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Abstract—We consider k-median clustering in finite metric
spaces andk-means clustering in Euclidean spaces, in the
setting where k is part of the input (not a constant). For
the k-means problem, Ostrovsky et al. [18] show that if the
optimal (k—1)-means clustering of the input is more expensive
than the optimal k-means clustering by a factor of1/¢?, then
one can achieve a(l + f(e))-approximation to the k-means
optimal in time polynomial in n and k by using a variant
of Lloyd's algorithm. In this work we substantially improve
this approximation guarantee. We show that given only the
condition that the (k—1)-means optimal is more expensive than
the k-means optimal by a factor1+ « for some constanta > 0,
we can obtain a PTAS. In particular, under this assumption, br
any € > 0 we achieve a(1 + ¢)-approximation to the k-means
optimal in time polynomial in n and k, and exponential in
1/e and 1/a. We thus decouple the strength of the assumption
from the quality of the approximation ratio. We also give a
PTAS for the k-median problem in finite metrics under the
analogous assumption as well. Fork-means, we in addition
give a randomized algorithm with improved running time of
nO(l)(k,logn)poly(l/s,l/a).

Our technique also obtains a PTAS under the assumption of
Balcan et al. [4] that all (1 4 o)) approximations are ¢-close to
a desired target clustering, in the case that all target clugrs
have size greater thandn and « > 0 is constant. Note that
the motivation of Balcan et al. [4] is that for many clustering
problems, the objective function is only a proxy for the true
goal of getting close to the target. From this perspective, o
improvement is that for k-means in Euclidean spaces we reduce
the distance of the clustering found to the target fromO(¢)
to § when all target clusters are large, and fork-median we
improve the “largeness” condition needed in [4] to get exady
o-close from O(dn) to dn. Our results are based on a new
notion of clustering stability.
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weighted graph satisfying triangle inequality) over thdata
points; k-means clustering is typically studied farpoints
in a (finite dimensional) Euclidean space. Both objectives
are known to be\P-hard (we viewk as part of the input
and not a constant, though even thaneans problem in
Euclidean space was recently shown to Me-hard [8]).
For k-median in a finite metric, there is a knowh+ 1/¢)-
hardness of approximation result [14] and substantial work
on approximation algorithms [11], [7], [2], [14], [9], with
the best guarantee &+ ¢ approximation. Fork-means in
a Euclidean space, there is also a vast literature of approx-
imation algorithms [17], [3], [9], [10], [12], [15] with the
best guarantee a constant-factor approximation if polyigbm
dependence ok and the dimensiod is desiredt

Ostrovsky et al. [18] proposed an interesting condition
under which one can achieve bettemeans approximations
in time polynomial inn and k. They considerk-means
instances where the optimalclustering has cost noticeably
smaller than the cost of ar{y — 1)-clustering, motivated by
the idea that “if a near-optimdi-clustering can be achieved
by a partition into fewer thart clusters, then that smaller
value of k should be used to cluster the data” [18]. Under
the assumption that the ratio of the cost of the optimal
(k —1)-means clustering to the cost of the optimaineans
clustering is at leastax{100, 1/¢2}, Ostrovsky et al. show
that one can obtain @l + f(¢))-approximation fork-means
in time polynomial inn andk, by using a variant on Lloyd’s
algorithm. In this paper, we substantially improve on this
approximation guarantee. We show that under the much
weaker assumption that the ratio of these costs is just at
least (1 + «) for someconstante > 0, we can achieve a

Clustering is a well-studied task, arising in numerousPTAS: namely,1 + ¢)-approximate thé:-means optimum,
areas from computer vision to computational biology tofor any constant > 0. Our approximation scheme runs
distributed computing. Generally speaking, the goal ofclu in time which is poly(n, k) and exponential only inl/e

tering is to partitionn given data objects inté groups that

and1/a. Thus, we decouple the strength of the assumption

share some commonality. Operationally, clustering isrofte from the quality of the conclusion, and in the process allow
performed by viewing the data as points in a metric spacéhe assumption to be substantially weaker. Femeans
and then optimizing some natural objective over them. Ia thi clustering we in addition give a randomized algorithm with

paper, we consider two popular such objectiviesnedian
and k-means. Both measure fkpartition by choosing a
special point for each cluster, called thenter and define

improved running timen®® (klog n)Pely(1/e1/e),
Balcan et al. [4], motivated by the fact that objective
functions are often just a proxy for the underlying goal

thecostof a clustering as a function of the distances betweerof getting the data clustered correctly, propose clusterin

the data points and their respective centers. Initimeedian

instances that satisfy the condition that @ «) approxi-

case, the cost is the sum of the distances of the points

to their centers, and in thé-means case, the cost is the

sum of these distances squared. Thenedian objective

1if k is constant, thert-median in finite metrics can be trivially solved
in polynomial time and there is a PTAS known flermeans (and:-median)
in Euclidean space [16]. There is also a PTAS known for lomefisional

is typically studied for data in a finite metric (complete Euclidean spaces (dimension at mbst log n) [1], [12].



mations to the given objective (e.d:smedian ork-means)  suffices to give a PTAS fdt-median in Section 4. We extend
are )-close, in terms of how points are partitioned, to athe algorithm tok-means clustering in Section 5, where
target clustering (such as a correct clustering of proteinsve also introduce a randomized version whose run-time is
by function or a correct clustering of images by who is in bounded byr3 ((log(n) - k)P /%) 'We conclude with
them). This can be viewed as an assumption mianghdicitly ~ discussion and open problems in Section 6.

