
Some Tools for Approximate 3-Coloring

(Extended Abstract)

Avrim Blum∗

MIT Laboratory for Computer Science
Cambridge, MA 02139

Abstract

We present several tools for use in approximation al-
gorithms to color 3-chromatic graphs. We then use
these techniques in an algorithm that colors any 3-
chromatic graph with O(n3/8+o(1)) colors (or more

precisely O(n3/8 log5/2 n) colors) which improves the
previous best bound of O(n0.4+o(1)) colors.

We also illustrate these techniques by considering a
problem in which the 3-chromatic graph is created not
by a worst-case adversary, but by an adversary each
of whose decisions (whether or not to include an edge)
is reversed with some small probability, or noise rate
p. This type of adversary is equivalent to the “semi-
random” source of Santha and Vazirani [SV86]. We
present an algorithm that will actually 3-color such a
graph with high probability even for quite low noise
rates (p ≥ n−1/2+ǫ for constant ǫ > 0).

1 Introduction

In this paper we consider the following two problems
on the (vertex) coloring of 3-chromatic graphs. The
first is the standard worst-case problem: given a 3-
chromatic graph, color it with as few colors as possi-
ble in polynomial time. For this problem, Wigder-
son [Wig83] gave a simple algorithm for coloring
with O(n1/2) colors, and this bound was improved to

O(n1/2/ log1/2 n) by Berger and Rompel [BR88] and
to O(n2/5+o(1)) by Blum [Blu89]. We present an al-
gorithm that improves these bounds and colors any 3-
chromatic graph with O(n3/8+o(1)) (or more precisely

O(n3/8 log5/2 n)) colors. The second problem we con-
sider is that of coloring a graph which is created not
by a worst-case adversary, but by an adversary each
of whose decisions (whether or not to include an edge)
is reversed with some small probability, or noise rate
p. We present an algorithm that even for quite low

∗Supported by an NSF Graduate Fellowship, NSF grant

CCR-8914428 and the Siemens Corporation. Author’s email

address: avrim@theory.lcs.mit.edu

noise rates will actually 3-color such a graph with high
probability.

The algorithms are based on strategies for mak-
ing progress from regions of high density in a 3-
chromatic graph. For the worst-case problem, the
previous O(n2/5+o(1))-color algorithm of [Blu89] per-
formed most poorly when the input graph consisted of
a collection of high-density regions or “clumps” with
a lower density of edges between clumps. Essentially,
that algorithm looked at subsets of the “grandchil-
dren” (the neighbors of neighbors) of nodes in an at-
tempt to find a large independent set. So, for a given
average node degree, if the start node were in a dense
region, the subsets considered might not be very large
as many paths of length two could converge on the
same grandchild. The tools presented here allow one
to take advantage of such dense regions when they are
found and thus to improve the coloring bound.

Although coloring 3-chromatic graphs with few col-
ors in the worst case appears difficult—the bounds
known are all quite far from the lower bound of 3—
the problem of coloring random 3-chromatic graphs
is much easier, and in fact it is known that one can
actually 3-color such graphs with high probability
[Kuc77][Tur88][DF89]. For concreteness, let us con-
sider the model which we will denote G(n, p, 3) where
the n vertices are separated into 3 equally-sized color
classes, and then for each pair u, v of vertices of dif-
ferent colors, the edge (u, v) is placed into the graph
with probability p. (See [DF89] for the relationship of
this to other models for random 3-chromatic graphs.)
Turner [Tur88] presents an algorithm that he shows
will 3-color G(n, p, 3) with high probability for all
p ≥ n−1/3+ǫ. Dyer and Frieze [DF89] go further and
show an algorithm that works with “high enough”
probability that when amortized over all 3-chromatic
graphs, spends polynomial time on average per graph.

While the above results for coloring random 3-
chromatic graphs imply that most 3-chromatic graphs
are easy to 3-color, the random graphs are of a very
special type. For instance, with high probability all
vertices have nearly exactly the same degree and all

have nearly the same number of edges to each of the
other two color classes. So, many graphs created in
only a “somewhat random” manner may not be cov-
ered. On the other hand, the worst-case model may
be overly pessimistic in many situations. So, to ana-
lyze the coloring of graphs in an intermediate range,
we consider here a “semi-random” graph model that
lies in between the random and worst-case models.

