyi
strong guarantees.

We show that in the unlimited supply setting, a random single
price achieves expected revenue within a logarithmic factdhe
total social welfare for customers wigleneral valuation functions,
which may not even necessarily be monotone. This genesalize
work of Guruswami et. al [18], who show a logarithmic factor
for only the special cases of single-minded and unit-dentarsd
tomers.

In the limited supply setting, we show that feubadditive val-
uations, a random single price achieves revenue within tarfad
20(Vlegnloglogn) of the total social welfare, i.e., the optimal rev-
enue the seller could hope to extract even if the seller cpritck
each bundle differently for every buyer. This is the bestrapp
mation known for any item pricing scheme for subadditivegiegn
submodular) valuations, even using multiple prices. We glem
ment this result with a lower bound showing a sequence ofdsuba
ditive (in fact, XOS) buyers for which any single price hapax-

imation ratio2?(°s"* ™) thus showing that single price schemes
cannot achieve a polylogarithmic ratio. This lower boundhde-
strates a clear distinction between revenue maximizatidrsacial
welfare maximization in this setting, for which [12, 10] shé¢hat

a fixed price achieves a logarithmic approximation in thesoafs
XOS [12], and more generally subadditive [10], customers.
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We also consider the multi-unit case examined by [11] in the
context of social welfare, and show that so long as no buyer re
quires more than a — ¢ fraction of the items, a random single
price now does in fact achieve revenue within@flog n) factor
of the maximum social welfare.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: General

General Terms
Algorithms, Theory, Economics.

Keywords
Approximation Algorithms, Combinatorial Auctions

1. INTRODUCTION

Item pricing is one of the most fundamental problems in Eco-
nomics, and to a large extent describes today’s tradingtipesc
From a theoretical perspective, the issue of market eqiilibprices
has received enormous attention over the years. In this werllo
not consider the equilibrium issues of market pricing, lather
concentrate on the basic problem of revenue maximizatiom W
consider a single seller whose goal is to maximize his resenu
who must set prices on items before the arrival of a sequeimese
tomers with complex, unknown preferences (e.g., think abeesor
a yard sale). We prove that a simple posted single pricingraeh
produces the best revenue guarantees known for this profgem
two important classes of settings: buyers wggmeral valuations
for the case of items in unlimited supply, and buyers wgithaddi-
tive valuations for the case of items in limited supply. Note that
good approximation is possible for general valuations ittited
supply.

Formally, the problem we analyze is the following. We coesid
a single seller who hasitems each in limited or unlimited supply.
We assume there are buyers with quasi-linear utilities who arrive
in an arbitrary order and who have unknown and potentialijlyi
complex valuations over subsets of these iténwe consider the
revenue maximization objective—the goal of the seller isnke
as much money as possible—and analyze a natural and uhiguito
setting in which the seller first posts prices on the items tet
buyers enter one at a time and purchase whatever subset i&-the
maining items they want most. Since prices are fixed befoyeisu

!Quasi-linear utilities means that buyers prefer the setimizing
the difference between its cost and its value. We assumestired u
oblivious adversary model in which the sequence and valnstbf
buyers is determined in advance of any randomization madkeeby
seller.



arrive, all upper bounds we present for our pricing schemié wi
also apply to the problem of designiriguithful mechanisms with
revenue guarantees in the setting of combinatorial austidiote
that while much work on combinatorial auctions considensdbe-
pricing mechanisms (such as based on VCG), the vast maafrity
transactions in today’s world are conducted via pricing t@mis,
and thus it is important to understand what guarantees asige
in such a setting. As an upper bound on the revenue that tlez sel

can hope to extract from the buyers we use the optimum social

welfare, which is the maximum possible sum of buyers’ vabret
in any allocation. This is is the most revenue the seller ¢@x-
tract even if the seller could price each bundle differeflyevery
buyer.

In the limited supply setting, we consider important claseé
valuations functions which have previously been studigtiécon-
text of maximizing social welfare: submodular, XOS, and enor
generally, subadditive valuation functions [14, 24, 22, 2@, 10].
We show here that for buyers with subadditive valuation fioms,

a random single price achieves revenue withiff4"'°s g 1og )
factor of the maximum social welfare. We complement thisiites
with a lower bound showing a sequence of subadditive (in, fact
XOS) buyers for which any single price has approximatiomorat

9(log?/4 ™ thus showing that single prices cannot achieve a poly-
logarithmic ratio. Moreover, this lower bound holds everthié
price is determined based on advance knowledge of the ordker a
valuations of the buyers. The construction in this lower rimbu
demonstrates a clear distinction in this setting betweermaee
maximization and social welfare maximization, for whicl2[10]
show that a fixed price achieves a logarithmic approximaiticthe
case of XOS [12], and more generally subadditive [10], ausic.
We also show that even if we assume buyers arrive rarglom
order, there exists a set of buyers for whick4'°s"* ™ lower
bound still holds. Note that o (Vleslegloen) ynper pound is
the best approximation known fany item pricing scheme for sub-
additive buyers, even if assigning different prices toatit items

is allowed. We also show that for a special case wesbaible sub-
modular valuations (which generalizes unit-demand, additive, and
submodular symmetric valuations [23]), a random singlegdoes

in fact achieve revenue within a logarithmic factor of theimmum
social welfare.

In the unlimited supply setting, we show that for buyers with
general valuation functions, there exists a single price can as-
sign to all the items such that the retailer achieves revevitien a
logarithmic factor of the total social welfare (and furthwmare this
holds in expectation if that price is chosen at random fronajgn
propriate distributionf. Our main result in the unlimited supply
setting (Theorem 9) turns out to provide a useful and comreni
structural characterization needed for proving the dedsigproxi-
mation for subadditive valuations in the limited supplyeas

Finally, we consider the multi-unit auctions setting [13] @here
we have only one item and multiple copies of it, but buyerslzay
bitrarily complicated valuation functions over the number of copies
received. We show that under the assumption that the opéfieal
cation gives at most @ — ¢) fraction of the items to any one buyer,
our single pricing scheme achieves a logarithmic approtiomnan
this setting as well.

Related work:  Guruswami et al. [18] show that in an unlim-
ited supply combinatorial auction, if customers are umitand
or single-minded, then a random single price achieves expected

2An early version of our paper, with just this result, appeass
CMU Tech Report CMU-CS-07-111 [4].

%A single-minded buyer is one who places some valoe a single
setS or any superset of, and value 0 on any set that does not

revenue within a logarithmic factor of the total social vee#f. In
this paper we show the restriction to single-minded or deitrand
valuations is not required: in particular, we show that admn
single price achieves this guarantee for buyers \géteral valu-
ation functions over bundles, which may not even necegshel
monotone. Moreover, no item pricing scheme (even one that as
signs each item a different price) can do better, even fonglei
customer whose valuations are known to the seller.