when considering approximation algorithms for problems

of this nature where the true goal is to get close to the 2. NOTATION AND PRELIMINARIES

target. Balcan et al. show that for amy and §, given an We are given a seb of n points. When discussing-
instance satisfying this property fd-median ork-means median, we assume the points reside in a finite metric
objectives, one can in fact efficiently produce a C|USte|’ingspace’ and when discussirﬁgmeans, we assume they all
that isO(d/«)-close to the target clustering (sO(J)-close  reside in a finite dimensional Euclidean space. We de-
for any constantx > 0), even though obtaining & + @ noted : S x S — Rs( as the distance function. A
approximation to the objective iiP-hard for o < 1, and  splution to thek-median objective partitions the points
remains hard even under this assumption. Thus they showito % disjoint subsets(;, Cs, . .., C), and assigns a center
that one can approximate the target even though it is hard tg, for each subset. Thé-median cost of this partition
approximate the objective. One interesting question that h i then measured bffﬂ > sec, d(z,¢;). A solution to
remained is the approximability of the objectives when allthe i-means objectivez_agaigﬁ gives fpartition of the
target clusters are large compareditg since the hardness j, data points, but now we may assume uses the center

of approximation requires allowing small clustérslere, we  of mass pe, = ﬁz cc. @, as the center of the;
show that for bothk-median andk-means objectives, if all \ye then measure thé-means cost of this clustering by

clusters contain more tham points, then for any constant Zk ) 42( _\Fk 2
i i=1 2uzeC; T, po;) = Zi:1 Zmeci |z — pe, %
a >0 wecanin fact geta PTA.S' 'I_'hus, we (nearly) res_o_lve The optimal clustering (w.r.t. to either tikiemedian or the
the approximability of these objectives under this cowoditi ;. oo objective) is denoted s = {C7, 5 Ciy
Note that under this condition, this further implies findiag .14 its cost is denoted @BPT. The centers used in the
0-close clustering (settmg:_ «). Thus, we also extend the ptimal clustering are denoted 4s:,cj, ..., c.}. Clearly,
results of Balcan et al. [4] in the case of large clusters andsjyen the optimal clustering, we can find the optimal centers
constani by getting exactly)-close for bothk-median and  (gither by brute-force checking all possible points for
k-means obje<_:t|ves. _(In [_4] this exact closeness was aO@'evemedian, or by = pc- for k-means). Alternatively, given
for the k-median objective but needed a somewhat largefne optimal centers, we can assign eacto its nearest
O(n(1 +1/a)) minimum cluster size requirement).  center thus obtaining the optimal clustering. Thus, we use
Our algorithmic results are achieved by examining impli- ¢« 15 denote both the optimal-partition, and the optimal
cations of a property we caleak deletion-stabilityhat is it of 1 centers. We us©PT; to denote the contribution

implied by both the separation condition of Ostrovsky et al.q¢ the clusteri to OPT. that is OPT; = 3o d(z, cF)
[18] as well as (when target clusters are large) the stgbilit . ’ pECy R

. B 5 N
condition of Balcan et al. [4]. In particular, an instancekef in the k-median case, 0OPT; = ZmEC;‘ d*(z,cf) in the
mediank-means clustering satisfies weak deletion-stabiIityk'means case.

if in the optimal solution, deleting any of the centers 3. STABILITY PROPERTIES

and assigning all points in clustérinstead to one of the ] )

remainingk — 1 centersc*, results in an increase in the ~AS mentioned above, our results are achieved by ex-

k-mediank-means cost by an (arbitrarily small) constant Ploiting implications of a stability condition we call weak
factor. deletion-stability, and in particular an implication wellca

We also show that weak deletion-stability still allows for P€ing/J-distributed. In this section we define weak deletion-
NP-hard instances and that no FPTAS is possible as wefft@bility and of beings-distributed, relate weak deletion-
(unlessP = NP). Thus, our algorithm, whose running time stability to conditions of Ostrovsky et al. [1_8_] a_nd Balcan
is (nk)Pol¥(1/¢1/6) is optimal in the sense that the super- et al. [4], and show that weak deletion-stability implie th
polynomial dependence oh/e and1/4 is unavoidable. clustering |sﬁ—_d|str|bgte_d. In Sections 4 and 5 we use the

After presenting notation and preliminaries in Section 2,ProPerty of beingi-distributed to obtain a PTAS.
in Section 3 we introduce weak deletion-stability and eelat Definition 3.1. For o > 0, a k-mediank-means instance
it to the stability notions of [18] and [4]. We then define satisfieq1+a) weak deletion-stabilityif it has the following
another property of a clustering beimfydistributedwhich,  property. Let {c},c5,...,c;} denote the centers in the
while not so intuitive, we show is implied by weak deletion- optimal k-mediank-means solution. LeOPT denote the
stability and will be the actual condition that our algonth optimal k-mediank-means cost and le®OPT %) denote
will use. We then go on to prove that beinydistributed  the cost of the clustering obtained by removitigis a center

?In fact, as shown in [19], the-median algorithm in [4] for the case that 3Technically, we could skip the “middleman” of weak deletistability
clusters are sufficiently large compareddo(1 + 1/«) achieves a better and just define the property of being-distributed as our main stability
constant-factor approximation. Note thheed not be a constant. notion, but weak deletion-stability is a more intuitive dition.



and assigning all its points instead t9. Then for anyi # j,  target cluster size, and in that case approximation-stgbil
it holds that need not imply weak deletion-stability (not surprisingly
i since [4] show that-median andk-means remain hard to
OPT!™7) > (1+)OPT approximate). However, when all target clusters have size
We use weak deletion-stability via the following implica- greater thanjn (note thatd need not be a constant) then
tion we call beings-distributed. approximation-stability indeed also implies weak deletio
stability, allowing us to get a PTAS (and therefiglose to

Definition 3.2. For # > 0, a k-median instance is3- the target) whem > 0 is a constant.

distributedif for any centerc} of the optimal clustering and

any data pointz ¢ C;, it holds that Claim 3.4. A k-mediank-means clustering instance that
OPT satisfies(1 + «, ) approximation-stability, and in which all
d(z,c;) >0 —=—- clusters in the target clustering have size greater than
ler also satisfieg1 + «) weak deletion-stability.

A k-means instance ig-distributed if for any such:} and

¢ C7, it holds that Proof: Consider an instance éfmediank-means clus-

tering which satisfieg1 + «, d) approximation-stability. As
P(z,c) > 8- E before, let{cy,c3,...,c;} be the centers in the optimal
=P solution and consider the clustering“—7) obtained by
no longer usinge; as a center and instead assigning each
point from clusteri to cj, making theith cluster empty.