In this model, which we will denote GS(n, p, 3), the
graph is generated by a version of the semi-random
source (also called a “slightly-random” source) of San-
tha and Vazirani [SV86] (also discussed in [Vaz85]
[VV85] [CG85]). The graph is created as follows.
First, an adversary splits the n vertices into three color
classes: R (red), B (blue), and G (green). Then for
each pair of vertices u, v where u and v belong to dif-
ferent color classes (running through such pairs in an
order of its choosing), the adversary decides whether
or not to include edge (u, v) in the graph. Once the ad-
versary has made a choice for a particular edge (u, v),
the choice is then reversed with probability p. So, in
keeping with the semi-random source of [SV86], later
choices of the adversary may depend on the outcomes
of earlier decisions. An alternative way to view this
model is that in an order of its choosing, for each pair
of vertices u, v belonging to different color classes, the
adversary picks a bias puv between p and 1 − p of a
coin which is flipped to determine whether edge (u, v)
is placed in the graph. The bias puv may depend on
the outcome of previous coin tosses. We will call p the
noise rate of the source. We also consider a slightly
modified version of the semi-random model, which we
will denote GSB(n, p, 3), where the sizes of R, B, and
G are required all to be Ω(n). We will call this last
model the balanced semi-random graph model

The semi-random model separates the algorithms
for coloring random 3-chromatic graphs into two cat-
egories. Some of the algorithms for the random model
[DF89][Kuc77] are highly dependent on facts such as
the edge probabilities all being equal and are easily
defeated by a semi-random source. Others, such as
Turner’s algorithm [Tur88], adapt well to the semi-
random model. In particular, Turner’s bound of
p ≥ n−1/3+ǫ for the random case holds in the balanced
semi-random model as well. We present first an algo-
rithm that achieves the same bound as Turner’s but
with significantly simpler analysis (and that holds in
the slightly more general GS(n, p, 3) model), and then
one that improves these bounds by 3-coloring semi-
random graphs GSB(n, p, 3) with high probability for
p ≥ n−1/2+ǫ.

The semi-random model is also useful for illustrat-
ing some of the strategies presented for the worst-case

problem. These strategies are used to make progress
from dense regions, and in the semi-random graphs,
the noise rate p determines a minimum density which
applies uniformly to all parts of the graph. Each pos-
sible edge of the semi-random graph (that is, an edge
between vertices of different colors in the adversary’s
color scheme) appears in the graph with probability
at least p no matter what the adversary’s strategy, al-
though the adversary may make some regions of the
graph even more dense if it so chooses. Because of the
random noise of the source, the semi-random model is
simpler than the worst-case model for describing the
coloring strategy.

2 Notation and definitions

Given a 3-chromatic graph G = (V, E) and sets of
vertices S and T ,

• Let N(S) = {u ∈ V | (u, v) ∈ E for some v ∈ S}
be the neighborhood of S, and

let N(v) = N({v}) for vertices v.

• Let d(v) = |N(v)| be the degree of vertex v, and
let dT (v) = |N(v) ∩ T | be the degree into T of v.

• Let D(S) =
∑

v∈S

d(v) be the degree of S, and let

DT (S) =
∑

v∈S

dT (v) be the degree into T of S.

Notice that DT (S) = DS(T).

• We will use R, B, and G to denote the sets of red,
blue, and green vertices of G respectively under
some (unknown) 3-coloring of G.

For functions f and g we will say g(n) = Õ(f(n)) to
mean that g(n) is bounded above by f(n) logc n for
some constant c > 0, and similarly use Ω̃(f(n)) to
mean bounded below by f(n) logc n.

3 Semi-random graphs

We now consider the models GS(n, p, 3) and
GSB(n, p, 3) of a 3-chromatic graph generated by a
semi-random source. Although for small constant
noise rates p, say p = 0.01, it appears at first that
the adversary has a good deal of power to defeat a
coloring algorithm, it turns out that it does not. As
previously mentioned, Turner’s algorithm [Tur88] will
actually 3-color such a graph with high probability for
any p ≥ n−1/3+ǫ for constant ǫ > 0.

We present first a different algorithm that achieves
the same bound, but works for the unbalanced case
GS(n, p, 3) as well, and has a much simpler analysis.
We then show an extension of this strategy to an al-
gorithm that will 3-color GSB(n, p, 3) with high prob-
ability for p as low as n−1/2+ǫ for constant ǫ > 0.

Algorithm Two-Step

On input G = (V, E), first try to 2-color the
graph. If that works, halt with success. Oth-
erwise, do the following:

For each pair of vertices u, v (think of u as a candi-
date green node and v as a candidate blue node),

1. Let S = N(u) ∩N(v).

2. Let T = N(S).

If T is 2-colorable and V − T is an indepen-
dent set, then color T blue and green, color
V −T red and halt. Otherwise go to the top
of the loop with a different pair u, v.

Theorem 1 (weak version) Algorithm Two-Step will
3-color GS(n, p, 3) with high probability (over the coin
tosses of the semi-random source) for p ≥ n−1/3+ǫ and
constant ǫ > 0.

Proof: For convenience, let “red” be the color with
the most vertices in the adversary’s 3-coloring. If there
are either no blue or no green vertices, then we will
2-color the graph at the start. Otherwise, let u be
a green vertex of G and v be a blue vertex (in the
adversary’s 3-coloring). Then, the set S = N(u) ∩
N(v) contains only red vertices and so set T = N(S)
is blue and green. In fact with high probability, for p ≥
n−1/3+ǫ, set T contains all the blue and green vertices
for the following reason. If we view the semi-random
source as choosing biases puv ∈ [p, 1−p], then the sizes
of sets S and T are minimized when each puv equals
p. In that case, every vertex in R independently has
a probability p2 of belonging to S. So, using Chernoff
bounds, |S| ≥ 1

2 |R|p
2 = Ω(np2) with high probability.