Our result for the unlimited supply case appears in an earlie
version of this paper [4]. It was also discovered indepetigém a
different context by Briest et al. [6] who study single prizghemes
in a network setting. In their setting, a buyer has certalrgsaphs
of the network it is interested in purchasing. A seller, whane
the network, first prices the edges and then the buyer pusshas
the cheapest subgraph it is interested in. They show thatgesi
fixed price for all the edges guarantees the seller a reveritiénw
logarithmic factor of the highest possible revenue.

As mentioned above, the setting we analyze can be viewed as an
online version of combinatorial auctions. The literature @mm-
binatorial auctions is extensive and spans the fields of &nics,
Operations Research and Computer Science [8, 26]. In the Com
puter Science community, there have recently been two rhegatls
of work: designing good algorithms [18, 1, 7, 2, 9, 20] and hnec
anisms [15, 16, 3, 19] forevenue maximization in the unlimited
supply settind, and designing algorithms [14, 23] and computa-
tionally efficient mechanisms [24, 22, 12, 26, 10] to optienin-
cial welfare in the limited supply setting. For a detailed related
work section see Appendix B, and for excellent recent owsvsi
see [5, 26, 21, 19].

In the context of social welfare maximization, work mosetetl
to ours is that of Dobzinski et al. [12, 10], who show that ie th
limited supply setting, a fixed price achieves a logarithapprox-
imation in the case of XOS or subadditive [12, 10] customéns.
our work we analyze its power for maximizing revenue.

Structure of this paper: This paper is organized as follows. We
start with terminology and formal definitions in Section 2eken
present our results for the limited-supply setting in Sati3: we
show that for subadditive buyers, a random single priceh(\ity-
ers arriving in an arbitrary order) achieves a rai vios #leglog )

along with a220e"* 7 jower bound for any single-price scheme
(even if buyers’ valuations are known in advance and buyeiga
in arandom order). We then analyze the unlimited supplyrggi
Section 4 and prove that a random single price achieves atloga
mic ratio for buyers withgeneral valuation functions. We consider
multi-unit auctions as well as a special case of submoduhray
tions in Section 5 and finish with a discussion in Section 6.

2. PRELIMINARIES

We consider the following setting. A single seller has a.5ef
n items, and there is a sequenBeof m buyers or customers, who
are interested in buying the items.

Each buyeri € B has a private valuatios;(.S) for each bun-
dle S C J of items, which measures how much receiving bun-
dle S would be worth to him. The utility of the buyer € B
for purchasing the set’ is ui(7) = vi(T) — >, p;, Where
p; is the price of itemj € J. (For a single pricep we have
u;(T) = vi(T)—|T|p.) Thatis, we assume that a buyer’s utility is
quasi-linear. Note that we implicitly assume that thererarexter-
nalities since the buyers’ utilities are completely detieed by the

containS. A unit-demand buyer is one who has separate valyes
on each iteny, and values any given sgtatmax;ecs v;.

“Note that the social welfare objective is trivial in thistieg: one
simply gives everything away for free.



set of items purchased and the price paid; buyers do not barg a
the happiness of thether buyers, for instance. Finally, given the
valuation functions of the buyers, we defifig = max (vi(S))

andH = max (vi(9)).

A buyer's valuation function might be quite complex sincerth
are 2" possible bundles, but we make the minimal (standard) as-
sumption that given a vectgs of item prices and a set of items
J' C J, the customer can determine the subiBetC .J’ it most
wants at those prices. Formally, the buyer has a demand=(2&¢I
such thatDemandPrices(i, p, J') returns the set

T = (9).
arg max u;(S5)

We analyze important classes of valuation functions whinreh
received substantial attention in the combinatorial aumnstilitera-
ture [14, 10, 12, 5]: submodular, XOS, and more generallyagt
ditive valuation functions. A valuation functionis submodular if
v(SUT)+v(SNT) < v(S)+v(T),forall S, T C J. Avaluation
v is subadditive ifv(S U T) < v(S) + v(T), forall S, T C J.
Between these two classes (submodular and subadditigejhiée
class of “XOS” valuations. A valuation is XOS if there are addi-
tive valuations{a, ..., a; } such thatv(S) = maxy ax(.5), for all
S C J. Submodular is strictly more restrictive than XOS which is
strictly more restrictive than subadditive.

We study both the limited supply setting, where without loés

generality we may assume that exactly one copy of each item is

available, and the unlimited setting where the number ofe=opf

Algorithm 1 RANDOM Single Price
Input: H = max (vi(5)), ands a parameter.

Step1letq = 57+, fori e {1,...,s}.
Step 2 Pick a posted pricg uniformly at random in{q, ..., gs };
Step 3 Buyers arrive in an arbitrary order and purchase their most

preferred bundle. l.e., sé&t = J and do:

ProcedureZenerate Allocation (p)
For buyeri, let S; = DemandPrice(i, p, R).

Allocate S; to buyer: and charge ip|S;|
LetR=R \ Si.

Step 4 The seller has a remainder set of ite®s

gle Priceachieves °(VIeenloglog ) approximation to the social
optimum, assuming the buyer’s valuations are subadditve be-
gin with a definition from [12].

DEFINITION 1. Anallocation S = (Si,. .., Sm) issupported
at price p if, for each buyer 7 and for every possible bundle W; C
Si, it holds that VL(WZ) > plWil.

Before presenting the proof of our main result we first give tw

each item is as large as the number of buyers. It is assumed thauseful lemmas. The first lemma states that if the valuatiorcfu

each buyer wants at most one copy of each item.

The pricing scheme we analyze throughout most of this paper i
a single posted price mechanism. The seller starts by choosing a
single posted price at random from an appropriate distribution.
The buyers then arrive in an arbitrary order, and each butyhisa
turn buys his most preferred set at the given pricey gfer item.
(The order of buyers does not matter in the unlimited suppkec)
The revenue of the seller is then the total number of items pur
chased timeg. Clearly, since the posted prigds chosen indepen-
dently of the buyers valuations, this scheme falls into taegory
of incentive-compatible mechanisms. In fact, there is nmmoo-
nication from the buyers, other than selecting the subséenfs
they will purchase. (Note that even if we allow buyers to pase
at multiple different times, since the price does not chahgebest
policy is to buy the set of items that he desires when he firistes.)

