
Approximate Clustering without the Approximation

Maria-Florina Balcan∗ Avrim Blum† Anupam Gupta‡

Abstract

Approximation algorithms for clustering points in metric
spaces is a flourishing area of research, with much research
effort spent on getting a better understanding of the approx-
imation guarantees possible for many objective functions
such ask-median,k-means, and min-sum clustering.

This quest for better approximation algorithms is further
fueled by the implicit hope that these better approximations
also yield more accurate clusterings. E.g., for many prob-
lems such as clustering proteins by function, or clustering
images by subject, there is some unknown correct “target”
clustering and the implicit hope is that approximately opti-
mizing these objective functions will in fact produce a clus-
tering that is close pointwise to the truth.

In this paper, we show that if we make this implicit
assumption explicit—that is, if we assume that anyc-
approximation to the given clustering objectiveΦ is ǫ-close
to the target—then we can produce clusterings that areO(ǫ)-
close to the target,even for valuesc for which obtaining a
c-approximation is NP-hard. In particular, fork-median and
k-means objectives, we show that we can achieve this guar-
antee for any constantc > 1, and for the min-sum objective
we can do this for any constantc > 2.

Our results also highlight a surprising conceptual dif-
ference between assuming that theoptimalsolution to, say,
the k-median objective isǫ-close to the target, and assum-
ing that anyapproximately optimalsolution isǫ-close to the
target, even for approximation factor sayc = 1.01. In the
former case, the problem of finding a solution that isO(ǫ)-
close to the target remains computationally hard, and yet for
the latter we have an efficient algorithm.

1 Introduction

The field of approximation algorithms for clustering points
in metric spaces is a very active one, with a large number of
algorithms having been developed for clustering objectives
like k-median,k-means, and min-sum clustering. Thek-
median problem has a3 + ǫ-approximation [AGK+04], and
it is NP-hard to approximate to better than1 + 2/e [JMS02].
The k-means problem for general metric spaces has a
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constant-factor approximation, and admits a PTAS in Eu-
clidean spaces for constant number of clustersk [KSS04].
The min-sum clustering problem admits anO(log1+δ n)-
approximation for general metric spaces, and admits a PTAS
when k is a constant [dlVKKR03]. For most of these
problems, the approximation guarantees do not match the
known hardness results, and much effort is spent on obtain-
ing tighter approximation guarantees.

However, this search for better approximation algo-
rithms is motivated not just by the desire to pin down the
tractability threshold for these objectives: there is the under-
lying hope that better approximations will give more mean-
ingful clusterings of the underlying data. Indeed, for many
clustering problems, such as clustering proteins by function,
or clustering images by subject, the real goal is to classifythe
points correctly, and these objectives are only a proxy. That
is, there is some unknown correct “target” clustering—such
as grouping the proteins by their actual functions, or group-
ing the images by who is actually in them—and the implicit
hope is that approximately optimizing these objectives will
in fact produce a clustering that is close in symmetric dif-
ference to the truth. In other words, implicit in taking the
approximation-algorithms approach is the hope that anyc-
approximation to our given objective will be pointwise close
to the true answer, and our motivation for improving ac2-
approximation to ac1-approximation (forc1 < c2) is that
perhaps this closeness property holds forc1 but notc2.

In this paper, we show that if we make this implicit as-
sumption explicit, and assume that anyc-approximation to
the given objectiveΦ is ǫ-close pointwise to the target clus-
tering, then we can in fact produce a clustering that isO(ǫ)-
close to the target,even for valuesc for which obtaining a
c-approximation is provably NP-hard. In particular, fork-
median andk-means objectives, we achieve this guarantee
for any constantc > 1, and for min-sum we do this for any
constantc > 2 when the target clusters are “large”. More-
over, if clusters are sufficiently large compared toǫnc−1 then
for k-median we can actually getǫ-close (rather thanO(ǫ)-
close) to the target.

Thus, we show that we do not need to find a better
approximation algorithm in order to get the properties that
such algorithms would imply: we can approximate the target
without approximating the objective (up to a constant factor
loss in the errorǫ in some cases). Moreover, the problem
of finding a c-approximation to these objectives even with
this assumption is as hard as finding ac-approximation to
them without it (see Theorem A.2 in Appendix A) so we
mustbypass the objective to do so.



Our results also show that there is a perhaps unexpected
conceptual difference between assuming that theoptimalso-
lution to, say, thek-median objective isǫ-close to the target,
and assuming that anyapproximately optimalsolution isǫ-
close to the target, even for approximation factorc = 1.01
(say). In the former case, the problem of finding a solution
that isO(ǫ)-close to the target remains computationally hard
(see Section 2.1 and Appendix A), and yet for the latter case
we give efficient algorithms.

1.1 Related Work
Work on approximation algorithms: Fork-median, O(1)-
approximations were given by [CGTS99, JV01, CG99] and
the best approximation guarantee known is(3 + ǫ) due
to [AGK+04]. A reduction from max-k-coverage shows an
easy(1 + 2/e)-hardness of approximation [GK99, JMS02].
The k-median problem on constant-dimensional Euclidean
spaces admits a PTAS [ARR99].