Now, each vertex z ∈ B ∪ G such that z 6∈ {u, v}
has a probability (1−p)|S| of not belonging to T . The
reason is that for z 6∈ {u, v}, for each w ∈ R, the events
Az,w that edge (z, w) appears in the graph, occur with
probability p and are independent of each other and
of the choice of S. So, we have:

Pr[z 6∈ T] ≤ e−p|S| = e−Ω(np3) = e−Ω(n3ǫ) = o(1/n).

That is, with high probability all vertices z ∈ B ∪ G
will belong to T . Thus, with high probability, T = B∪
G and V −T = R and so for some pair u, v considered,
algorithm Two-Step will succeed.

Algorithm Two-Step fails when p falls below n−1/3

because then the vertices u ∈ G and v ∈ B may
not share enough neighbors for N(S) to equal B ∪G.
However, for p below n−1/3, set S might still con-
tain many vertices, and applying additional iterations
of the neighbor-taking process can be used to boost
its size, especially when the sizes of the blue, green,
and red vertex sets are roughly balanced. The follow-
ing procedure extends algorithm Two-Step with addi-
tional neighbor-taking stages.

Algorithm k-Step

On input G = (V, E), and integer k:

For each pair of vertices u, v,

1. Let S1
G = {u}, S1

B = {v}, and S1
R =

N(S1
G) ∩N(S1

B).

2. Let S2
G = N(S1

B) ∩N(S1
R), S2

B = N(S1
G) ∩

N(S1
R), and S2

R = N(S2
G) ∩N(S2

B).

3. Let S3
G = N(S2

B) ∩N(S2
R), S3

B = N(S2
G) ∩

N(S2
R), and S3

R = N(S3
G) ∩N(S3

B).

...

k. Let T = N(Sk−1
R).

If T is 2-colorable and V − T is an indepen-
dent set, then color T blue and green, color
V −T red and halt. Otherwise go to the top
of the loop with a different pair u, v.

Theorem 1 (strong version) Algorithm k-Step will
3-color GSB(n, p, 3) with high probability for p ≥
n−1/2+ǫ, ǫ > 0 constant, and k > log3(1/ǫ).

Proof sketch: Again, if u is green and v is blue
then for all i, Si

G ⊆ G, Si
B ⊆ B, and Si

R ⊆ R, and
T ⊆ B∪G. Also, the sizes of the sets Si

G, Si
B, Si

R and T
are minimized by the semi-random source that chooses
each puv to equal p. The general argument now is just
repeated application of bounds for large deviations,
being somewhat careful about independence. For this
proof sketch, we will focus on the case where k = 3
and show that algorithm k-Step will 3-color GS(n, p, 3)
for p = n−5/11+ǫ with high probability. We will then
briefly sketch the proof idea for larger values of k.

We can imagine that the coin deciding the presence
of an edge is not flipped until we actually examine
that edge. So, we first examine all edges (u, w) and
(v, w) for w ∈ R and find that almost surely |S1

R| =
Θ(|R|p2) = Θ(np2). Next, for each z ∈ G, we examine
the edges (z, w) for w ∈ S1

R and the edge (z, v). For
z 6= u, these are all previously unexamined edges. So,

for z ∈ G− {u} we have:

Prob[z ∈ S2
G] = p(1− (1 − p)|S

1

R|)

= p2|S1
R|(1 + o(1)).

(using p|S1
R| = o(1))

This implies that with high probability, |S2
G| =

Θ(|G|np4) = Θ(n2p4) and similarly we have |S2
B| =

Θ(n2p4). Now, for each z ∈ R − S1
R we examine

the edges (z, w) and (z, w′) for w ∈ S2
G − S1

G and
w′ ∈ S2

B − S1
B. Again, these are all previously unex-

amined edges, so the same argument as above shows
that the probability z belongs to S2

R is proportional
to p2|S2

G−S1
G| |S

2
B −S1

B|. Thus with high probability,
|S2

R − S1
R| = Θ(n5p10). Finally, we have T = N(S2

R).
Notice that set T contains S2

G ∪ S2
B and that for each

vertex z ∈ (B ∪ G) − (S2
G ∪ S2

B), we have not yet ex-
amined the edges (z, w) for w ∈ S2

R−S1
R. So, for each

such vertex z,

Pr[z 6∈ T] ≤ (1− p)|S
2

R−S1

R|

= (1− p)Θ(n5p10)

≤ e−Θ(n5p11)

= o(1/n), for p = n−5/11+ǫ.

So, with high probability, T = B ∪G.

More generally, so long as p|Si
G|, p|Si

B|, and p|Si
R|

are all o(1), then if |Si
R| = Θ(nxp2x) we will have with

high probability that |Si+1
R | = Θ(nyp2y) for y = 3x+2.