In the limited supply setting, where one copy of each item is
available, we say that an allocatidn, ..., T, is feasible ifT; N
T, = (@ fori # j. Thesocial welfare of a feasible allocation
Ti,...,Tnis Y, vi(T3). Thesocial optimum is the value of the
allocation which maximizes the social welfare, which upgpaunds
the seller’s revenue under any mechanism (even if the sedler
have a different price for each bundle and buyer). In thenoitéid
supply setting thesocial optimum is Y~ | H;. Our bounds will
compare the expected revenue of the seller to the sociahapii

For simplicity, we assume throughout the paper that we know
H, and we remark on how to overcome exactly knowfign Ap-
pendix A.

3. LIMITED SUPPLY: CUSTOMERS WITH

SUBADDITIVE VALUATIONS

In this section we consider the case of buyers with subaediti
valuations and analyze the single posted price mechaR&N:
DOM Sngle Price (Algorithm 1).

We start by proving our main upper bound for revenue maxi-
mization in the limited-supply setting, showing tfR&ANDOM Sn-

tions are subadditive, then for every possible allocattos pos-
sible to find a “contained” allocation and a pripghat supports it
such that if buyers purchased the supported allocationutavoro-
duce revenue comparable to the welfare of the original atioo.
(This is based on a result we prove in the next section.) Unfor
tunately buyers left to their own devices might not purchtse
supported allocation, however. The second lemma, thougtess
that if Generate Allocation is run at pricep/2, then the allo-
cation produced at least will have large social welfarenaf¢he
revenue is not so high.

LEMMA 1. Assume that v, are subadditive. Let Th,...,Tm
be an arbitrary feasible allocation and let o = Wl%g) There
exists a price p and subsets L; C T; suchthat Ly, ..., L, isan

allocation supported at price p and furthermore
S Vi) =D plLil > a ) vi(T).
1=1 1=1 1=1

The proof follows from Theorem 9 (which will be presented in
Section 4) and properties of subadditive valuation fumstidn par-
ticular, we setl; = DemandPrice(i,p,T;). The above lemma
suggests that if the seller can present every buyer a diffesetT;,
then its revenue would be close to the social welfare of e
(For a full proof see Appendix A.)

The following lemma states that we have a reasonable chance
that the produced allocation has a high social value. Thefpro
follows along the lines of [12]. For completeness, we inelitdn
Appendix A.

LEMMA 2. LetLq,..., L, beanallocation supported at price
p. Let Sy,..., Sy betheallocation produced by Generate Allocation
with the price parameter p/2. Then:

m

i=1

ESNCOIA



We now give our main upper bound for revenue maximization in

limited-supply setting, showing thRANDOM Single Priceachieves

\/7 . . . .
a 20 (Vlegnloglogn) apnproximation to the social optimum, assum-

ing the buyers’ valuations are subadditive. The high legehi of
the proof is the following. We first show that if we could lintite
buyers to purchase only subsets of their assighed bundfeiad-
cial welfare-maximizing allocation, then we do achieve galdth-
mic approximation using a random pripe However, the problem
is that the buyers, when left to their own devices (i.e., wihey are
allowed to purchase any subset they want), given a pringght
buy a totally different subset, hurting the utility of sugsent buy-

ers. Here we might have two outcomes. The easy case is when

the number of items sold is sufficiently large, in which caseare
done. (Since we have a single price, the seller does not daidhw
items are sold, only how many.) The more difficult case is wihen
number of items sold is fairly small. In this case we show that
must have a small subset of the items such that its sociahwedl
not too much less than the original. We then use the same argum
recursively on this smaller subset, and the recursive aegirnas
to be complete before we get to an empty set.

THEOREM 3. Assume that all the buyers have subadditive val-
uations, and let s = |log,(2n?)|. The expected revenue of the
RANDOM Single Pricemechanism is O PT /20 (Viegnloglogn)
where O PT isthe social optimum.

PrROOF. Considers > 0, and leta = 5 wherea = m.

LetT' = (T¢,...,TY) be an allocation that maximizes the total
social welfare. By Lemma 1 we know that there exjst@nd an al-
locationL' = (L1,...,LL,), Lt C T}, such that.! is supported
at pricepy and 7" p1|Li| > a7, vi(T;) = a OPT. Let
Si,..., St be the allocation produced Wyenerate Allocation
when run with the price parametgf /2. By Lemma 2 we know

YL vi(Si) > 300, (p1/2)|Li]- So,
Sovis

If we additionally have " | [S}| > 33" | |L}|, then the profit
of our algorithm at pricq>1/2 is at leasta s OPT. Otherwise, if
S UISH < B30 |Li, letus denote by? = (T7,...,T%)
the aIIocatlonS1 = (Si,...,55). We now repeat this process
recursively onl 2.

In general, assume inductively that at iteratiaf the argument
we have allocatior?” with [T < g~ 'n and 37" vi(T}) >
&'~ OPT. We know that there exists and an allocatior,! =
(L%, ..., LY,) with LI C T such thatl! is supported at pricg,
and>"" pi| L] > azm \vi(T}) > a@d' "' OPT. LetSi, ..., S},
be the allocation produced b¥/enerate Allocation when run
with the price parametqn/z From Lemma 2 we know

> (a/2) i «(T') = aOPT.

m

>3 (/DL

So,

=& OPT.

2a/2z

Svi(sh > /23

If we additionally haved~"" | |S¢| > 33", |LL|, then the profit
of our algorithm at pricep; /2 is at Ieasto/ﬁ OPT. Otherwise, if
SIS < BT LY, letus denote b Tt = (T4 L TEEY)
the aIIocatlonSl (S%,...,SL), and we haveT'™| < g'n,
maintaining the induction.

Considerg = % Then this process can continue for at most
Il = 1/e rounds and thus our argument above implies that the

profit of our algorithm is at leagdPT /(n°(8log 2n?)¢ 1), Set-
ting e = |/*E%5", we obtain the desired competitive ratio of
90(Vlognloglogn)

Note that in the argument above, the priggs. . ., p; are mono-
tonically increasing. To better understand the argumedt@amo-
tivate the lower bound given in Theorem 4 below, consider the
following interesting example with just one customer, whosl-
uation function is defined as follows. Partition theitems into
setsSo, S1, S2, ..., St where setS; hasn; = n,_1/X items
(son = no +no/X + ... +no/X% X > 1 will be deter-
mined later). The valuation of our buyer is additive ovemite
within any given setS; and then the maximum over the se&ts
(so it is XOS). Assume that the value for each of the items in
Siisv; = ((X + 1+ ¢€)/2)", so the value of the-th bundle
n;v; i approximatelyn/2°. The set of highest value iSy, so
suppose that as in the argument above, the seller chooszs pri
p = wo/2. Then, however, the buyer will purchasg instead
because (vo — p) < ni(v1 —p), and then the seller makes a fac-
tor X less revenue. On the other hand, if the seller chooses price
p = v1/2 then the same reasoning shows that the buyer will instead
buy S>, and so on. This implies that if we limit ourselves to prices
of the formp; = v;/2, as our argument does, the best single price
is v+ /2 which produces a revenue of only approximatej2*. For
t = vIognandX = 2! = 2V™8" we get a loss of2(2V™2 ™).
Note however that since = 1, weknow that there is a single price
which islog n competitive — see Theorem 9; e.g. the prigg/4
would provide the desired ratio in this example.