For k-meanson general metric spaces, one can derive
a constant approximation using ideas fromk-median—the
squared distances do not form a metric, but are close enough
for the proofs to go through; an approximation-hardness of
1 + 8/e follows from the ideas of [GK99, JMS02]. This
problem is very often studied in Euclidean space, where a
near-linear time(1 + ǫ)-approximation algorithm is known
for the case of constantk and ǫ [KSS04]. Lloyd’s local
search algorithm [Llo82] is often used in practice, despite
having poor worst-case performance [AV06]. Ostrovsky et
al. [ORSS06] study ways of seeding Lloyd’s local search
algorithm: they show that on instances satisfying anǫ-
separationproperty, this seeding results in solutions with
provable approximation guarantees. We show in Section 2.2
that their assumption can be quite a bit stronger than ours—
though their goal is different (they want to approximate the
objective whereas we want to approximate the target).

Min-sumk-clusteringon general metric spaces admits a
PTAS for the case of constantk by Fernandez de la Vega et
al. [dlVKKR03] (see also [Ind99]). For the case of arbitrary
k there is anO(δ−1 log1+δ n)-approximation algorithm in
time nO(1/δ) due to Bartal et al. [BCR01]. The problem
has also been studied in geometric spaces for constantk
by Schulman [Sch00] who gave an algorithm for(Rd, ℓ2

2)
that either output a(1 + ǫ)-approximation, or a solution that
agreed with theoptimumclustering on(1 − ǫ)-fraction of
the points (but could have much larger cost than optimum);
the runtime isO(nlog log n) in the worst case and linear for
sublogarithmic dimensiond.

Related work on error to a target clustering: There has
been significant work in machine learning and theoretical
computer science on clustering or learning with mixture
models [AM05, AK05, DHS01, DGL96, KSV05, VW04,
Das99]. That work, like ours, has an explicit notion of a
correct ground-truth clustering of the data points; however,
it makes strong probabilistic assumptions about the data.

In recent work, Balcan et al. [BBV08] investigated the
goal of approximating a desired target clustering without
probabilistic assumptions. They analyzed what propertiesof

a pairwise similarity function are sufficient to produce a tree
such that some unknown pruning is close to the target, or a
small list of clusterings such that the target is close to oneof
them. In relation to implicit assumptions about approxima-
tion algorithms, [BBV08] made the observation that fork-
median, the assumption that any2-approximation isǫ-close
to the target implies that most of the data satisfies a certain
separation property, which they then use to construct a hier-
archical clustering such that the target clustering is close to
some pruning of the hierarchy. Inspired by their approach, in
this paper we initiate a systematic investigation of the con-
sequences of such assumptions about approximation algo-
rithms. Moreover, the goals in this paper will be stronger —
we want to output asingleapproximately correct clustering
(as opposed to a list of clusterings or a hierarchy), and we
want to succeed for anyc > 1.

2 Definitions and Preliminaries

The clustering problems in this paper fall into the following
general framework: we are given a metric spaceM =
(X, d) with point setX and a distance functiond :

(

X
2

)

→
R≥0 satisfying the triangle inequality—this is the ambient
space. We are also given the actual point setS ⊆ X we
want to cluster; we usen to denote the cardinality ofS. A
k-clusteringC is a partition ofS into k setsC1, C2, . . . , Ck.
In this paper, we always assume that there is atrue or target
k-clusteringCT for the point setS.

Commonly used clustering algorithms seek to min-
imize some objective function or “score”; e.g., the
k-median clustering objective assigns to each cluster
Ci a “median” ci ∈ X and seeks to minimize
Φ1(C) =

∑k
i=1

∑

x∈Ci
d(x, ci), k-meansclustering mini-

mizesΦ2(C) =
∑k

i=1

∑

x∈Ci
d(x, ci)

2, andmin-sum clus-

tering minimizesΦΣ =
∑k

i=1

∑

x,y∈Ci
d(x, y). Given a

functionΦ and instance(M, S), let OPTΦ = minC Φ(C),
where the minimum is over allk-clusterings of(M, S).

We define the distancedist(C, C′) between two
k-clusterings C = {C1, C2, . . . , Ck} and C′ =
{C′

1, C
′
2, . . . , C

′
k} as the fraction of points on which they

disagree under the optimal matching of clusters inC to clus-
ters inC′; i.e.,dist(C, C′) = minσ∈Sk

1
n

∑k
i=1 |Ci − C′

σ(i)|,
whereSk is the set of bijectionsσ : [k] → [k]. We say
that two clusteringsC andC′ areǫ-closeif dist(C, C′) < ǫ.
Note that if C and C′ are ǫ-close and all clustersCi

have size at least2ǫn, then the bijectionσ minimizing
1
n

∑k
i=1 |Ci − C′

σ(i)| is unique; in this case we call this the
optimal bijectionσ and we say thatC andC′ agreeon x if
x ∈ Ci ∩ C′

σ(i) for somei.
The following definition is central to our discussion:

DEFINITION 1. (THE (c, ǫ)-PROPERTY) Given an objective
functionΦ (such ask-median,k-means, or min-sum), we say
that instance(M, S) satisfies the(c, ǫ)-property forΦ if all
clusteringsC with Φ(C) ≤ c ·OPTΦ areǫ-close to the target
clusteringCT for (M, S).

The above assumption is often implicitly made when propos-



ing to use ac-approximation for objectiveΦ to solve a clus-
tering problem in which the true goal is to classify data points
correctly; similarly, the motivation for improving ac2 ap-
proximation to ac1 < c2 approximation is that perhaps the
data satisfies the(c1, ǫ) property forΦ but not the(c2, ǫ)
property.