Since we begin with |S1
R| = Θ(n2ǫ) and at each step

the size of Si
R more than triples, we can continue with

the sets Si
G, Si

B, and Si
R having size o(1/p) for at

most log3(1/ǫ) iterations. Once the condition on the
set sizes no longer holds, say at step i, then after the
next iteration set Si+1

R will be large enough so that its
neighborhood will equal B ∪G with high probability.

4 Worst-case model: prelimi-

naries

We now focus on the worst-case problem. Let G =
(V, E) be a 3-chromatic graph on n vertices. For the
strategy presented here, it will be useful to have a no-
tion of “making progress” towards an O(nα)-coloring
of G, where we will assume for the rest of this pa-
per that α < 1/2. Three important ways of making
progress are defined as follows.

Progress type 1: Given a 3-chromatic graph on m
vertices, find an independent or 2-colorable set of
size Ω(m1−α).

Progress type 2: Given a 3-chromatic graph on m
vertices, find an independent set S of size r such
that |N(S)| = O(rmα).

Progress type 3: Given a 3-chromatic graph, find
two vertices that can be guaranteed to be the
same color under any legal 3-coloring of the graph.

Progress type 1 “makes progress” towards an nα-
coloring essentially because we can color the set found
with two colors, throw away the colored vertices, pick
two new colors to work with and continue. The idea
for progress type 2 is that we can use it to find many
different independent sets each of which is indepen-
dent of all the others, thereby giving us progress of
type 1. In addition, progress type 3 always helps us
towards any approximate coloring. More formally,

Claim 1 If some algorithm A is guaranteed on any
3-chromatic graph of m vertices to make progress of
types 1, 2 or 3 towards an O(mα)-coloring, then there
exists an algorithm B that will color graph G with
O(nα) colors.

Progress type 1 and a weaker variant of 2 were used in
[Wig83] and type 3 was used in [Blu89]. In fact, we can
state Wigderson’s algorithm for coloring with O(n1/2)
colors by using progress types 1 and 2 as follows. If
a vertex v has a neighborhood of size Ω(n1/2) then
we make progress of type 1; otherwise, |N(v)| = O(1 ·
n1/2) so we make progress type 2.

Proof of Claim 1: First, if algorithm A ever makes
progress of type 3 on a subgraph of G, then since the
two vertices found must be the same color under any
3-coloring of the subgraph, they also must be the same
color under any 3-coloring of G. So, we can just merge
the two vertices found and start again from the top,
removing one vertex and using no colors. So, we may
now assume that A only makes progress of types 1
or 2. Next, if we can always find an independent or
2-colorable set of size 1

cm1−α (for some constant c)
in a 3-chromatic graph of m vertices, then we will
achieve an O(nα)-coloring of G by finding the set, col-
oring it with two colors, throwing those vertices out
of the graph, and repeating. The number of colors
used, C(m), will satisfy C(m) ≤ 2 + C(m − 1

c m1−α)
which implies C(m) < 2c(m/2)α + C(m/2) and thus
C(n) < 2c

2α−1nα. So, we just need some algorithm
B′ that on any 3-chromatic graph of m vertices finds
an independent set of size (1/c)m1−α. B′ works as
follows.

On input (V, E), where m = |V |,

1. Initialize set U to φ and V ′ to V .

2. While |V ′| ≥ m/2 do:

(a) Let (V ′, E′) be the subgraph induced by
the vertices in V ′ and run algorithm A on
(V ′, E′).

(b) If A returns with progress of type 1, then
since |V ′| ≥ m/2, we have an independent
set of size Ω((m/2)1−α) = Ω(m1−α), so halt
and output that set.

(c) If A returns with progress of type 2, let S
denote the set returned by A, and update:
U ← U ∪S and V ′ ← V ′−S−N(S). Notice
that we maintain an invariant that there are
no neighbors of U in V ′.

3. We now have |V ′| < m/2. U is an independent
set since there are no neighbors of U in any of
the sets S which comprise it. In addition, each
time we add r vertices to U , we remove at most
r + c′rmα vertices from V ′ for some constant c′

by the definition of progress type 2. So, |U | +
c′|U |mα ≥ m/2 which implies |U | = Ω(m1−α), so
halt and output U .

Two simple corollaries of claim 1 are as follows.

Corollary 1 Given an independent set S of Ω(n1−2α)
vertices, we can either make progress towards an
O(nα)-coloring or else guarantee that the vertices of S
are not all the same color under any legal 3-coloring
of G.

Proof: If the vertices of S were the same color,
then N(S) would be 2-colorable. So, if N(S) is not
2-colorable, we output with guarantee. Otherwise, if
|N(S)| ≥ n1−α, we make progress of type 1, and if
|N(S)| < n1−α, we output S as progress type 2.

Notice that this implies that for the case α ≥ 1/3,
we may assume that each vertex in G has as neigh-
bors a least one representative of each of the other
two colors under any legal 3-coloring of G.

Corollary 2 (generalizes a statement in [Blu89]) If
there exist vertices v and w that share Ω(n1−2α) neigh-
bors, then we can make progress towards an O(nα)-
coloring of G.