This example raises the question of whether an alternatiaé a
ysis could yield a better upper bound. We prove below a ssingi
lower bound showing that even with just two buyers, due to the
interaction between them, one cannot achieve a polgtggratio
by any single-price algorithm, even if the buyers’ valuaticare
known in advance. This demonstrates a clear distinctiowdxen
the goals of revenue and social welfare maximization inithéed
supply, subadditive (or XOS) setting.

THEOREM 4. Thereexists a set of buyers with XOS val uations,
and an ordering of the buyers, such that any single posted price
(even chosen based on the buyers' valuations) produces revenue at

most OPT 20z ™"/

PROOF Let X = 2(°=™"* Our goal is to show that no sin-

gle price can beat the rati&. As we will see, it suffices to con-
sider only two buyers. The construction is inspired by thanegle
above, though it is a bit more intricate.

Let us partition the items into sefs, S1, So, ..., St where sefS;
hasn/X" items andt = logy (n) = (logn)*/* (so, technically,
the total number of items is slightly larger thaj). The valuation
of buyer2 will be additive over itemswithin any given setS; and
then max over the bundles. Notice that this implies that pgaren
price, buyer2 will purchase items from at most one sgt

We will define buyee so thatv2 (S;) = (1 1/v/logn)va(Si—1).
The high level idea of the construction is that bugllsrvaluatlons
contain almost all of the total social welfare (the auctiemean-
not hope to make sufficient revenue from buyerHowever, when
prices are such that buy@rwould ordinarily purchasé;, and the
price is high enough so that this constitutes substantiamee,
buyer1 (who arrives first) purchases just enough of Sgti < ¢ to
make buyee choosesS; instead, reducing total revenue obtained
from buyer2 by a factor ofX. In addition, the final se§; has too

low total valuation sincél — 1/y/Iogn)! ~ e~Me™"* Thus



the auctioneer cannot possibly receive enough revenue \apda
buyer2 purchase the final set.

In order to make this work, we need for buyerto be able to
cause buye? to switch toS;+1 by purchasing only /X fraction
of S; (if buyer 1 purchased more than this fraction 8f, then the
auctioneer would make too much revenue from buljer We do
this by defining buye®’s valuations as follows. Le$; denote the
first|S;|/ X elements withinS; and letL; = X*(1 — 1/+/Togn)".
We define buye® to have valud.; on each of the items if; — S
and valueL; (X — 1)/(+/log n — 1) on each of the items iff;. So,
for instance, buye? has valuel on the items inSp — S{, and value
(X —1)/(v/Togn — 1) on items inS{. Thus,

v2(S; — 8)) = n(1—1/X)(1 —1//logn)"’

and

v2(8]) = n(1—1/X)(1 —1//logn)" " (1//logn).

Putting these together we get:

v2(Ss) n(1—1/X)(1 —1/y/logn)"!
v2(Si—1 — Si_1).

In particular, the key points of this construction are th#ofo-
ing: (a) v2(Siy1) = wva(Si)(1 — 1//logn), (b) va(Sit1) =
v2(S; — Sj), and (c)|S;| = |Si+1| = |S:|/X. In addition, buyer
2's valuations are such that at any given price, it preferaircipase
one of the sets; in its entirety.

We will define buyerl’s valuations to be nonzero only over the
setsS), S1, ..., S;, and a max of sums just like buy2r The prop-
erty we want from buyet is that it should purchas€; when the
price isinthe rangéL; /X, 3L;/~/log n] and furthermore it should
never produce much revenue for the seller. The reason weogre
about this range is that below the lower end, we do not cangiéb
2 purchasesS; because the revenue to the auctioneer will be too
low (less tharv2 (S;)/X). Above the upper end, we can show that
buyer2 prefersS;+1 — Si,; to S; so he will not purchasé; even
if buyer 1 purchasesS; , ;. Specifically, the price at which buyer 2
is indifferent between set$; andS;1 — Si., is the pricep such
that:

1 i—1 n
=) - Pxi

n(1_§)(1_

i+1
—n(1-%) (1- 7)) -t (- %)

Solving, we have

. 1—1 2
X -3 (=) (-(-wm))
(=)

i 1 i1 2 1
X (1-mm) (- )

L (o) ()

v\ Viegn Viegn—1 )7
which is at mosBL;/+/logn for n > 16. Moreover, we do not
need to worry that buyer 2 might prefer jusf to Si+1 — Si
since both sets have approximately the same size and yet item
S; are much less valuable to buyer 2 than items'jn, — Si ;.

Itremains to precisely define buyerTo get the desired behavior
for this buyer we set its value on each of the itemsSinto 4L;.
Sowi(S}) is 4(n/X)(1 — 1/y/Togn)’. We can now check that
buyer1 has the desired purchasing behavior: he purchdsagen
prices are in the rangl.; /X, 3L;/+/logn], and yet he does not
provide enough profit to the auctioneer. To see that thisus tr
just notice that for alp = aL;, o € [1/X,3/+/logn] we have

p:

IN
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4n/X)(1 — 1/y/Togn)" — aln/XTHX (1 — 1/y/Togn)’ >
4(n/X)(1 —1/y/Togn)? — a(n/X X1 - 1//Togn)". for

all j # 4. It's easy to see that this true always for- : and it is also
true whenj < i for large enough. Thus, buyerl causes buyer
2 to purchase a set with a factdf less revenue to the auctioneer
than it would have purchased without the presence of buiyet
any price for which the auctioneer would have made substianti
revenue. This shows that any single price results in revéimaies

a factorX worse than the total social welfare[]

Note: It is easy to modify our example in Theorem 4 so that no
buyer has a significant fraction of the social welfare. Sipealy,
we just need to make “copies” of the example in Theorem 4, each
on a completely disjoint set of items (so there arebuyers now,
andO (n”) items total), such that each buyer has valuatidor all
items not from their own set. Then clearly all buyers haveiatibn
close to the average.