Note that for anyc > 1, the (c, ǫ)-property does not
require that the target clusteringCT exactly coincide with
the optimal clusteringC∗ under objectiveΦ. However, it
does imply the following simple facts:

FACT 2.1. If (M, S) satisfies the(c, ǫ)-property for Φ,
then:
(a) The target clusteringCT , and the optimal clusteringC∗

are ǫ-close.
(b) The distance betweenk-clusterings is a metric, and
hence a(c, ǫ) property with respect to the target clustering
CT implies a(c, 2ǫ) property with respect to the optimal
clusteringC∗.

Thus, we can act as if the optimal clustering is indeed the
target up to a constant factor loss in the error rate.

2.1 Two Strawman Solutions, and Why They Fail
Before proceeding to our results, we first consider two

“strawman” approaches to achieving our goals, and indicate
why they do not work.

• First, suppose that the(c, ǫ)-property for some objective
Φ implied, say, the(2c, 2ǫ) property. Then it would
be sufficient to simply apply anO(c) approximation
in order to have errorO(ǫ) with respect to the target.
However, for anyc1 < c2 and anyǫ, α > 0, for each
of the three objectives we consider (k-median,k-means,
and min-sum), there exists a family of metric spaces and
target clusterings satisfying the(c1, ǫ) property for that
objective, and yet that do not satisfy even the(c2, 1/2−
α) property (See Appendix, Theorem A.1). Thus, the
result of a direct application of ac2-approximation is
nearly as poor as possible.

• Second, perhaps the(c, ǫ) assumption implies that find-
ing a c-approximation is somehow trivial. However,
this is not the case either: for anyc > 1, the problem
of finding ac-approximation to any of the three objec-
tives we consider under the(c, ǫ) assumption is as hard
as finding ac-approximation in general (Theorem A.2).

It is also interesting to note that results of the form we
are aiming for arenot possible given only the(1, ǫ) property.
Indeed, because the standard hardness-of-approximation re-
duction fork-median produces a metric in which all pairwise
distances lie in a bounded range, the reduction also implies
that it is NP-hard, given a data set satisfying the(1, ǫ) prop-
erty, to find a clustering of errorO(ǫ); see Theorem A.3.

2.2 Relationship to Similar Concepts
Ostrovsky et al. [ORSS06] studyk-means in Euclidean

space; they call ak-means instanceǫ-separatedif the op-
timal k-means cost is at mostǫ2 times the cost of opti-
mally openingk − 1 means; under this assumption on the

input, they show how to seed Lloyd’s method to obtain a
1 + O(ǫ2) approximation ind-dimensional Euclidean space
in time O(nkd + k3d), and a(1 + δ)-PTAS with run-time
nd2k(1+ǫ2)/δ. In Theorem 5.1 of their paper, they show
that theirǫ-separatedness assumption implies that any near-
optimal solution tok-means isO(ǫ2)-close to the optimal
clustering. However, the converse is not true: an instance
could satisfy our property without beingǫ-separated.1. For
example, considerk = 2 where target clusterC1 has(1−α)n
points and target clusterC2 hasαn points. Any two points
inside the same cluster have distance 1 and any two points
inside different clusters have distance1 + 1/ǫ. For anyα ∈
(ǫ, 1− ǫ), this satisfies the(2, ǫ) property fork-median (and
the (2, ǫ2) property fork-means for anyα ∈ (ǫ2, 1 − ǫ2)).
However, it need not satisfy theǫ-separation property: for
α = 2ǫ, the optimal 2-median solution has costn − 2, but
the optimal 1-median has cost< 3n. Likewise forα = 2ǫ2,
the optimal 2-means solution has costn− 2, but the optimal
1-means has cost< (3 + 4ǫ)n. Thus, the ratio of costs for
k = 1 andk = 2 is not so large.

3 Thek-Median Problem

We first studyk-median clustering under the(c, ǫ)-property.
Our main results are that for any constantc > 1, (1) if all
clusters are “large”, then this property allows us to efficiently
find a clustering that isǫ-close to the target clustering, and (2)
for anycluster sizes, we can efficiently find a clustering that
is O(ǫ)-close to the target. To prove these results, we first
investigate the implications of the(c, ǫ)-property in Section
3.1. We then give our algorithm for the case that all clusters
are large in Section 3.2, and our algorithm for arbitrary
cluster sizes in Section 3.3.

3.1 Implications of the(c, ǫ)-Property
Given an instance ofk-median specified by a metric

spaceM = (X, d) and a set of pointsS ⊆ X , fix an
optimal k-median clusteringC∗ = {C∗

1 , . . . , C∗
k}, and let

c∗i be the center point forC∗
i . Let w(x) = mini d(x, c∗i )

be the contribution ofx to the k-median objective inC∗

(i.e., x’s “weight”), and let w2(x) be x’s distance to the
second-closest center point among{c∗1, c

∗
2, . . . , c

∗
k}. Also,

let w = 1
n

∑n
i=1 w(x) = OPT

n be the average weight of the
points. Finally, letǫ∗ = dist(CT , C∗); so, by our assumption
we haveǫ∗ < ǫ.