Proof: Feed N(v)∩N(w) to the algorithm of Corol-
lary 1. If that algorithm does not make progress, then
we know that v and w must have been the same color
under any legal 3-coloring of G, so we make progress
of type 3.

5 A useful lemma

We now present a strengthening of Corollary 1, de-
scribed in Lemma 1 below, that provides us with a
method for forcing the graph G to behave in a certain
“nice” way. For any vertex v of G, for any subset S we
choose of N(v) of size at least n1−2α log2 n, the lemma
allows us to force that S contain Ω̃|S| vertices of each
of the two available colors (that is, the colors that v
does not have), or else make progress in coloring G.

Lemma 1 Given a set S of Ω(n1−2α log2 n) vertices,
we can either make progress or else guarantee that un-
der no legal 3-coloring of G does one color comprise
more than (1− 1

4 log n) of the vertices of S.

Proof: For convenience, let red be the color such
that |R ∩ S| = max(|R ∩ S|, |B ∩ S|, |G ∩ S|).

First, find an independent set S′ ⊆ S containing
most of the vertices of S. We can do this in a greedy
fashion. Let S′ = S. While S′ is not an independent
set, repeat the following: pick vertices a, b ∈ S′ with
the edge (a, b) ∈ E and let S′ ← S′ − {a, b}. If we

have removed more than |S|
2 log n vertices from S′, then

we know that no single color could have colored more
than (1 − 1

4 log n) of the vertices of S, so halt with

guarantee. Otherwise, we have |S′| > (1− 1
2 log n)|S| =

Ω(n1−2α log2 n).

If the neighborhood of S′ is small: |N(S′)| =
O(n1−α log2 n), then we have made progress of type
2, so halt with “progress made”. Otherwise, let
T = N(S′), so we have |T | ≥ n1−α log2 n. Repeat
the following.

1. For each vertex v in T , arbitrarily mark one of the
edges from v into S′. Let E′ be the set of marked
edges. For set A ⊆ S′, define N ′(A) to be the set
of w in T such that (v, w) ∈ E′ for some v ∈ A,
and define N ′(v) to be N ′({v}).

2. Partition S′ into at most (1+logn) sets of vertices
S1, . . . , Sm, such that in each set, if we consider
only the edges in E′, the minimum degree is at
least half of the maximum degree. That is, for all
j,

min
v∈Sj

|N ′(v)| ≥ 1
2 maxv∈Sj

|N ′(v)|.

3. Pick i such that N ′(Si) is maximized; so
|N ′(Si)| = Ω(1/ logn)|T |. Notice that if more
that (1 − 1

2 log n) of the vertices of Si are red,

then at most 1
log n of the vertices in N ′(Si) can

be red, since at worst the non-red vertices in Si

have twice as many neighbors in T (considering
only the edges in E′) as the red vertices do.

4. If more that (1 − 1
2 log n) of the vertices of Si are

red, then N ′(Si) has an independent set of at least
1
2 (1− 1

log n) its vertices, namely either N ′(Si)∩B

or N ′(Si) ∩ G, whichever is larger. This implies
it has a vertex cover of at most 1

2 (1 + 1
log n) of

its vertices. We can now apply a vertex-cover
algorithm of Bar-Yehuda and Even[BYE83] and
Monien and Speckenmeyer[MS85] which finds a
vertex cover of size at most (2 − log log n

log n) times
the size of the minimum vertex cover, to yield an
independent set of size at least:

[

1−
(

2− log log n
2 log n

)

1
2

(

1 + 1
log n

)]

|N ′(Si)|

= Ω
(

1
log n

)

|N ′(Si)| for log log n > 4

= Ω(|T |/ log2 n).

This independent set has size Ω(n1−α) so we
have made progress of type 1 and can halt with
“progress made”.

5. If we did not make progress in step 4, then we
know that fewer than (1 − 1

2 log n) of the vertices

of Si are red; in other words, at least 1
2 log n of the

vertices in Si are blue or green.

So, let S′ ← S′ − Si. If S′ has not been reduced
to less than 1/3 its original size, then go back to
1. Otherwise break out of the loop and go to the
next part of the algorithm.

If we reduced S′ to less than a third of its original
size, it must be that we did so by removing sets from
S′ each of which had at least 1

2 log n of its vertices blue
or green. That is, we must have removed more than:

2
3

1
2 log n

[(

1− 1
log n

)

|S|
]

≥ 1
4 log n |S|

blue and green vertices from S. So, halt with guaran-
tee.

6 Making progress from dense

regions

We will now use Lemma 1 and the strategy applied to
semi-random graphs to show how to take advantage of
certain types of dense regions in a 3-chromatic graph
in the worst-case model. We will consider the case
of two sets of vertices S and T where S is 2-colored
under some legal 3-coloring of G and the number of
edges between S and T is large compared with the
sizes of the two sets.

Theorem 2 Given sets of vertices S and T such that

1. S is 2-colored under some legal 3-coloring of G,

2. the ratio DT (S)/|S| > n1−2α log2 n, and

3. [DT (S)]3 = Ω ([|S|+ maxv∈S{dT (v)}] ×
[

|S||T |2n1−2α log n + |T ||S|2n2−4α
])

,

then we can make progress towards an O(nα)-coloring.