Clearly, the lower bound in Theorem 4 depends on a specific
adversarial ordering of the buyers. However, even if we assu
buyers arrive in aandom order, there exists a set of buyers for

which a2 * ™) hound still holds. Specifically:

THEOREM 5. Thereexists a set of buyers with XOSvaluations,
such that any single posted price (even chosen based on the buy-
ers valuations) produces an expected revenue at most (m/X +
1/m)OPT, even under a random ordering of the buyers, where

X = olosm)'/* Setting m = v X we have a lower bound of
20(10g1/4 n)

Proof Sketch: We use a construction similar to the one in Theo-
rem 4, where instead of having only one buyer of typeve have
m — 1 buyers of typel. For each type- buyer;j and each bundle
S; there is a special shadow-copy ; that is only desired by this
particular buyer and has value judess than the value &f;. So, if
there is a typd buyer before the type buyer, then the first typé-
buyer who arrives will act just like in the one Theorem 4 — h# wi
buy an identical bundle to the proof of Theorem 4 and will raddet
the shadow copy, since its value is a tiny bit smaller; aéidagped
bidders will prefer their own shadow copy to any of the orain
sets. [

4. UNLIMITED SUPPLY: ALOGARITHMIC
APPROXIMATION

In this section we prove a logarithmic bound for the unlirdite
supply case for buyers with general valuations (and we shalsb
remark that the proof of the limited supply case builds ongiosf
here for a single buyer). By unlimited supply we mean that the
seller is able to sell any number of units of each item, anyg &aeh
have zero marginal cost to the seller. For simplicity, welassthat
no buyer is interested in more than a single copy of an iterd, an
therefore the valuation is still over subsets/jof

Unlike the previous section, in this section we make no agsum
tion about the valuation function being subadditive. We dbaven
assume valuations are necessarily monotone (a monotaunegtieel
is one such that for ay C 7', we havev;(S) < v;(T), also called
the free disposal property), so the maximum valuation for buyier
may occur at som§ # J. The only assumptions we will make are
that we are given the valu®# = max; s v;(S) (though we will
relax this later) and that the empty set has zero value taugts,
i.e. Vz(w) =0.

We prove that a random single price achievesiog m +
log n) approximation to the social optimum for buyers with gen-
eral valuation functions. Recall, that such an approxiomatm-



mediately implies an approximation for the maximum revethee
seller can extract from the buyers.

Before describing the argument, let us introduce some iacdit
useful notation. We denote hy; ,, the utility of buyeri when the
single posted price ig, and byS; , the set of items that maximizes
its utility, i.e., Si,, = DemandPrices(i,p, J).

The following lemma states that by decreasing the singléspos
price, the seller never sells fewer items. (For a proof speagix A.)

LEMMA 6. Letp,p’ € Rsuchthatp > p’ > 0. Then, for every
buyer i, S| > |S:.

For clarity we start by presenting the case of a single buyer
{1,...,n}. Recall thatH = H; = maxg v;(S) is the maximum
valuation of buyei. Clearly, the profit we can extract from buyer
is at mostH . Recall thatu;, , is the maximum utility the buyer can
achieve for a single posted pripgi.e.,u; , = max u;,p(S).

Let F(p) denote the number of items our buyer purchases un-
der the fixed single pricg.> We will analyze thedemand curve
which is defined as follows: the horizontal axis measuresrtiae-
ket price”p (the price we set on all of the items) and the vertical
axis measures the number of iteli&) the buyer purchases at this
price. Note that Lemma 6 implies that the functiBiip) is mono-
tonically non-increasing, as in Figure 1.

Letpo = 0 < p1 < ... < pr < H be such thaiF(p;) =
F(p) forall p € [p;,pi41) andF(p;) < F(pi41), for all ; in
other words,po, ..., pr, are all the relevant (transition) points on
the demand curve. Let us denote by = F(p;), for all [. (Note
that since the number of items decreases with @aclve have that
L<n)

Fy
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Figure 1: The demand curve. The horizontal axis measures the “mar-
ket price” and the vertical axis measures how many items the tyer
will buy at each given market price.

We will prove next a fact which is essential to our analysis,
namely that the maximum valuatidi of our buyer (which is also
the maximum revenue our seller can extract from the buyesxis
actly the area under tH8— curve. Formally:

5In order to ensure thaF well defined, when there are ties we
assume for simplicity that the buyer purchases the smdilezdle
of maximum utility. SoF(p) = min{|S| : u; ,(S) = wip}. This

is the worst case for revenue to the mechanism.

LEMMA 7.
L—1
maxv;(S) = H = ny - (pie1 — pi1).-
2% vi(S) ; (Pr41 — 1)

PROOF When the price increases frgm to p; our buyer switches
from buyingn, items to buyingr, items, and is exactly indifferent
at pricep:. Sinceu;,; = vi(Si,p;) — n;p;, this means we have
Uip, = Wip, (Sipy) = Uipy — Mo - (p1 — po). In general, for
everyl > 1, since at pricep; our buyer switches from purchasing
n;—1 items to purchasing, items (and is indifferent between the
two sets), we have

— -1 (P —pi-1) -
So, summing all these up we obtain the desired reslUks w;,p, —

L—1
Uipy, = 2> M- (pr1—mp). O

Wi,py = Ui,py_y

Let us defingy, = 251 ,fori > 1,1 € Z.% We can prove (see

Appendix A) that for anys, the area undeF is bounded above by
O(> qi - F(q) +nH/2°). Formally:
=1

LEMMA 8. Forany s > 1,

il
2s°

L—-1 s
H=> n (p1-p)<2-Y a Flq)
1=0 =1

Let s = log (2n). Combining Lemma 7 and Lemma 8, we ob-
tain:

H<4-) a-Fa) (1)
=1
Sinceg; - F(q;) represents the revenue obtained by the single posted
price q;, this implies that there exists a single posted price
{q|l € {1, ..., s}} which gives arO(log n)-approximation forH .

Inequality (1) also implies th&®ANDOM SinglePriceis 4 log (2n)-
competitive with respect to the social optimum.

We can extend the analysis to multiple buyers in a direct way.
The only point to notice is that we are given ofly= max; H; =
max; s v;(S) and not the individualdd; = maxg v;(S). Thus
we need to rurRANDOM Single Price with s |log(2nm)]
and guarantee an approximation@flog (n) + log (m)). Specif-
ically, in Appendix A we prove,

THEOREM 9. Inthecase of asingle buyer (m = 1), the RAN-
DOM Single PriceMechanism guarantees a 4 log (2n) approxi-
mation with respect to the social optimum. For any number of
buyersm it guarantees O (log (n) + log (m))-approximation with
respect to the social optimum.