LEMMA 3.1. If the k-median instance(M, S) satisfies the
(1 + α, ǫ)-property with respect toCT , and each cluster in
CT has size at least2ǫn, then
(a) less than(ǫ − ǫ∗)n pointsx ∈ S on whichCT andC∗

agree havew2(x)− w(x) < αw
ǫ , and

(b) at most5ǫn/α pointsx ∈ S havew(x) ≥ αw
5ǫ .

For the case of general cluster sizes inCT we replace (a) and
(b) with:
(a’) less than6ǫn pointsx ∈ S havew2(x)−w(x) < αw

2ǫ .
(b’) at most10ǫn/α pointsx ∈ S havew(x) ≥ αw

10ǫ .

1[ORSS06] shows an implication in this direction (Theorem 5.2); how-
ever, the notion of closeness used there is much stronger.



Proof: To prove Property (a), assume to the contrary. Then
one could takeC∗ and move(ǫ− ǫ∗)n pointsx on whichCT
andC∗ agree to their second-closest clusters, increasing the
objective by at mostαOPT. Moreover, this new clustering
C′ = {C′

1, . . . , C
′
k} has distance at leastǫ from CT , because

we begin at distanceǫ∗ fromCT and each move increases this
distance by1n (here we use the fact that because each cluster
in CT has size at least2ǫn, the optimal bijection betweenCT
andC′ remains the same as the optimal bijection betweenCT
andC∗). Hence we have a clustering that is notǫ-close toCT
with cost only(1 + α)OPT, a contradiction. Property (b)
follows from the definition of the average weightw, and
Markov’s inequality. For Property (a’), we use Lemma
A.1 in the Appendix which addresses the case of small
clusters. Specifically, assuming for contradiction that6ǫn
points satisfy (a’), Lemma A.1 states that we can find a
subset of2ǫn of them such that starting fromC∗, for each one
that we move to its second-closest cluster, the distance from
C∗ increases by1n . Therefore, by increasing the objective by
at mostαOPT we can create a clusteringC′ that is distance
at least2ǫ from C∗, and so is notǫ-close toCT . Property (b’)
again follows from Markov’s inequality.

For the case that each cluster inCT has size at least
2ǫn, define thecritical distancedcrit = αw

5ǫ , else define
dcrit = αw

10ǫ ; i.e., these are the values in properties (b) and
(b’) respectively of Lemma 3.1. We call pointx good if
both w(x) < dcrit andw2(x) − w(x) ≥ 5dcrit, elsex is
called bad; by Lemma 3.1 and the definition ofǫ∗, if all
clusters in the target have size greater than2ǫn then at most a
(1 + 5/α)ǫ fraction of points are bad, and in general at most
a (6 + 10/α)ǫ fraction of points are bad. LetXi be thegood
points in the optimal clusterC∗

i , and letB = S \∪Xi be the
bad points. Letb = |B|.

LEMMA 3.2. (THRESHOLDGRAPH) Define the τ -
threshold graphGτ = (S, Eτ ) by connecting all pairs
{x, y} ∈

(

S
2

)

with d(x, y) ≤ τ . For an instance satisfying
the(1 + α, ǫ)-property andτ = 2dcrit, the threshold graph
Gτ has the following properties:

(i) For all x, y in the sameXi, the edge{x, y} ∈ E(Gτ ).
(ii) For x ∈ Xi and y ∈ Xj 6=i, {x, y} 6∈ E(Gτ ).
Moreover, such pointsx, y do not share any neighbors in
Gτ .

Proof: For part (i), sincex, y are both good, they are at
distance less thandcrit to their cluster center, by Lemma 3.1
(b or b’). By the triangle inequality, the distanced(x, y) ≤
d(x, c∗i ) + d(c∗i , y) ≤ 2 × dcrit = τ . For part (ii), the
distance fromx to y’s cluster centerc∗j is at least5dcrit,
by Lemma 3.1 (a or a’). Again by the triangle inequality,
d(x, y) ≥ d(x, c∗j ) − d(y, c∗j ) > 5dcrit − dcrit = 2τ . Since
each edge inGτ is between points at distance at mostτ , the
pointsx, y cannot share any common neighbors.

Hence, the graphGτ for the above value ofτ is fairly simple
to describe: eachXi forms a clique, and the neighborhood
NGτ

(Xi) of Xi lies entirely in the bad bucketB with no

edges going betweenXi and Xj 6=i, or betweenXi and
NGτ

(Xj 6=i). We now show how we can use this to find a
clustering of error at mostǫ if the size of eachXi is large
(Section 3.2) and how we can get errorO(ǫ) for general
cluster sizes (Section 3.3).

3.2 An algorithm for large clusters We begin with the
following lemma. Recall thatb = |B|.

LEMMA 3.3. Given a graphG = (S, E) satisfying proper-
ties (i), (ii) of Lemma 3.2 and where each|Xi| ≥ b+2, there
is an efficient algorithm that outputs ak-clustering with each
Xi contained in a distinct cluster.