. . The distance of this clustering from the target is defined as
for k-means) in Theorem 3.5 below. First, however, we relate; S jClarset _ OS(TI)])L SinceCi—) has only

weak deletion-stability to the conditions considered iB][1 n ™o €Sk

We prove that(1 + ) weak deletion-stability implies the
clustering isa/2-distributed fork-median (/4-distributed

and [4]. (k — 1) nonempty clusters, one of the target clusters must
N map to an empty cluster under any permutatorSince by
A. ORSS-Separability assumption, this target cluster has more tharpoints, the

Ostrovsky, Rabani, Schulman and Swamy [18] define dlistance betwee@* 9 and C“~9) will be greater thard
clustering instance to beseparated if the optimal-means ~and hence by the BBG stability condition, themedian-
solution is cheaper than the optim@ — 1)-means solution Means cost o2(=7) must be greater thafil + «)OPT.
by at least a factor®. For a given objective-means or u
k-median) let us us®©PT_;) to denote the cost of the _ S
optimal (k — 1)-clustering. Introducing a parametar> 0,  C. Weak Deletion-Stability implies-distributed

say a clustering instance {8 + a)-ORSS separabli¢ We show now that weak deletion-stability implies the

OPT (1) iia instance isg-distributed.
OoPT Theorem 3.5. Any (1 + «)-weakly deletion-stablg-median
If an instance satisfied + a)-ORSS separability then all instance is§-distributed. Any(1+«)-weakly deletion-stable
(k — 1) clusterings must have cost more thdn+ a)OPT  k-means instance i§-distributed.
and hence it is immediately evident that the instance will
also satisfy(1 + «)-weak deletion-stability. Hence we have
the following claim:

Proof: Fix any center in the optimat-clustering,c;,
and fix any pointp that does not belong to th€; cluster.
Denote byC’; the cluster thap is assigned to in the optimal
Claim 3.3. Any (14 «)-ORSS separable-mediank-means  k-clustering. Therefore it must hold thatp, ¢;) < d(p, c}).
instance is alsq1 + «)-weakly deletion stable. Consider the clustering obtained by deletirfjgfrom the list
B. BBG-Stability of centers, and assigning each pointdff to C;. Since

the instance i1 + «)-weakly deletion-stable, this should
Balcan, Blum, and Gupta [4] (see also Balcan and Bravericrease the cost by at leasOPT.

man [5] and Balcan, Roglin, and Teng [6]) consider a notion - g,nh0se we are dealing withiamedian instance. Each
of stablllt_y to approximations motivated by settings in olni pointz € C; originally paysd(z, ct), and now, assigned to
there exists some (unknown) target clustgrm"g’“ge we ¢, itpaysd(z, t) < d(z,c})+d(c;, ;). Thus, the new cost
yvould like to produce. Balcan et aI_. [4] define a clustering st the points inC* is upper bounded by, o d(w, ) <
|tnstance t%.be(tl. ;O"‘S) ﬁppsrkommgtlon-s;tgable with r_fspect OPT; + |Cf|d(c},c;). As the increase in cost is lower

0 some objectiveb (such ask-median ork-means), if any bounded byxOPT and upper bounded by |d(cf, ¢*), we
k-partition whose cost unddr is at most(1+«)OPT agrees ded had(c*. c* OPT O h vl ZI 7 |
with the target clustering on all but at ma%t data points, 9€ducet (¢}, ¢j) > gy Observe that triangle inequal-
That is, for any(1 + ) approximationC to objective®, ity gives thatd(cj, ¢j) < d(c},p) +d(p,¢j) < 2d(c],p), SO

we havemin,cs, 3, [CI"" — C,;)| < 6n (here,o is  We have thati(c},p) > (a/2) 7.

simply a matching of the indices in the target clustering to Suppose we are dealing with a Euclidelsmeans in-
those inC). In general,on may be larger than the smallest stance. Again, we have created a new clustering by assigning




all points in C; to the center;. Thus, the cost of transi- outside of C; is at Ieast%?gfl. So, if we manage to

tioning from the optimalk-clustering to this newk — 1)-  correctly guess the size of a cheap cluster, we can set
clustering, which is at leastOPT, is upper bounded by a radiusr = © (ﬂ%) and collect data-points according
Yosecs =5 lI? =z —cf||?. As¢; = pc:, it follows that  to the size and intersection of theballs around them. We
this bound isexactlyzmecf ¢ —cf||? = |Cy|d*(¢;, ¢;),  note that this use of balls with an inverse relation between
see [13] §2, Theoren). It follows thatdQ(C;_k’C;_) > a%_ lezirip](rjnrg;jl[g]s is similar to that in the min-sum clustering
2 v .
As before,d?(c;, ¢;) < (d(c;,p) +d(p, c}))” < 4d*(c}, p), Note that in the general case we might have up%@o
sod*(cf,p) > § \OC;T\- B expensive clusters. We handle them by brute force guessing
their centers. In Subsection 4-A, we present the algorithm
] ] ) for clusterings-distributed instances df-median under the
Finally, we would like to point out thaliP-hardness of the  55qumption that for all the expensive clusters we have made
k-median problem in maintained even if we restrict ourselveshe correct guess for their cluster centers. The algorithm
only to weakly deletion-stable instances. Also the redurti populates a lis©, where each element in this list is a subset
uses only integer poly-size distances, and hence rules oyf hoints. Ideally, each subset is contained in some target
the existence of a FPTAS for the problem, unless- NP. ¢ ster, yet we might have a few subsets with points from
In addition, the reduction can be modified to show tN& o or more target clusters. The first stage of the algorithm
hardness is maintained under the conditions studied in [18k {5 344 components int@, and the second stage is to find

and [4]. k good components iR, and use thesé components to

Theorem 3.6. For any constanta > 0, finding the opti- retrieve a clustering with low cost.

mal k-median clustering of1 + a)-weakly deletion-stable ~ Since we do not have many expensive clusters, we can

instances iNP-hard. run the algorithm for all possible guesses for the centers
of the expensive clusters and choose the solution which