Lower bound, single buyer, multiple prices: We now give a sim-
ple lower bound that holds for a general posted price allgorithat
may have a different price for every item, even for the casjistf
one buyer. Consider a single buyer whose valuation for &'sst
v(S) = 2171 1. The seller has to set a prigg for each item
j. Given his valuation functions, even though his total vabra
is Q(log n), the buyer will never spend more than In particu-
lar, given the prices, the optimal strategy of the buyer isdd the
items in increasing price order, and then buy a prefix of sizsach
that each item will have a cost at mdstk. Hence the revenue is
at mostl. This establishes:

THEOREM 10. Thereisasingle submodular valuation function
for which the revenue of any posted price mechanism has approxi-
mation ratio 2(log n) with respect to the social optimum.

®Note thatp; increases withj while ¢; decreases with



5. LIMITED SUPPLY: SPECIAL CASES

We now return to the case of limited supply and present two
interesting classes of valuations for which a random sipgiee
does in fact achieve a logarithmic approximation.

5.1 Simple Submodular Valuations

We show here that if we have buyers with a subclass of submod-

ular valuations that we catimple submodular valuations, then a
random single priceloes achieve revenue within a logarithmic fac-
tor of the optimum social welfare. We say thatis simple sub-
modular if it is submodular and if for all sef$, the last itemx in
the greedy ordering of satisfiesv(z | S — {z}) < v(z | T)
for all T # x such thaiT'| < |S| — 1. Here, the “greedy order-
ing” is the ordering in which one first chooses the itamin S

of highest individual valuation, then the item in S of highest
marginal valuation giverr; and so on. This class generalizes the
unit-demand case (where fo| > 2 the last itemz in the greedy
ordering satisfies’(z|S — x) = 0) as well as the additive case and
the submodular symmetric (multi-unit) setting [23].

THEOREM 11. Consider s = |log,(2n?)]. If all the buyers
have simple submodular valuations, then the RANDOM Single
Pricemechanismachievesrevenuewithinan O (log (n) + log (m))
factor of the optimum social welfare.

Proof Sketch: Lehmann et al. [23] show that for submodular val-
uations, if one gives items to buyers in the order of maximum
marginal valuation (i.e., at each step choose iterand buyer:

to maximizev;(z|S;) whereS; is the set of items already given
to buyers), then this greedy procedure produces an allocation with
social welfare within a constant factor of optimal. Let udl tais

the LLN allocation.

Note that by submodularity, these marginal values are noreasing.
Imagine that we halt this process once the marginal valosiivop
belowp, and letF(p) denote the number of items allocated by that
point. As in the proof of Theorem 9, the expected valug oF (p)
is within a logarithmic factor of the social welfare of theewall
LLN allocation. Thus, it suffices to show that allowing buyeo
enter in an arbitrary order and purchase at prieehieves revenue
within a constant factor gf - F(p).

In particular, suppose that buygis assigned:; items of marginal
valuation at least in the LLN allocation. When buyerarrives, the
claim is that he will either purchase all remaining itemshia sec-
ond half of his assigned bundle or else purchase at leg& items
total. In particular, suppose not and 4ebe an unpurchased itemin
the second half, leT" be items purchased, and lﬁ} be the items
in his assigned bundle up through iteamBy definition of the LLN
procedure we have; (x | S; —x) > p and by definition of simple
submodular valuations we havg(z | T') > v;(x | Sj — «) since
|T'| < |Sj|. This in turn then implies by a standard matching argu-
ment that at leadF (p) /4 items are sold in total, as desired]

5.2 The Multi-Unit Case

We consider here the multi-unit setting [11], and we show how
the ideas from the unlimited supply setting (Section 4) carap-
plied to get a logarithmic approximation in this case as wéhe
formal setting here is the following. Assume that we haveyonl
one item for sale, but copies of it. We also have: customers,
and each customeérhas a valuation function; : {1,...n} — R,
wherev; (¢) encodes his value for obtainiggtems, and these valu-
ation functions can be arbitrarily complicated. The setifessen-
tially the symmetric valuations case in combinatorial & as
described in Lehmann et al. [23] or in Vickery [27]; note howe
that we are interested in general symmetric valuationsonlytthe
submodular case.

We first point out that if we makeo assumptions, then no single
price can guarantee ar{n) approximation to the social welfare.
In particular, suppose that the first customer has valae any set
of size1, and the second customer has vatuen the entire set of
n items but value) on any other set. In this case, the maximum
possible revenue is. However, note that this case is a bit peculiar
because one buyer gets all the items in the optimal allazatide
show here that this is the only barrier to good revenue. Itiqar
lar, we show that under the assumption that the optimal atioc
gives at most &1 — ¢) fraction of the items to any one buyer, our
single pricing scheme can achieve a logarithmic approxonan
this setting as well. Specifically:

THEOREM 12. For the case of n identical items, under the as-
sumption that the optimal (or a near-optimal) allocation gives at
most a (1 — e) fraction of the itemsto any one buyer, the RANDOM
Single PriceMechanism guarantees an O (£ log (n) + log (m))-
approximation with respect to the social optimum.

Proof Sketch: Letn, be the number of items given to buyien the
optimal allocation (the one maximizing social welfare)ddet v;
be the value of this set to buyefsov; = v;(n;)). By assumption,
all n; < (1 — €)n. Now, for each buyet, imagine drawing the
monotone demand cundg;(p) of number of items desired versus
price, but where we cap the number of itemsat That is,F;(p)
is the number of items buyérwould purchase in a store with;
items all at pricep. So,F;(0) < n; and it eventually drops to
0. The integral of this function is exactly;. If we sum up these
curves, we get a global cun® = F; + F; + ... + F,,, whose
integral is the optimum social welfare.

Now, letp be a price whose rectangle has large arda(p). The
claim is that if bidders arrive in an arbitrary order, thelsemakes
at least an fraction of this amounép - F(p) by pricing items ap.
The reason is that by definition &%, when a buyet arrives, he will
purchase at lead;(p) items if that many are available. Since the
only way it is possible for this number of items to not be aakiié
is for at leasten to have been already sold, this means the total
number of items purchased is at leasin(F(p),en) > €F(p).
This then implies the desired result]

We can also extend the above argument to the case that tae sell
hasn copies ofk distinct items, so long as the optimal allocation
gives no buyer more thafl — ¢)n items total.

THEOREM 13. For the case of n copies of k distinct items, un-
der the assumption that the optimal allocation gives at most (1 —
€)n itemsto any one buyer, the RANDOM Single PricéMechanism
guarantees an O (£ (log (n) + log (m)))-approximation with re-
spect to the social optimum.