Before proving this theorem, let us first make sense
of the condition on [DT (S)]3 by considering some ex-
amples. Suppose we wish to color with n3/8 colors,
S has size n3/8, and each vertex v in S has degree

n3/8 into T . Then, DT (S)
|S| = n3/8 which is greater

than n1/4 log2 n (condition 2). The main condition
reduces to:

n18/8 ≥ cn3/8
[

|T |2n5/8 log n + |T |n10/8
]

.

Ignoring logarithmic factors, we make progress if |T | =
Õ(n5/8). On the other hand, if T has more than n5/8

vertices and we can find a large independent set inside
T , then we may also make progress of type 1. This
will be the basic idea for the O(n3/8 log5/2 n)-coloring
described later.

As another example, if we wished to color with n0.35

colors, S had size n0.35 and each vertex in S had degree
n0.35 into T , the main condition reduces to n2.1 ≥
cn0.35

[

|T |2n0.65 log n + |T |n1.3
]

. In this case, we only

make progress if |T | = Õ(n0.45) (here the |T |n1.3 term
is dominant).

Proof of Theorem 2: For convenience, fix some (un-
known) 3-coloring of G and let “blue” and “green” be
the two colors that appear in S. Let davg = DT (S)/|S|
be the average degree into T of vertices in S and
let nT = |T | and nS = |S|. We will want to keep
track of those vertices of T that have a reasonably
large degree into S, so let T ′ be the set of those ver-

tices v ∈ T such that dS(v) ≥ 1
2

DS(T)
nT

. So, we have

DS(T ′) ≥ 1
2DS(T) = 1

2DT (S). We will also want
to look at those vertices in S that have reasonable
degree into T ′, so let S′ be the set of v ∈ S such

that dT ′(v) ≥ 1
2

DT ′ (S)
nS

. Thus, we have DT ′(S′) ≥
1
2DT ′(S) = 1

2DS(T ′) ≥ 1
4DT (S). So, each vertex

v ∈ S′ has dT ′(v) ≥ 1
4davg.

Since we are given that davg/2 > 1
2n1−2α log2 n, by

Lemma 1 we can guarantee that each vertex v ∈ S′

have at least a fraction 1
4 log n of its edges into T enter-

ing into non-red vertices. So, for some non-red color,
which we will call “green” without loss of generality,
at least DT (S′)/(4 logn) edges from S′ enter into ver-
tices of T given that color. Thus, some green vertex
g ∈ T has degree at least DT (S′)/(4nT log n) into S′.

Figure 1.

Let X = N(g) ∩ S′ and nX = |X |. So, we have:

nX ≥ 1
4DT (S′)/(nT log n)

≥ 1
16DT (S)/(nT log n). (1)

Let Y be the set of neighbors of X in T ′. We want
to show that Y must be large. By Corollary 2 we
may assume that no two nodes of X share more than
n1−2α neighbors in T ′. If we label the vertices of
X as: x1, x2, . . . , xnX

, then this implies that ver-
tex xi shares at most (i − 1)n1−2α neighbors with
any of x1, . . . , xi−1. Consider those xi such that this
amount of sharing is at most 1

2dT ′(xi). For these
xi, the number of neighbors in T ′ of xi not shared
with any of x1, . . . , xi−1 is at least 1

2 (davg/4) since
dT ′(xi) ≥ davg/4. We will include all xi for which
(i− 1)n1−2α ≤ 1

2 (davg/4), so we will be considering at
least min

{

nX , 1 + 1
2 (davg/4)/n1−2α

}

vertices xi. This
implies:

|Y | ≥

min
{

nX [12 (davg/4)], [12 (davg/4)][12 (davg/4)/n1−2α]
}

= Ω
(

min
{

DT (S)
nS

nX ,
D2

T (S)

n2

S

1
n1−2α

})

. (2)

Since all vertices in X were neighbors in S of some
green vertex and since S is colored green and blue, it
must be that all the vertices in X are blue. So, all
vertices of Y are red and green. In addition, since
Y ⊆ T ′, we know we can lower-bound the number of
edges from Y to S by:

DS(Y) = Ω(|Y |DS(T)/nT)

⊆ Ω
(

min
{

D2

T (S)
nSnT log n

DT (S)
nT

,
D2

T (S)

n2

S
n1−2α

DT (S)
nT

})

(using equations 1 and 2)

⊆ Ω

(

[nS + max
v∈S
{dT (v)}]n1−2α

)

(3)

(using the given bound on DT (S))

It now must be the case that one of the following two
possibilities occurs. First, if there is some green vertex

g′ ∈ S that is hit by more than 1
2DS(Y)/nS edges from

Y , then according to equation 3 it is hit by Ω(n1−2α)
edges, so it must be that N(g′)∩ Y is a set of at least
n1−2α red vertices. (N(g′) is blue and red and Y is
red and green so the intersection is red. See Figure
1). Thus, we can use Corollary 1 to make progress on
it. Otherwise, the collection Z of vertices in S hit by
more than 1

2DS(Y)/nS edges from Y , is all blue. The
size of Z is at least the number of edges from Y into
S, minus nS(1

2DS(Y)/nS), divided by the maximum
number of edges that may hit a single vertex. That is,

|Z| ≥ [DS(Y)−
1

2
DS(Y)]/max

v∈S
{dT (v)}

≥ 1
2DS(Y)/max

v∈S
{dT (v)}.