D. NP-hardness under weak deletion-stability

Proof: Omitted. B has the minimum cost. The analysis below shows that
4. A PTASFOR ANY 3-DISTRIBUTED k-MEDIAN one such guess will lead to a solution of cost at most
INSTANCE (14¢)OPT. Later, in Section 5, when we deal withmeans

in Euclidean space, we use sampling techniques, similar to
those of Kumar et al. [16] and Ostrovsky et al. [18], to get

. : . . good substitutes for the centers of the expensive clusters.
instances. First, we comment that using a standard doublin ote however an important difference between the anproach
technique, we can assume we approximately know the value P bp

of OPT.# Our algorithm works if instead 0OPT we use Of [16], [18] and ours. While they sample points from all
a valuev s.t. OPT < v < (1 + ¢/2)OPT, but for ease of k clusters, we sample points only for ti&(1) expensive
exposition, we assume that the exact valu®BT is known. clusters. As a result, the runtime of the PTAS of [16], [18]

Below, we informally describe the algorithm for a special has exp(_)nentlal depend_ence fn while ours has only a
case ofg-distributed instances in which no cluster dominatespOIynom'alI dependence ib.
the overall cost of the optimal clustering. Specifically, we . o
say a clusterC; in the optimal k-median clusteringc* A Clusteringf-distributed Instances

(hereafter also referred to as the target clusteringjhisap The algorithm is presented in Figure 1. In this section
if OPT,; < 2P, otherwise, we say’; is expensiveNote e assume that at the beginning, the K3tis initialized
that in any event, there can be at most a cons{@)  with Q,,;, which contains the centers of all the expensive
number of expensive clusters. clusters. In general, the algorithm will be run several me
Algorithm Intuition:  The intuition for our algorithm and  with Q;,,;; containing different guesses for the centers of the
for introducing the notion of cheap clusters is the followin expensive clusters. Before going into the proof of corresin
Pick some cluste’; in the optimalk-median cLugtering. of the algorithm, we introduce another definition. We define
Since the instance ig-distributed, anyz ¢ C7 is far i ainner ring of C* as the set{x; d(z,ct) < @}_ Note

from ¢*, namely,d(z, ¢* OPT |n contrast, the average ) 8[C7 ]
€ yid(z, ep) > % the following fact:

i) > brer-
distance ofz € € from ¢t is 92T:. Thus, if we focus on

AN L .
a cluster whose contributioPT;, is no more than, say, Fact 4.1.1f C} is a cheap cluster, then no more than an
_OPT, we have that* is 100 times closer, oraverageto  ¢/4 fraction of its points reside outside the inner ring. In
tlﬁg points ofC* than to the points outside;. Furthermore, Particular, at least half of a cheap cluster is containedhinit

7 7" ' . .
using the triangle inequality we have that any two “average’the inner ring.

: i 3 OPT b _ _ _
points of C'; are of distance at mosf%w—;\' while the Proof: This follows from Markov’s inequality. If more

distance between any such “average” point and any poingan (¢/4)|C;| points are outside of the inner ring, then
OPT; > 4%%1. Z¥er = BeOPT/32. This contradicts the

4Instead of doubling froml, we can alternatively run an off-the-shelf 4 8|C*
5-approximation ofOPT, which will return a valuev < 50PT. fact thatC} is cheap. [ |

We now present the algorithm for finding @ + ¢)-
approximation of thek-median optimum fors-distributed




1) Initialization Stage: SetQ < Q;ni:.
2) Population Stage:Fors =n,n—1,n—2,...,1
do:
a) Setr = 2971,
b) Remove any point such thatd(x, Q) <
2r.
(Here,d(z, Q) = minpeo.yer d(x,y).)
¢) For any remaining data point denote the
set of data points whose distance fram
is at mostr, by B(z, ). Connect any two
remaining points: andb if:
(i) d(a,b) <, (i) |B(a,r)| > 5 and (iii)
|B(b,r)| > 3.
d) LetT be a connected component of size
> 5. Then:
i) Add T'to Q. (Thatis,Q «— QU{T}.)
i) Define the setB(T') = {z: d(z,y) <
2r for somey € T}. Remove the
points of B(T') from the instance.

3) Centers-Retrieving Stagefor any choice ok
componentsly, Ts, ..., T} out of Q (we later
show that| Q| < k + O(1/0))

a) Find the best center ¢; for
T, U B(Tl) That is ¢ =
arg Miye,uB(1) Xper,up(r) 4@ P)-°

b) Partition all n points according to the
nearest point among thie centers of the
currentk components.

c) If a clustering of cost at mogi +¢)OPT
is found — output thesk centers and halt

aThis can be done before fixing the choiceko€omponents out
of Q.

Figure 1.
k-median.

The algorithm to obtain a PTAS f@rdistributed instances of

the tri-

Q, and letp be any point in the balB(z, r). Then b
0

y

angle inequality we have thdtc;, p) > d(c?, (z
g% and similarlyd(ct, p) < d(ct,z) + d(z,p) < |C§‘T.
Since our instance i§-distributed it holds thap belongs to
C7, and from the definition of the inner ring @f, it holds
thatp falls outsidethe inner ring. However; is added tdl’
because the balB(z,r) contains more thar/2 > |C*|/2
many points. So more than half of the points @ fall
outside the inner ring of’;, which contradicts Fact 4.1.

Assume now (b) does not hold. Recall thatis a con-
nected component, so exists some path— p.. Each two
consecutive points along this path were connected because
their distance is at most2rT < ZOFT. As d(ct,py) <

s — A[CT]
X . .
%?CLJ' andd(c,py) > 329PT  there must exist a point

along the path whose distance froth falls in the range

B OPT 38 OPT i~
31CT 4 e | contradicting (a). [ |

Claim 4.3. Let C; be any cheap cluster in the target
clustering. By stages = |C7|, the algorithm adds toQ

a componenf” that contains a point from the inner ring of
Cr.