Proof: Construct a graphH = (S, E′) where we place
an edge{x, y} ∈ E′ if x and y have at leastb common
neighbors inG. By property (i) eachXi is a clique of
size≥ b + 2 in G, so each pairx, y ∈ Xi has at least
b common neighbors inG and hence{x, y} ∈ E′. Now
considerx ∈ Xi ∪ NG(Xi), andy 6∈ Xi ∪ NG(Xi): we
claim {x, y} 6∈ E′. Indeed, by property(ii) , x andy cannot
share neighbors that lie inXi (sincey 6∈ Xi ∪ NG(Xi)),
nor in someXj 6=i (sincex 6∈ Xj ∪ NG(Xj)). Hence the
common neighbors ofx, y all lie in B, which has sizeb.
Moreover, at least one ofx andy must itself belong toB,
else they would have no common neighbors by property(ii) ;
hence, the number of distinct common neighbors is at most
b− 1, which implies that{x, y} 6∈ E′.

Thus eachXi is contained within a distinct component
of the graphH ; the remaining components ofH contain
vertices from the “bad bucket”B. Since theXi’s are larger
thanB, we can obtain the claimed clustering by taking the
largestk components inH , adding the vertices of all other
smaller components to any of these, and using this as the
k-clustering.

We now show how we can use Lemma 3.3 to find a
clustering that isǫ-close toCT . For simplicity, we begin by
assuming that we are given the value ofw = OPT

n , and then
we show how this assumption can be removed.

THEOREM 3.1. (THE “ KNOWN w” CASE) If the k-median
instance satisfies the(1 + α, ǫ)-property and each cluster in
CT has size at least(3 + 10/α)ǫn + 2, then givenw we can
efficiently find a clustering that isǫ-close toCT .

Proof: Since each cluster in the target clustering has at least
(3+10/α)ǫn+2 points, and theoptimalk-median clustering
C∗ differs from the target clustering byǫ∗n ≤ ǫn points, each
cluster inC∗ must have at least(2 + 10/α)ǫn + 2 points.
Moreover, by Lemma 3.1, the bad pointsB constitute at most
(1 + 5/α)ǫn points, and hence each|Xi| = |C∗

i \ B| ≥
(1 + 5/α)ǫn + 2 = b + 2.

Now, given w, we can construct the graphGτ with
τ = 2dcrit (which we can compute from the given value
of w), and apply Lemma 3.3 to find ak-clusteringC′ where
eachXi is contained within a distinct cluster. Note that this
clusteringC′ differs from the optimal clusteringC∗ only in
the bad points which constitute anO(ǫ/α) fraction of the



total. Hence, it is at distanceO(ǫ/α + ǫ) from the target.
However, our goal is to getǫ-close to the target, which we do
as follows.

Call a pointx “red” if it satisfies condition (a) in Lemma
3.1 (i.e.,w2(x)−w(x) < 5dcrit), “yellow” if it is not red but
satisfies condition (b) in Lemma 3.1 (i.e.,w(x) ≥ dcrit), and
“green” otherwise. So, the green points are those in the sets
Xi, and we have partitioned the bad setB into red points
and yellow points. LetC′ = {C′

1, . . . , C
′
k} and recall that

C′ agrees withC∗ on the green points, so without loss of
generality we may assumeXi ⊆ C′

i. We now construct
a new clusteringC′′ that agrees withC∗ on both the green
and yellow points. Specifically, for each pointx and each
clusterC′

j , compute the median distancedmed(x, j) between
x and all points inC′

j ; then insertx into the clusterC′′
i for

i = argminjdmed(x, j). Since each non-red pointx satisfies
w2(x)−w(x) ≥ 5dcrit, and all green pointsg satisfyw(g) <
dcrit, this means that any non-red pointx must satisfy the
following two conditions: (1) for a green pointg1 in the
samecluster asx in C∗ we haved(x, g1) ≤ w(x) + dcrit,
and (2) for a green pointg2 in a differentcluster thanx in
C∗ we haved(x, g2) ≥ w2(x) − dcrit ≥ w(x) + 4dcrit.
Therefore,d(x, g1) < d(x, g2). Since each cluster inC′ has
a strict majority of green points (even with pointx removed)
all of which are clustered as inC∗, this means that for a
non-red pointx, the median distance to points in its correct
cluster with respect toC∗ is less than the median distance to
points in any incorrect cluster. Thus,C′′ agrees withC∗ on
all non-red points. Finally, since there are at most(ǫ− ǫ∗)n
red points on whichCT andC∗ agree by Lemma 3.1—and
C′′ andCT might disagree on all these points—this implies
dist(C′′, CT ) ≤ (ǫ− ǫ∗) + ǫ∗ = ǫ as desired.

We now extend the above argument to the case where
we are not given the value ofw.

THEOREM 3.2. (THE “ UNKNOWN w” CASE) If the k-
median instance satisfies the(1 + α, ǫ)-property and each
cluster inCT has size at least(4 + 15/α)ǫn + 2, then we
can efficiently find a clustering that isǫ-close toCT .

Proof: If we are not given the valuew, we instead run the
algorithm of Lemma 3.3 repeatedly for different values ofw,
starting withw = 0 (so the graphGτ is empty) and at each
step increasingw to the next value such thatGτ contains at
least one new edge (so we have at mostn2 different guesses
to try). If some guess forw causes thek largest components
of H to miss more thanb = (2+10/α)ǫn points, or if any of
these components have size≤ b, then we reject, and increase
w. Otherwise, we defineC′ to be thek largest components
in H (so up tob points may be unclustered) and continue
to the second phase of the algorithm for the known-w case
constructing clusteringC′′.