Using equation 3 we get:

|Z| = Ω(n1−2α).

So, we can use Corollary 1 to make progress on Z.
The final algorithm for making progress given our sets
S and T is as follows:

1. Run the algorithm of Lemma 1 on N(v) ∩ T for
all v ∈ S. If any runs make progress, then halt.
Otherwise, we know there are many edges from S
into red, blue, and green vertices under any legal
3-coloring of G.

2. For every pair of vertices u, v ∈ S, if |N(v) ∩
N(u)| = Ω(n1−2α), then use the algorithm of
Corollary 2 to make progress.

3. For each vertex v ∈ T ,

(a) let Y = N(N(v) ∩ S) ∩ T . Let Z = {w ∈
S : dY (w) ≥ n1−2α}. (Note that though we
could, we do not actually need to use the
sets S′ and T ′; they were just convenient for
the analysis.)

(b) Run the algorithm of Corollary 1 on Z.

(c) For each w ∈ Z, run the algorithm of Corol-
lary 1 on Y ∩N(w).

The above proof guarantees that this algorithm makes
progress.

7 An Õ(n3/8)-coloring

We can combine Theorem 2 with the Õ(n0.4)-coloring
algorithm of [Blu89] to yield an improved approxima-
tion algorithm that colors any 3-chromatic graph with
O(n3/8 log5/2 n) colors. First, we need to define some
additional notation.

• Let δ = 1
5 log n .

• Let Ij = {v | d(v) ∈ [(1 + δ)j , (1 + δ)j+1]} for
j = 0, 1, 2, That is, in each set Ij , the ratio of
degrees of any two vertices is at most (1+δ). The
number of sets Ij is at most log1+δ n = O(log2 n).

• Let Ni(S) = {v ∈ N(S) | dS(v) ∈ [(1 + δ)i, (1 +
δ)i+1]} for i = 0, 1, 2, In other words, Ni(S)
for 0 ≤ i ≤ log1+δ n is the subset of vertices in
N(S) that are endpoints of at least (1 + δ)i and
at most (1 + δ)i+1 edges from S.

Theorem 1 of [Blu89] states that under some legal
3-coloring of G, there exists a red vertex v such that
for some set Ij , the set S = N(v)∩Ij has the property
that

|S| ≥ δ2d/ log1+δ n (4)

and DR(S) ≥ 1
2 (1− 3δ)D(S), (5)

where d is the minimum degree in G. That is, one of a
relatively few subsets of the neighbors of v is both large
and has nearly half the edges that leave it entering into
red vertices. The proof of theorem 2 of [Blu89] shows
that for some i, the set T = Ni(S) has the property
that

DT∩R(S) ≥ δDR(S)/ log1+δ n (6)

and |T ∩R| ≥ 1
2 (1− 5δ)|T |. (7)

We now put these facts together with Theorem 2 of
this paper to yield an O(n3/8 log5/2)-coloring.

First, if |T | ≥ n5/8/ log3/2 n, then as in [Blu89],
we can use the vertex-cover approximation algorithm
of Bar-Yehuda et al.[BYE83][MS85] to find an inde-

pendent set of size Ω(|T |/ logn) ⊆ Ω(n5/8/ log5/2 n),
since T has an independent set (the red vertices) of
1
2 (1− 1

log n) of its vertices. So, we have made progress

of type 1. Otherwise, |T | ≤ n5/8/ log3/2 n, and we
show that this implies that S and T satisfy the con-
ditions of theorem 2 of this paper for making progress
towards the desired coloring bound.

We may assume the minimum degree d is at least
n3/8 log5/2 n or else we immediately make progress
type 2. So, we can lower bound the size of the set
S using equation 4 by

|S| ≥ δ2d/ log1+δ n

= Ω(d/ log4 n)

⊆ Ω(n3/8/ log3/2 n). (8)

In addition, equation 5 shows that DR(S) = Ω(d|S|),
so equation 6 implies:

DT (S) ≥ DT∩R(S)

= Ω(δd|S|/ log1+δ n)

⊆ Ω(|S|n3/8/ log1/2 n) (9)

or equivalently,

|S| = O(DT (S)(log1/2 n)/n3/8). (10)

Finally, since S ⊆ Ij , all vertices of S have nearly the
same degree (though not necessarily the same degree
into T), so

max
v∈S
{dT (v)} = O

(

D(S)
|S|

)

⊆ O
(

DT (S)
|S| log3 n

)

(using equations 5 and 6)

⊆ O
(

DT (S)(log9/2 n)/n3/8
)

(11)

(using equation 8).