Proof: Suppose that up to the stage = |C}| the
algorithm has not inserted such a component @tdNow, it
is possible that by stage the algorithm has inserted some
componentl” to Q, s.t. somez in the inner ring of C;
is too close to someg € T’ (namely,d(x,y) < 2r), thus
causingr to be removed from the instance. Assume for now
this is not the case. This means that the inner ring of cluster
C7 still contains more thafC}|/2 points. Also observe that
all inner ring points are of distance at m PT‘ from the
center, so every pair of inner ring points has a distance of

BOPT Hence, when we reach stage= |C7|, any

at most ==
ball of radiusr = 297 = fj%ﬂT centered at any inner-ring
point, must contain all other inner-ring points. This means

that at stages = |C7| all inner ring points are connected

Our high level goal is to show that for any cheap cluster@mong themselves, so they form a component (in fact, a

C} in the target clustering, we insert a compon@nthat is

clique) of size> s/2. Therefore, the algorithm inserts a

contained withinC:*, and furthermore, contains only points NeW component, containing all inner ring points.

that are close te;. It will follow from the next claims that

So, by stages = |C;|, one of two things can happen.

the component’; is the one that contains points from the Either the algorithm inserts a component that contains some

inner ring of C;f. We start with the following Lemma which
we will utilize a few times.

Lemma 4.2. Let T' be any component added t@. Let
s be the stage in which we ad@ to Q. Let C; be
any cheap cluster s.ts > |Cf|. Then (a)7 does not
contain any pointz s.t. the distancei(c], z) lies within

the range[%%, %%—F}TI}, and (b)T" cannot contain both

a point p; s.t. d(ct,p1) < %%
. 38 OPT ‘
d(ci,p2) > CAk
Proof: We prove (a) by contradiction. Assunie con-
tains a pointz s.t. 29PT < g(¢r,z) < 389PT  get

21CF] ENek
BOPT < i%j, just as in the stage whéhwas added to

and a pointp, S.t.

inner ring point toQ, or the algorithm removes an inner
ring point due to some componefit € Q. If the former
happens, we are done. So let us prove by contradiction that
we cannot have only the latter.

Lets > |C}| be the stage in which we throw away the first
inner ring point of the cluste€’;. At stages the algorithm
removes this inner ring point because there exists a point

in some componerit’ € Q, s.t.d(z,y) < 2r = 2371 and

X OPT | BOPT _“% BOPT
sod(ct,y) <d(cf,z)+d(z,y) < gICN + 628 < %ﬁlc;\ :
This immediately implies thaf” cannot be the center of an
expensive cluster since any such point will be at a distahce a

least 20T from ¢} Lets’ > s > |C7| be the previous stage

in which we added the componeht to Q. As Lemma 4.2

applies to7’, we deduce thati(c},y) < %%’T' Recall




that 77 contains> s'/2 > |CF|/2 many points, yet, by in which T was inserted t@. Let y be any point inZ’, and

assumption, contains none of th€;|/2 points that reside let C* be the cluster to whichy belongs in the optimal
in the inner ring ofC;. It follows from Fact 4.1 that some clustering with center*. We showd(c*,y) > %%. We

pointw € 7' must belong to a different cluster;. Since divide into cases.

the instance ig-distributed, we have thak(c}, w) > %_ Case 1:C* is an expensive cluster. Note that we are
The existence of both andw in 7" contradicts part (b) of Working under the assumption tha;; contains the cor-
Lemma 4.2. m 'ect centers of the expensive clusters. In particuidy,

We call a componerif € oodif it contains an inner pontainSC*_. Al_so, the fact that poiny was not thrown out
P Q9 in stages implies thatd(c*, y) > 2r = 29PT  360PT

ring point of some cheap clustét’. A component is called P 2s " 8s
bad if it is not good and is not one of the initial centers Case 2:C” is a cheap cluster and > [C*[. We apply

. . . H * B OPT
present inQ,,;;. We now discuss the properties of good Leémma 4.2, and deduce that eithéfc*,y) < 5= or
components. thatd(c*,y) > 32 5FL > 21 OFL. As the inner ring ofC

contains> |C*|/2 and T contains> s/2 > |C*|/2 many

Claim 4.4. Let T be a good component added @, points, none of which is an inner ring point, some point

containing an inner ring point from a cheap clustét;. B B B0PT
(By Claim 4.3 we know at least one su€hexists.) Then: ?B%g;does not belong t6™ and hencel(c*, ) > |C*] > )
(a) all points inT" are of distance at mogg% from ¢, T Part (b) of Lemma 4.2 assures us that all points in

(b) T U B(T) is fully contained inC;, and (c) the entire ' &re also far from:". .
inner ring of C; is contained inl"U B(T'), and (d) no other Case 3:C" is a cheap cluster and < [C*|. Using

componentl” € Q, T' # T, contains an inner ring point Claim 4.3 we have that some good component containing a
from C*. pointz from the inner ring ofC* was already added tQ.

So it must hold thatl(z,y) > 2r, for otherwise we removed

Proof: As we do not know (d) in advance, it might 4 from the instance and it cannot be added to ﬁh¥\Ne
be the case tha® contains many good components, all deduce thatl(c*,y) > d(x,y) —d(c*, z) > 29T _ BOPT

.. . K R 2s  8[C¥]
containing an inner-ring point from the same clust€f,. 33 opT
Out of these (potentially many) components, Tetdenote 8 & °

; i i 3B0PT ;
the first one inserted t@. Denote the stage in whicl’ Al points n T_have d|§tance> 8s from their
was inserted t@ ass. Due to the previous claim, we know respective centers in the optimal clustering, and recalith

s > |C], and so Lemma 4.2 applies fa We show (), (b), is added toQ becausé’ contains at least/2 many points.