Note that we still might have too small a guess forw,
but this just means that the resulting graphsGτ andH can
only have fewer edges than the corresponding graphs for
the correctw. Hence, some of theXi’s might not have
fully formed into connected components inH . However,

if the k largest components have size greater thanb, then
we never misclassify the good points lying in these largest
components. We might misclassify all the bad points (at
mostb of these), and might fail to cluster at mostb of the
points in the actualXi’s (i.e., those not lying in the largest
k components), but this nonetheless guarantees that each
clusterC′i contains at least|Xi|−b ≥ b+2 correctly clustered
green points (with respect toC∗) and at mostb misclassified
points. Therefore, as shown in the proof of Theorem 3.1,
the resulting clusteringC′′ will correctly cluster all non-red
points as inC∗ and so is at distance at most(ǫ− ǫ∗)+ ǫ∗ = ǫ
from CT .

3.3 An Algorithm for the General Case The algorithm
in the previous section required the minimum cluster size in
the target to be large (of sizeΩ(ǫn)). In this section, we
show how this requirement can be removed using a different
algorithm that finds a clustering that isO(ǫ/α)-close to the
target; while the algorithm is just as simple, we need to be a
bit more careful in the analysis. (Again, we will assume we
knoww = OPT

n , and discharge this assumption later.)

Algorithm 1 k-median Algorithm: General Case
Input: w, ǫ ≤ 1, α > 0, k.
Step 1: Construct theτ -threshold graphGτ with τ =

2dcrit = 1
5

αw
ǫ .

Step2: For j = 1 to k do:
Pick the vertexvj of highest degree inGτ .
Removevj and its neighborhood fromGτ and call this
clusterC(vj).

Step3: Output the k clusters C(v1), . . . , C(vk−1), S −
∪k−1

i=1 C(vi).

THEOREM 3.3. (k-MEDIAN : GENERAL CASE) If the k-
median instance satisfies the(1 + α, ǫ)-property and we are
given the value ofw, the above algorithm produces a clus-
tering which isO(ǫ/α)-close to the target.

Proof: Recall the notation from Section 3.1: the graphGτ

satisfies properties(i),(ii) of Lemma 3.2. We show that the
greedy method of Step 2 above correctly captures most of the
cliquesX1, X2, . . . , Xk in Gτ —in particular, we show there
is a bijectionσ : [k] → [k] such that

∑

i |Xσ(i) \ C(vi)| =

O(b). Since theb bad points (i.e., those inB = S \∪k
i=1Xi)

may potentially all be misclassified, this gives an additional
error ofb.

Let us think of each cliqueXi as initially “unmarked”,
and then “marking” it the first time we choose a cluster
C(vj) that intersects it. We now consider two cases. If the
jth clusterC(vj) intersects someunmarkedclique Xi, we
will assignσ(j) = i. (Note that it is not possible forC(vj)
to intersect two cliquesXi andXj 6=i, since by Lemma 3.2(ii)
these cliques have no common neighbors.) IfC(vj) misses
ri points from Xi, then since the vertexvj defining this
cluster had maximum degree andXi is a clique, we must
have picked at leastri elements fromB in C(vj). Therefore
the total sum of theseri can be at mostb = |B|, and hence



∑

j |Xσ(j) \ C(vj)| ≤ b, where the sum is overj’s that
correspond to the first case.

The other case is ifC(j) intersects a previously marked
cliqueXi. In this case we assignσ(j) to any arbitrary clique
Xi′ that is not marked by the end of the process. Note that
the total number of points in suchC(j)’s must be at most
the number of points remaining in the marked cliques (i.e.,
∑

j rj ), and possibly the bad points (at mostb of them).
Since the cliquesXi′ were unmarked at the end, their sizes
must be bounded by the size of theC(j)’s, and hence by
|B| +

∑

i ri ≤ 2b. This shows that the sum over suchj’s,
∑

j |Xσ(j) \ C(vj)| ≤ 2b. Therefore, overall, the total error
over all C(vj) with respect to thek-median optimal is the
two sums above, plus potentially the bad points, which gives
us at most4b points. Adding in the extraǫn to account for
the distance between thek-median optimum and the target
clustering yields the claimed4b + ǫn = O(ǫ/α)n result for
the case that we are given the value ofw.

Not Knowing the Value of w. If we do not know the value
of w (and hence ofτ ), unfortunately the method used in
the proof of Theorem 3.2 may not work, because we might
split some large cluster causing substantial error, and not
be able to recognize our mistake (because we only miss
small clusters which do not result in very many points being
left over). However, we can instead run an off-the-shelf
k-median approximation algorithm to produce an estimate
for w that is off by only a constant factor, and use this
estimate instead. In particular, if we have aβ-approximation
w̃ (i.e., sayw ≤ w̃ ≤ βw̃, an analog of Lemma 3.2
holds for the threshold graphGτ ′ with the altered threshold
τ ′ = 1

5
αw̃
ǫβ , with the number of bad points now bounded

by b′ = (6 + 10β/α)ǫ. The rest of the proof follows
unchanged with allbs replaced byb′s, to give us a final bound
of O(βǫ/α) on the number of misclassified points.

4 The k-Means Problem

The algorithm in Section 3.3 for thek-median problem
can be easily altered to work for thek-means problem as
well. Indeed, if we can prove the existence of a structure
like that promised by Lemma 3.1 and Lemma 3.2 (albeit
with different parameters), the same algorithm and proof
would give a good clustering for any objective function.
Given some optimal solution fork-means definew(x) =
mini d(x, ci) to be the distance ofx to its center, which is
the square root ofx’s contribution to thek-means objective
function; henceOPT =

∑

x w(x)2. Again, letw2(x) =
minj 6=i d(x, cj) be the distance to the second-closest center,
and letǫ∗ = dist(CT , C∗).