Now, let us restate Theorem 2, plugging in nα =
n3/8 log5/2 n.

Corollary 3 Given sets S and T such that

1. S is 2-colored under some legal 3-coloring of G,

2. the ratio DT (S)/|S| > n1/4/ log3 n, and

3. [DT (S)]3 = Ω ([|S|+ maxv∈S{dT (v)}] ×
[

|S||T |2n1/4/ log4 n + |T ||S|2n1/2/ log10 n
])

,

then we can make progress towards an
O(n3/5 log5/2 n)-coloring.

Claim 2 Given sets S and T satisfying equations
8 through 11 with |T | ≤ n5/8/ log3/2 n, the al-
gorithm of Theorem 2 makes progress towards an
O(n3/5 log5/2 n)-coloring.

Proof: First, by equation 9, DT (S)/|S| is much larger
than n1/4/ log3 n. We now consider the restriction
on [DT (S)]3. We can upper-bound the first term
[|S| + maxv∈S{dT (v)}] using equations 10 and 11 by

O(DT (S)(log9/2 n)/n3/8). We can upper-bound the
second term using equation 10 and the given bound
on |T | by:

|S||T |2n1/4/ log4 n + |T ||S|2n1/2/ log10 n =

O(DT (S)n9/8/(log13/2 n) + [DT (S)]2n3/8/ log21/2 n).

So, multiplying the two terms together, we just need
show:

[DT (S)]3 =

Ω
(

[DT (S)]2n3/4/ log2 n + [DT (S)]3/ log6 n
)

.

Clearly [DT (S)]3 > [DT (S)]3/ log6 n, so we just need
that DT (S) = Ω(n3/4/ log2 n), but this is implied by
equations 8 and 9.

8 Conclusions

This paper provides tools for use in approximate color-
ing algorithms for forcing a 3-chromatic graph to act in
certain well-behaved ways. Theorem 2, which provides
a bound on the density of certain kinds of “clumps” in
a graph, can be used together with previous results to
achieve an Õ(n3/8)-coloring of any 3-chromatic graph.
We also show how to 3-color semi-random 3-colorable
graphs with high probability when the noise rate p is
at least n−1/2+ǫ.

The techniques described in this paper might be
useful in improved approximation algorithms, but it
appears that something drastically different would be
needed to color 3-chromatic graphs with fewer than
Õ(n1/3) colors in the worst case. At that point,
Lemma 1 no longer forces each vertex to have simi-
lar numbers of neighbors of each of the two available
colors (up to logarithmic factors) and so Theorem 2
no longer provides a useful density bound.

I would like to thank Umesh Vazirani and Joel
Spencer for many helpful discussions.

References

[Blu89] A. Blum. An Õ(n0.4)-approximation algo-
rithm for 3-coloring (and improved approx-
imation algorithms for k-coloring). In Pro-
ceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, pages
535–542, Seattle, May 1989.

[BR88] B. Berger and J. Rompel. A better perfor-
mance guarantee for approximate graph col-
oring. Algorithmica, 1988.

[BYE83] R. Bar-Yehuda and S. Even. A 2 − log log n
2 log n

performance ratio for the weighted vertex
cover problem. Technical Report Technical
Report #260, Technion Haifa, January 1983.

[CG85] B. Chor and O. Goldreich. Unbiased bits
from sources of weak randomness and prob-
abilistic communication complexity. In Pro-
ceedings of the 26th IEEE Symposium on
Foundations of Computer Science, pages
429–442, Portland, 1985.

[DF89] M. E. Dyer and A. M. Frieze. The solution of
some random NP-Hard problems in polyno-
mial expected time. Journal of Algorithms,
10:451–489, 1989.

[Kuc77] L. Kucera. Expected behavior of graph
colouring algorithms. In Lecture Notes in

Computer Science No. 56, pages 447–451.
Springer-Verlag, 1977.

[MS85] B. Monien and E. Speckenmeyer. Ramsey
numbers and an approximation algorithm
for the vertex cover problem. Acta Infor-
matica, 22:115–123, 1985.

[SV86] M. Santha and U. V. Vazirani. Generating
quasi-random sequences from semi-random
sources. JCSS, 33:75–87, 1986.

[Tur88] J. S. Turner. Almost all k-colorable graphs
are easy to color. Journal of Algorithms,
9:63–82, 1988.

[Vaz85] U. V. Vazirani. Towards a strong commu-
nication complexity theory, or generating
quasi-random sequences from two communi-
cating slightly-random sources. In Proceed-
ings of the 17th Annual ACM Symposium on
Theory of Computing, pages 366–378, Prov-
idence, 1985.

[VV85] U. Vazirani and V. Vazirani. Random poly-
nomial time is equal to slightly-random poly-
nomial time. In Proceedings of the 26th An-
nual IEEE Symposium on Foundations of
Computer Science, pages 417–428, Portland,
October 1985.

[Wig83] A. Wigderson. Improving the performance
guarantee for approximate graph coloring.
JACM, 30(4):729–735, 1983.