- Therefore, the contribution of all elements Thto OPT is
((:C())rr?ggn(edr?tf:glg(:r?g;ﬁa;]ndigr?g?(r:i?\g;hggirﬁ ftrr:%;nly good at least329PT |t follows that we can have no more than

Part (a) follows immediately from Lemma 4.2. We know 16\//\?/’5:;:2:\3(1 fg\gaﬁre]e:;\:‘rnectness of our al orithm.
T contains some inner ring poiatfrom C;, sod(c},z) < P 9 '

%?C'?_*T‘ < %%, so we know that any € T must satisfy Theorem 4.6. The algorithm outputs &-clustering whose

thatd(c!,y) < g%. Since we now know () holds and the €OSt is no more thaifl + ¢)OPT.

instance is3-distributed, we have thaf c C;, so we only Proof: Using Claim 4.4, it follows that there exists some
need to shows(T") C C;. Fix anyy € B(T'). The pointy is  choice ofk components]?, ..., Tk, such that we have the
assigned ta3(7') (thus removed from the instance) becausecenter of every expensive cluster and the good component
there exists some point € 7' s.t. d(z,y) < 2r. So again, corresponding to every cheap clustét. Fix that choice.
we have thati(c},y) < d(c},z) + d(z,y) < %, which  We show that for the optimal clustering, replacing the true
gives us thay € C; (since the instance i§-distributed). centers{ci, cs, ..., c;;} with the centers{cy, ca, ..., c;} that

We now prove (c). Because of (b), we deduce that thehe algorithm outputs, increases the cost by at mdstiac)
number of points inl" is at most|C;|. However, in order factor. This implies that using thgei, co, ..., cx } as centers
for T to be added t@, it must also hold thafT’| > s/2. 1t ~ must result in a clustering with cost at mast+ ¢)OPT.
follows thats < 2|C}|. Let 2 be an inner ring point o/ Fix any C; in the optimal clustering. LeOPT,; be the
that belongs td". Then the distance of any other inner ring cost of this cluster. IfC} is an expensive cluster then we
point of C; anda is at mostiRet < 2371 = 2r. Itfollows  know that its centerc} is present in the list of centers
that any inner ring point of”; ‘which isn't added toI' is ~ chosen. Hence, the cost paid by pointsGfi will be at
assigned taB(T). ThusT U B(T) contains all inner-ring most OPT,. If C; is a cheap cluster then denote by
points. Finally, observe that (d) follows immediately from the good component corresponding to it. We break the
the definition of a good component and from (c). ~m  cost of 7 into two parts:OPT; = > .c. d(z,c}) =

We now show that in addition to having all good > .crup(r) d(®,¢]) + Lacor, yetzgrunr) A, c;) and
components, we cannot have too many bad components. compare it to the cosC; using ¢;, the point picked
Claim 4.5. We have less thain6/(33) bad components. by the algorithm to serve as centezmecf d(x,ci) =

ZzeruB(T) d(x3ci) + Zzecg, yetzgTUB(T) d(x,_ci). _N_OV‘_’,
Proof: Let T be a bad component, and lebe the stage the first term is exactly the function that is minimized




by ¢, as¢; = argming -, cp 5 d(z,p). We also
know ¢, the actual center ofC}, resides in the in-

As before we handle expensive clusters by guessing good
substitutes for their centers and obtgimodcomponents for

ner ring, and therefore, by Claim 4.4 must belongcheap clusters.

to T U B(T). It follows that >°, . pr)d(z,c;) <

> werun(r) 4@, ;). We now upper bound the 2nd term,

and show that}> cc. yemgrupr d@.ci) < (1 +

€) 2secr, yetagrun(r) 4T, €7)
Any point z € Cf,stax ¢ T U B(T), must reside

outside the inner ring of’;. Therefore,d(z,c}) > Z22T.
We show thatd(c;, c¢?) < e%, and thus we have that

d(z,c;) < d(z,cf) + d(ct,e;) < (1+ e)d(z,c), which

= 7 =

gives the required result.

Note that thus far, we have only used the fact that th

cost of any cheap cluster is proportional 8PT/|C|.

Here is the first (and the only) time we use the fact tha

the cost is actually at mogt/32) - BOPT/|C¥|. Using the

Markov inequality, we have that the set of points satisfying

t

Often, when considering the Euclidean spdceneans
problem, the dimension of the space plays an important
factor. In contrast, here we make no assumptions about the
dimension, and our results hold for apyly(n) dimension.

In fact, for ease of exposition, we assume all distances
between any two points were computed in advance and are
given to our algorithm. Clearly, this only add®(n? - dim)

to our runtime. In addition to the change in parameters, we
utilize the following facts that hold for the center of mass
in Euclidean space.

Fact 5.1. Let U be a (finite) set of points in an Eu-

clidean space, and lej; denote their center of mass
(n = ﬁ > .cu ®)- Let A be a random subset df, and

denote by 4 the center of mass of. Then for any < 1/2,

{z; d(z,c}) < - BOPT/(16/Cf|)} contains at least We have both

half of the points inC}, and they all reside in the inner
ring, thus belong tol’ U B(T'). Assume for the sake of
contradiction thatd(c;, ¢;) > egzr. Then at least half of
the points inC; contribute more than{£=; to the sum

> rerun(r) (@, ;). It follows that this sum is more than
e% > OPT,. However,¢; is the point that minimizes
the slumzmeTUB(T) d(z,p), and by usingp = ¢ we have

> werun(r) 4@, p) < OPT;. Contradiction.