LEMMA 4.1. If the k-means instance(M, S) satisfies the
(1 + α, ǫ)-property and each cluster in the target has size at
least2ǫn, then
(a) less than(ǫ − ǫ∗)n pointsx ∈ S on whichCT andC∗

agree havew2(x) < (αOPT
ǫn )1/2, and

(b) at most 25ǫn/α points x ∈ S have w(x) >
1
5 (αOPT

ǫn )1/2.
For the case of general cluster sizes we replace (a) and (b)

with:
(a’) less than6ǫn pointsx ∈ S havew2(x) < (αOPT

2ǫn )1/2.
(b’) at most 50ǫn/α points x ∈ S have w(x) >

1
5 (αOPT

2ǫn )1/2.

The proof is similar to the proof for Lemma 3.1, and is
omitted here. Note that the threshold forw2(x) in part (a)
above is again5 times the threshold forw(x) in part (b), and
similarly for (a’) and (b’). We can thus define the critical
distancedcrit as the value in (b) or (b’) respectively, and
define theb = (1 + 25/α)ǫn points that satisfy either (a)
or (b) above (in the large-cluster case) or theb = (6 +
50/α)ǫn points satisfying (a’) or (b’) (in the general case)
as bad. The rest of the proof for achieving anO(ǫ/α)-
close clustering fork-median now goes through unchanged
in the k-means case as well. Note thatk-means also has a
constant-factor approximation, so the results for the caseof
unknownw go through similarly, with different constants.
Unfortunately, the argument for exactǫ-closeness breaks
down because property (a) in Lemma 4.1 is weaker than
property (a) in Lemma 3.1. We therefore have the following
theorem.

THEOREM 4.1. If the instance satisfies the(1 + α, ǫ)-
property for thek-means objective, we can efficiently pro-
duce a clustering which isO(ǫ/α)-close to the target.

5 The Min-sum Clustering Problem

Recall that the min-sumk-clustering problem asks to find a
k-clusteringC = {C1, C2, . . . , Ck} to minimize the objec-
tive function

Φ(C) =

j
∑

i=1

∑

x,y∈Ci

d(x, y).

In this section, we show that if our data satisfies the(2+α, ǫ)-
property for the min-sum objective, and if all the clusters in
the target are “large”, then we can find a clustering that is
O(ǫ)-close to the targetCT . The general idea is reduce to
a problem known as “balancedk-median” (which is within
a factor of 2 of the min-sum objective) and extend the
techniques from the previous sections to this problem.

5.1 Properties of Min-Sum Clustering
The balancedk-medianclustering objective assigns to

each clusterCi a “median”ci ∈ X and seeks to minimize
Ψ(C) =

∑k
i=1 |Ci|

∑

x∈Ci
d(x, ci). We begin with a useful

lemma, which shows that the two objective functionsΦ
(for min-sum clustering) andΨ (for balanced-k-median) are
related to within a factor of2.

LEMMA 5.1. ([BCR01]) Let Ψ be the balancedk-median
objective and letΦ be the min-sum objective. For anyk-
clusteringC of S we have:Ψ(C)/2 ≤ Φ(C) ≤ Ψ(C).

LEMMA 5.2. If the instance(M, S) satisfies the(2(1 +
α), ǫ)-property for the min-sum objective, then(M, S) sat-
isfies the(1 + α, ǫ)-property for balancedk-median.

Henceforth, we will work with the balancedk-median
objective function. Let the balancedk-median optimal



clustering beC∗ = {C∗
1 , . . . , C∗

k} with objective function
valueOPT = Ψ(C∗). For each clusterC∗

i , let c∗i be the
median point in the cluster. Forx ∈ C∗

i , definew(x) =
|C∗

i |d(x, c∗i ) and let w = avgxw(x) = OPT
n . Define

w2(x) = minj 6=i d(x, c∗j )|C
∗
j |. Let dC∗

i
=

∑

x∈Ci
d(x, c∗i ),

and henceOPT =
∑

i |C
∗
i |dC∗

i
.

LEMMA 5.3. If the balancedk-median instance(M, S)
satisfies the(1 + α, ǫ)-property with respect to the target
clustering, then as long as the minimum cluster size is at
leastmax(6, 6/α) · ǫn we have:
(a) at most2ǫ-fraction of pointsx ∈ S havew2(x) < αw

4ǫ ,
(b) at most60ǫ/α-fraction ofx ∈ S havew(x) > αw

60ǫ .

Proof: To prove Property (a), assume to the contrary. Then
one could move a2ǫ fraction of points from their clusters in
the optimal clusteringC∗ to the clusters that define theirw2

value. This may increase the sizes of the clusters; let the new
clustering beC′ = (C′

1, . . . , C
′
k), where|C′

i \ C∗
i | = δin, so

that
∑

i δi = 2ǫ. If a pointx moves to clusterC′
i from some

other cluster, then it now contributesw2(x) · |C
′

i|
|Ci|

. Summing
over all the points, we get that the costΨ(C′) is at most

Ψ(C′) ≤
∑k

i=1

(

(|C∗
i |+ δin)dCi

+ δin ·
αw
4ǫ ·

|C∗

i |+δin
|C∗

i
|

)

However,δin ≤
∑

i δin ≤ 2ǫn ≤ min(1,α)
3 |C∗

i | (since each
cluster size is at leastmax(6, 6/α) · ǫn). Hence, we have

Ψ(C′) ≤
∑k

i=1

(

1 + α
3

)

|C∗
i |dC∗

i
+ 4

3

∑k
i=1

δi α OPT
4ǫ

≤ (1 + α)OPT.