Proof Sketch: The same argument as above applies, wheres

the total number of items given to buyerin the optimal alloca-
tion. The difference is thaF (p) could now be as large ask, so

min(F(p),en) > e¢F(p)/k. O

6. CONCLUSIONS AND OPEN PROBLEMS

We show that single posted price mechanisms are surpnysingl
powerful, achieving revenue within a logarithmic factortioé total
social welfare for unlimited supply settings for buyers lwgen-
eral valuation functions (not just single-minded or uretitand)
and achieving @°(VIesnleglogn) gapnroximation for the limited
supply case with subadditive buyers. These are the bestueve
guarantees known fany item-pricing scheme, and in the unlim-
ited supply setting match the best possible guarantee bytemy
pricing scheme.



We also provide 2%0°s""* ) Jower bound on the revenue of any
single posted price mechanism for subadditive buyers (@8
buyers) in the limited supply setting, showing that evenkioy-
ers with known valuation functions, the gap still existsnc® so-
cial welfaredoes have a logarithmic approximation using a single
price [12, 10], this demonstrates a clear distinction betweev-
enue maximization and social welfare maximization in theitiéd
supply setting.

Note that our lower bound for limited supply does not apply if
one allows the seller to use different prices on differeatis. An
interesting open question is whether an improved upper dasin
possible using multiple prices, or on the other hand whetineal-
ternative lower bound can be given for that case. In padicut

is an open question if the lower bound can be extended even to

the case where the seller is allowed to use fustprices. A sec-

ond open question is whether our lower bound (which uses XOS

buyers) can be extended to the more restricted class of slidaro
buyers, or whether alternatively a polyleg upper bound can be
obtained in that case.

Acknowledgments:We thank Shahar Dobzinski and Jason D. Hart-
line for a number of useful discussions.
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APPENDIX

A. PROOFS

Lemma 1 Assume thatv; are all subadditive. Lefh,..., T
be an arbitrary feasible allocation and tet= Wlmz’)' There

existsp and subset&; C T; suchthat’, ..
supported at pricg and furthemore

> plLi| = > vi(T).
i=1 i=1

., L., is an allocation



PrROOF ConsiderL; to be the subset df; that buyer; would
purchase if he were in a store where everything is pricecdsaid he
is only allowed to see the items . The fact thad """ | p|L;| >
ay_ ", vi(T;) then follows from Theorem 9. The faft, . .., L.,
is an allocation supported at prigefollows from properties of
subadditive valuation functions. Specifically, considerabitrary
subsetlV; of L;. SinceL; is the set that buyerwould purchase
with items inT; priced atp and items inJ \ 7; removed, we know
that

vi(Li) = vi (L \W;) > p- |[Wi.

(If the above were not the case, the buyer would have purdihse
setL; \ W; instead ofL;.) In addition, sincev; is subadditive we
also have:

vi(Li) < vi(Wi) +vi (Li \ Wi).

Combining these together we get thatW;) > p - |[W;| as de-
sired. [

Lemma 2 LetL4,..., L, be an allocation supported at price
p. Let Sy, ..., S, be the allocation produced by Generate Alloca-

tion when run with the price parametgf2. Then:

> vis)

m

> (p/2)|Li-

i=1

ProoFr DefineALG(i, S, .., Si—1) as the total valuation that
our algorithm acquires from the set of biddérs., m on the set of
itemsJ\ (S1USs .. .US; 1). LetOPTyey (4, L1, ..., Lim, S1, .., Si_1)
be the total revenue obtained at prig&2 from the set of bidders
i,...,m if buyer j > 4 would be allocated set; \ (S1 U Ss... U

Si—1). We clearly have
ALG:(Z7 Sy ey Sifl) = ALG(Z + 1,51, .., Sl) + VZ(SZ)
and also

OPT, ey (i, L1, oy Lin, S, .., Si—1)
< OPTTGU(’L' +1, L4, ey Lm7 517 . SZ) +
(p/2)|L; \ (S1US2...US;—1)| + (p/2)|S:].
The second inequality follows from the fact that we lose astmo
(p/2)|L: \ (S1U Ss2...U S;—1)| from using up buyet, and at most
(p/2) |Ss| from using upS; sinceS; might contain items that are
in Lj \ (Sl UsSs...U 57;71) forj > 7. But
[Li \ (S1US2...USi—1)| (p/2)
S Vi(Li\(51USQ...USi71))
—|Li \ (S1U Ss... U Si-1)| (p/2)
< viSi) = (p/2)1Si]-
The firstinequality follows from the fact that the allocatib;, . . ., L,

is supported at pricg and the second one from the fact that buyer
1 preferssS; to the setl; \ (S1 U S2... U S;—1). So

vi(Si) > (p/2)|Si| + |Li \ (S1 U S2... U Si—1)| - (p/2),

and therefore

ALG(i, Ty, ..., Ton, S1, .., Si—1)
ALG(Z + 1,7117 ...,Tm, S1, ooy Sl) —|—V1(S7,)

and
OPTrev(t, 11, e, Ty S1,y ey Siz1)
< OPTTe/U(i + 1,71, ..., T, S, . Si_

We also havé®OPT,eo (1, L1, ..., Lim) = > 1y
these imply:

1) + vi(Si).
(p/2)|L:|, and all

m

D vils)

m

> (p/2)|Lil,

= i=1

as desired. [

Lemma 6 Letp,p’ € R suchthap > p’. Then, for every buyer
i [Sipr| 2 1Sipl-

PROOF. Let us fix a buyeti. Assume thatS;,,| = k. By defi-
nition, sinceS; ,, is a set of items that maximizes the buyer’s utility
under the pricing vectgr = p1,, for all subsets” C J we have:

i p(Sip) = Vi(Sip) =0 k> p(T) = vi(T) —p-|T].

Assume now that = p’+¢, ¢ > 0, and letT" be an arbitrary subset
of Jwith |T'| = k', k" < k. Then we clearly have:

vi (Sip) vi(Sip) —(p—€) -k
vi(Sip)—p-k+k-e
vi(T) —p- k' + k' ¢

vi(T) = (p—¢€) - k'

vi(T) = p' - |T].

Therefore, for all subsets C J with |T| = k', ¥’ < k, we have:
Wi (Sip) = Vi (Sip) —p' k> vi(T) = p' - |T| = (T).
This then implies that any set of iten§s ,,» that maximizes buyer’s

i utility under the pricing vectoyp’ satisfies|S; /| > |S; |, as
desired. [

Lemma 8 Foranys > 1,

H= Zm (pry1—p) <2 ZQL

—p -k

(AVARYS

H
—|—n—

L—1
PROOF By Lemma 7 we havél = > n; - (pi41
=0

—pl). Now

we can bound the sum as follows,
L—1
z ng - (Pl+1 —pl)
=0
L
Z ni—1 — nz Dpi

=1

Z (ni—1 — ) -pr+ Z (ni—1 —mny) - m

lp >4 lp <£-
H
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Consider the prices that fall in the ranfge, ¢;—1), and assume they

arep; < --- < p;4+x. Clearly we have that each price in the range
isat m08@171. Slncezgf (nb,1 —nb) =MNj—1—Nj+k < F(ql),
we have,
H < QL 1-F(aq) +n—f2 Ql +n557
2



as desired.