B. Runtime analysis

A naive implementation of thénd step of algorithm in
Section 4-A take®)(n?) time (for everys and every point

1

1
Pr||py — pal)®* > —  — z—puy|*l <d (1)

1
Pr lz & = pall® > (1 + M) > - NU|2‘| <46
xelU xelU
(2)
Fact 5.2. Let U be a (finite) set of points in an Euclidean

space, and letd # () and B be a partition ofU. Denote
by uy and u4 the center of mass dff and A resp. Then

B
It = pal® < iy Tocw o — morl? - 1

Fact 5.2, proven in [18] (Lemma 2.2), allows us to upper
bound the distance between the real center of a cluster

z, find how many of the remaining points fall within the and the empirical center we get by averaging all points in

ball of radiusr around it). Findinge; for all components

T U B(T) for a good component'. Fact 5.1 allows us to

takesO(n?) time, and measuring the cost of the solution handle expensive clusters. Since we cannot brute forcesgues
using a particular set of: data points as centers takes a center (as the center of the clusters aren’t necessatidy da

O(nk) time. Guessing the right components takes®(1/#)

points), we guess a sample 6f(3~! + ¢~1) points from

time. Overall, the running time of the algorithm in Figure every expensive cluster, and use their average as a center.
1 is O(n?k°0/9). The general algorithm that brute-force Both properties of Fact 5.1, proven in [13]3( Lemmal

guesses the centers of all expensive clusters, maReg7<)

iterations of the given algorithm, so its overall runningé
is nO(1/Be) | O(1/8)

5. APTASFOR ANY 3-DISTRIBUTED EUCLIDEAN
k-MEANS INSTANCE

and 2), assure us that the center is an adequate substitute
for the real center and is also close to it. This motivates the
approach behind our first algorithm, in which we brute-force
traverse all choices of(e~! + ~!) points for any of the
expensive clusters.
The  second runtime  is

algorithm,  whose

Analogous to the:-median algorithm, we present an es- (klogn)Po¥(/<1/90(n?), replaces brute-force guessing

sentially identical algorithm fok-means in Euclidean space.

with random sampling. Indeed, if a cluster contains

Indeed, the fact thak-means considers distances squaredpoly(1/k) fraction of the points, then by randomly
makes upper (or lower) bounding distances a bit moreésampling O(e~! + 3~') points, the probability that
complicated, and requires that we fiddle with the parameterg!/l points belong to the same expensive cluster, and

of the algorithm. In addition, the centers may not be data

furthermore, their average can serve as a good empirical

points. However, the overall approach remains the sameenter, is at least/kPe¥(1/<1/5) In contrast, if we have

Roughly speaking, converting themedian algorithm to the

expensive clusters that contain few points (e.g. an expensi

k-means case, we use the same constants, only sciaregluster of size/n, while & = poly(log(n))), then random

SWe stress that we made no attempt to optimize the constants.

sampling is unlikely to find good empirical centers for
them. However, recall that our algorithm collects pointd an



deletes them from our instance. So, it is possible that in thé\cknowledgements: This work was supported in part by
middle of the run, we are left with so few points, so thatthe National Science Foundation under grant CCF-0830540.

expensive clusters whose size is small in comparison to the

original number of points, contain poly(1/k) fraction of
the remainingpoints.

Indeed, this is the motivation behind our second algo-
rithm. We run the algorithm while interleaving the Popula-
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APPENDIX

We present the algorithm fdd + ¢)-approximation to the
k-means optimum of @-distributed instance. Much like in
Section 4, we call a cluster in the optmialmeans solution
cheap ifOPT; = 3, c . d*(z,¢f) < BOPT

A. Clusterings-distributed Instances of Euclidedgnmeans

The algorithm is presented in Figure 2. The correctness
is proved in a similar fashion to the proof of correctness
presented in Section 4. First, observe that by the Markov
inequality, for any cheap cluster;, we have that the set

{a: d?(z,¢) > tﬁlgEIT cannot contain more thaty (45¢)

fraction of the points inC7|. It follows that the inner ring of

C#, the set{a:, d?(z,cf) < 2§82T| , contains at least half
of the points ofC;. As mentioned Section 5 the algorithm
populates the lisiQ with good components corresponding

to cheap clusters. Also from Section 5, we know that for
every expensive cluster, there exists a samplé)(% + %)

data points whose center is a good substitute for the center

of the cluster. Below, we assume th@thas been initialized

1) Initialization Stage: SetQ «— Q;ni-
2) Population Stage:Fors =n,n—1,n—2,...,1
do:

a) Setr = 20PT.
b) Remove any point such thaw?(z, Q) <
4r,

(Here,d(z, Q) = minpeo.yer d(x,y).)
¢) For any remaining data poimt denote the
set of data points whose distance squa
from « is at mostr, by B(x,r). Connect
any two remaining pointa andb if:
() d*(a,b) < r, (i) [Bla,r)] > 3
(iii)y [B(b,r)| > 5.
d) LetT be a connected component of si
> 5. Then:
i) Add T to Q. (Thatis,Q «— QU{T}.)
i) Define the set B(T) = {z :
d*(z,y) < 4r for somey € T}. Re-
move the points ofB(T') from the
instance.

3) Centers-Retrieving Stage:For any choice of
k componentdy, Ts, ..., Ty out of Q

a) Find the best center, for T; U B(T;).
That is ¢, = wpTl; U B(T;) =
W ZmeT UB(T; )

b) Partition all n points accordmg to the
nearest point among thie centers of the
currentk components.

c) If a clustering of cost at mogt +¢)OPT
is found — output thesk centers and halt

and

red

ye

correctly with 9Q;,,;; containing these good substitutes. In
general, the algorithm will be run multiple times for all

now present (without proof) the main lemmas involved in
the analysis. The proofs are essentially identical to those
Section 4-A.

components.

Lemma A.1. LetT € Q be any component and letbe the
stage in which we inseff to Q. LetC} be any cheap cluster
s.t. s > |Cf|. Then (a)T does not contain any point s.t.

the distancel?(c?, z) lies within the range{ £ ?PT|, gfgﬂ :
%ngP(Tb)T cannot contain both a powyg O?DT 2(ct,p) <
16 7071 and a pointp; s.t.d*(c}, p2) > 5 LR

Claim A.2. Let C; be any cheap cluster in the target
clustering. By stages = |C}|, the algorithm adds toQ

a componenf” that contains a point from the inner ring of
Cr.

Claim A.3. Let T be a good connected component adde
to Q, containing an inner ring point from cluster;. Then:
(a) all points inT" are of distance squared at mor%o"—T
from ¢}, (b) TU B(T) is fully contained inC?}, and (c) the
entire inner ring ofC is contained inT" U B(T'), and (d)
no other component” # T in Q contains an inner ring
point fromCy.

gsuch thati®(c;, c})

We now prove the main theorem.