Theorem 9 In the case of a single buyém = 1), the RAN-
DOM Single Price Mechanism guaranteestdog (2n) approxima-
tion with respect to the social optimum. For any number ofdray
m itguarantee®) (log (n) + log (m))-approximation with respect
to the social optimum.

PROOF Form = 1, the desired competitive ratio follows from
(1) and from the fact that the expected profit of our mecharnigsm

%lz a - F(aq).
=1

Assumem > 1. Let H; = max (vi(9)), and letF; be the
curve corresponding to buyeér so H = max H;. Lets; = s —

log(H/H;), which is the effective index for theth buyer’ By
Lemma 8, applied to buyer we have,

K] Hz s H
H; <2- -F; =2 -F; —. (2
< ;!ﬁ (ql)+”23i ;(ZZ (!ﬂ)+n2s 2
Summing over all the buyers we have:
in‘S?iiqZ'Fi(!ﬂ)—&-nmﬁ. (3)
i=1 i=1 [=1 2°

Sincei H; > H, s = log(2nm), combining (3) together with

i=1
the fact that the expected profit of our mechanism is

s

S (SR

i=1 1=1
we get an approximation ratio dflog(2nm) = O(log n+logm). [
Note: Note that theD(log(m)) factor is attributed directly to the

variation in H;. Assume thatd; = H for every buyeri. Then
>, Hi = mH and itis sufficient to set = log(2n).

Removing the assumption of knownf: We have assumed so far
that the maximum valuatio® (over all buyers and all bundles) is

context of Combinatorial Auctions: designing good aldaris [18,
1,7,2,9, 20] and mechanisms [15, 16, 3]ferenue maximization
in the unlimited supply setting [19], and designing aldamis [14]
and computationally efficient mechanisms [24, 22, 12, 26,t40
optimizesocial welfare in the limited supply setting.

Substantial effort has been devoted to find a computatipeéit
cient combinatorial auction which approximates the sosklfare
well [24, 22, 12, 26, 10]. On the other hand, as pointed ou2&},[
much less is known about designing combinatorial auctitas t
maximize the auctioneeri®venue. In particular, as opposed to the
social welfare goal, where obtaining a truthful mechanisreasy
ignoring the computational constraints (due to the celelr&¥CG
mechanism), for the revenue maximization goal no such mecha
nism is known. The most notable positive result so far foereie
maximization in the limited supply setting is due to Dobkins
Nisan and Schapira [12], who present a simple random-sampli
based truthful mechanism, that provides@f,/n)-approximation
for bidders with general valuation functionbpth for the social
welfare and revenue maximization objectives. They adultily
show anO(log(n))-approximation tesocial welfare for the special
case of XOS bidders, recently generalized to the somewlgera
class of subadditive bidders by [10]. At the heart of this hntec
anism is an item-pricing in which all items get the same ramdo
price and then bidders enter one at a time and purchase wat th
want most at that price, precisely the mechanism we have zetal
throughout this paper. Dobzinski (personal communicatpmints
out that if one allows more general bundle-pricing mechasis
then the results of [10] can be adapted to provide polyldigiaic
revenue guarantees for subadditive buyers: the mecharisene
tially avoids the lower bound of Theorem 4 by refusing to seiall
bundles to any buyer. Hartline (personal communicatiomgsmut
that if furthermore computational efficiency is not an isstien
VCG with a random offset will achieve logarithmic revenueagu
antees for general buyers in the limited supply case. Theshaa
nisms, however, require pricirgundles, and so do not apply to the
setting in which objects must be priced per item, which idelsi
the vast majority of sales in the world today.

Revenue maximization in thenlimited supply setting has also
become increasingly popular in the past few years; for antece
survey see [19]. Note that much of the work on revenue maxi-
mization in combinatorial auctions has focuseditem pricing, in

known to the mechanism. We can remove this assumptions usingpart because of its wide applicability. Some of these resaie

rather “standard tricks”. One immediate generalizatiomhest if
instead we are just given an upper-boutii on H, with the guar-
antee that{’ < oH for some given value, then the mechanism
RANDOM Single Priceis anO(log n + logm + log o) approx-
imation. In particular, this implies that if we are simplygh a
polynomial upper bound?’ on H, i.e., H' < poly(m,n) x H,
then we still get arO (log n + log m) bound.

Alternatively, if we have no upper bound di at all, but we as-
sume at least that’ > 1, then selecH’ at random from the proba-
bility distribution wherePr[H’ = 2'] = TTog;+ fOF SOme constant
¢ > 0. Now we can run mechanisRANDOM Single Price with
the selectedi’and the parametear The probability thaRANDOM
Single Price selects a given pricp = 2% is %ngj Pr[H' =
21 > WM This implies that the approximation ratio,

for s = log(2mn) andp < H is O(log(nmH ) log?(log(mnH))).

B. ADDITIONAL RELATED WORK

As noted in the Introduction, the setting we analyze is egldb
the Combinatorial Auctions setting. In the Computer Sagetmm-
munity, there have recently been two main threads of worlhén t

"For simplicity we assume thadg(H /H;) is an integer.

truthful mechanisms and some are not [1, 2, 7, 17, 18, 13, 20],
though Balcan et al. [3] give a generic reduction to convest a
(non-truthful) item-pricing to a truthful mechanism whémethum-

ber of bidders is sufficiently large as a function of variousam
sure of complexity of the class of item pricings. Guruswaini e
al. [18] give anO(log m + log n)-approximation both for the case
of single minded and unit-demand bidders; furthermore, Biam
Feige, Hajiaghayi, and Salavatipour [9] show that it is hardp-
proximate the maximum revenue within a factot@f’ n, for some

§ > 0, assuming that N BPTIME (2" ) for somee > 0, even

for the case of single-minded bidders.

In the context of Bayesian mechanism design, Myerson derive
in a seminal paper [25] the optimal auction for selling a Britem
given that the bidders’ true valuations for the item comafisome
known prior distribution. His mechanism generalizes trivially to
any single-parameter agent setting with arbitrary supphstraints
or costs to the auctioneer for the outcome produced. Howeweer
such characterization is known for the more general caseutif-m
parameter settings.