. If Cr is an expensive clu

Be OPT;
= B+e [Cr] "

2 ﬂOPT
ae[cy]

Figure 2. A PTAS forg-distributed instances of Euclidednmeans.
possible guesses of samples from expensive clusters. We

Lemma A.4. We do not add ta@ more than1000/4 bad

Theorem A.5. The algorithm outputs &-clustering whose
cost is at most1 + €)OPT.

Proof: Using Claim A.3, it follows that there exists
some choice ok components which has good components
for all the cheap clusters and good substitutes for the cente
of the expensive clusters. Fix that choice and consider a
cluster C; with centerc}
then from Section 5 we know th&;,,;; contains a point;
Hence, the cost paid by the
points inC; will be atmost(l +¢)OPT,;. If CF is a cheap
cluster then denote by’ the good component that resides
within C}. DenoteT U B(T') by A, andC; \ A by B. Let
¢; be the center ofd. We know that the entire inner-ring
of C} is contained in4, therefore,B cannot contain more
than’ €/16 fraction of the points ofC;. Fact 5.2 dictates
that in this case|lc; — ¢ <

ster

We know every



z € B contributes at leastggee to the cost ofCy, 1) Guesd < 4, the number of expensive clusters.

e — el < 5|ja — cf||2. Thus, for everyr € B, we have Sett = 1(log, n). Guess non-negative integers

that ||z —c¢;[|? < (1+6)Hx ;|| Itfollows that)" [l — 91,92, ... g+ such thaty". g; = L.

01H2 (146> cpllz— *||2 and obviously) . , ||z — 2) Sampleg; + g2 + g3 sets, by sampling indepen)-

2 1 1 -

all> < X .ealle —¢f||* asc; is the center of mass of. dently and u.a.0(5 + ¢) points for each set

Therefore, when choosmg the gobdtomponents out o, For each such s&f;, add the singletor(7T)}

we can assign them to the centers in such a way that costs to Q.

point to the nearest of thie-centers only yields a less costly algorithm, so that whenever= - for some

clustering, and thus its cost is also at mst- ¢)OPT. i > 1 (We call this theinterval Z)k

B. A Randomized Algorithm fg#-distributed k-Means In- o Sampleg;. 3 sets, by sampling indepen-

stances dently and u.a.O(% + 1) points for each
We now present a randomized algorithm which set. For each such S&}, add the singletor]

achieves a(l + ¢) approximation to thek-means op- {(T;)} to Q.

timum of a g-distributed instance and runs in time
(klogy, n)Pey(1/61/8)0(n3). The algorithm is similar in
nature to the one presented in the previous section, except

that for expensive clusters we replace brute force guessintpr everyi. We say that the algorithraucceeds at the end
of samples with random sampling. Note that the straightfor-of interval if the following conditions hold:

ward approach of sampling the points right at the start of 1) In the beginning of the interval, our guess for all

the algorithm might fail, if there exist expensive clusters clusters that belong to intervéd + 3) produces good
which contain very few points. A better approach is to empirical centers. That is, for every expensive cluster
interleave the sampling step with the rest of the algorithm. C* of size in the range{ T k4+21) the algorithm
this way we sample points from an expensive cluster only picks a sampld” such that the meap(T) satisfies:
when it contains a reasonable fraction of the total points (@) d2(u(T),c") < LOPT

remaining, hence our probability of success is noticeable o 256|C~ ) .
(namely,poly(1/k)). (0) >pec-d (2, u(T)) < (1 +¢) Ywec- A7 (x, ).

The high-level approach of the algorithm is to partition 2) During the interval, we do not delete any pojnthat
the main loop of the Population Stage, in which we try all belongs to some target clustét of size < 5ty
possible values of (starting fromn and ending afl), into points.
intervals In intervali we runs on all values starting with 3) At the end of the interval, the total number of remain-
and ending with%—. So overall, we have no more thar- ing points (points that were not added to soife Q
1 1logy(n) intervals. Our algorithm begins by guessihghe or deleted from the instance because they are too close
number of expensive clusters, then guessjiggs, .. ., g: to someT” € Q) is at MoSt .

s.t.Y ", g; = l. Eachg; is a guess for the number of expensive

Lemma A.6. For everyi > 1, let S; denote the event
clusters whose size lies in the ranb;ge, =) Note that

that the algorithm succeeds at the end of interizallhen

29 = # expensive clusters 4 . Hence, there are at most Pr[S;]S1,Ss, ..., Si_1] > kit O(5+9)
(log, n)ﬁe number of p055|ble as&gnmentsgps and we Proof: Omitted. m
run the algorithm for every such possible guess.

We now show that Lemma A.6 proves that with noticeable
probability, our algorithm returns €l + €)-approximation of
the k-means optimal clustering. First, observe the technical
fact that for the first three intervalg, s, 3, we need to
guess the centers of clusters of size;; before we start
our Population Stage. However, as these clusters cohtdin
fraction of the points, then using Fact 5.1, our samplingsind
good empirical cer;tegs floroalll ofl thede+ I + I3 expensive
if k£ is a constant, then we can use the existing algorithm oelusters w.p> fy (1 OG0, Applying Lemma A.6
Kumar et al. [16]. we get that the probab|I|ty our algonthm succeeds after all

In order to prove the correctness of the new algorithm, weintervals is> 1/k° (522). Now, a similar analysis as in the
need to show that the sampling step in the initializatiogeta Previous section gives us that for the correct guess of the
succeeds with noticeable probability. Letbe the actual 9ood components i@, we find a clustering of cost at most
number of expensive clusters whose size belongs to thél +¢)OPT.
range |4, i) In the proof which follows, we assume
that the correct guess fdy's has been made, i.¢; = [;,

Fixing g1, g2, - - ., g:, we run the Population Stage of the
previous algorithm. However, wheneverreaches a new
interval, we apply random sampling to obtain good empirical
centers for the expensive clusters whose size tlase
intervals “ahead”. That is, in the beginning of interval
the algorithm tries to collect centers for the clusters vehos
Size > 15 = 16, Yt < =t = 77. We assume for this
algorithm thatk is significantly greater thar;. Obviously,