This would give a clustering with cost at most(1 + α)OPT
that is not2ǫ-close to the optimal clusteringC∗, which is
impossible by Fact 2.1(b). Property (b) above follows from
Markov’s inequality.

We call pointx goodif it both w(x) ≤ αw
60ǫ andw2(x) ≥

αw
4ǫ , elsex is calledbad; let Xi be thegood points in the

optimal clusterCi, and letB = S \ ∪Xi be the bad points.

LEMMA 5.4. If the balanced-k-median instance(M, S)
satisfies the(1+α, ǫ)-property, then as long as the minimum
cluster size is at leastmax(6, 6/α) · ǫn we have:

(i) For all x, y in the sameXi, we haved(x, y) < α
30

1
ǫ

w
|C∗

i
|

(ii) For x ∈ Xi andy ∈ Xj 6=i, d(x, y) > α
5

1
ǫ

w
min(|C∗

i
|,|C∗

j
|)

(iii) The number of bad points|B| = |S \ ∪Xi| is at most
b := (2 + 60/α)ǫn.

Proof: For part (i), sincex, y ∈ Xi ⊆ C∗
i are both good,

they are at distance less thanα
60

1
ǫ

w
|C∗

i
| to their cluster center

(Lemma 5.3(a)), and hence at distance at mostα
30

1
ǫ

w
|C∗

i
| to

each other. For part (ii) assume without loss of generality
that |C∗

i | ≥ |C∗
j |; using both parts of Lemma 5.3 and

the fact that bothx ∈ C∗
i , y ∈ C∗

j are good, we have
d(y, cj) ≤

α
60

1
ǫ

w
|C∗

j
| , andd(x, cj) ≥ w2(x) > α

4
1
ǫ

w
|C∗

j
| , so

d(x, y) ≥ αw ·
(

1
4 −

1
60

)

1
ǫ

w
|C∗

j
| > α

5
1
ǫ

w
min(|C∗

i
|,|C∗

j
|)(5.1)

where we use that|C∗
j | = min(|C∗

i |, |C
∗
j |). Part (iii) follows

from Lemma 5.3 and the trivial union bound.

While Lemma 5.4 is similar in spirit to Lemma 3.2, there
is a crucial difference: the distance between the good points
in Xi andXj is no longer lower bounded by some absolute
value τ , but rather the bound depends on the sizes ofXi

andXj . However, a redeeming feature is that the separation
between them is large compared to the diameters of bothXi

andXj ; we will use this feature crucially in our algorithm.

5.2 Algorithm for Min-Sum/Balanced-k-Median Clus-
tering

For the algorithm below, definecritical thresholds
τ0, τ1, τ2, . . . as: τ0 = 0 andτi is the ith smallest distinct
distanced(x, y) for x, y ∈ S. Thus,Gτ0

, Gτ1
, . . . are the

only distinct threshold graphs possible.

THEOREM 5.1. If the balancedk-median instance satisfies
the(1+α, ǫ)-property and we are given the value ofw, then
so long as the smallest correct cluster has size greater than
(6 + 120/α)ǫn, Algorithm 2 produces a clustering that is
O(ǫ/α)-close to the target. If we are not givenw, then we
can use Algorithm 2 as a subroutine to produce a clustering
that isO(ǫ/α)-close to the target.

Algorithm 2 Balancedk-median Algorithm

Input: (M, S), w, ǫ ≤ 1, α > 0, k, b := (2 + 60/α)ǫn.
Let the initial thresholdτ = τ0.

Step 1: If k = 0 or S = ∅, stop.
Step 2: Construct theτ -threshold graphGτ on the current

setS of points.
Step 3: Create a new graphH by connecting two points

by in S an edge if they share at leastb neighbors in
common inGτ .

Step 4: Let C be largest connected component inH . If
|C| ≥ 1

20
αw
ǫτ , then outputC as a cluster, setk ← k−1,

S ← S \ C, and go to Step 1.Else increaseτ to the
next critical threshold and go to Step 1.

Proof: Since each cluster in the target clustering has more
than a(6+120/α)ǫ fraction of the points by the assumption,
the optimal balanced-k-median clusteringC∗ must differ
from the target clustering by fewer thanǫn points, and hence
each cluster inC∗ must have at least(5 + 120/α)ǫn points.
Moreover, by Lemma 5.3, the bad pointsB constitute at
most(2 + 60/α)ǫ fraction of points, and hence each|Xi| =
|C∗

i \B| > (3 + 60/α)ǫn ≥ (2 + 60/α)ǫn + 2 = b + 2.

Assume we knoww. Consider what happens in the exe-
cution of the algorithm: as we increaseτ , the sizes of the
H-components increase (since we are adding more edges in
Gτ ). This happens until the largestH-component is “large
enough” (i.e., the condition in Step 4 gets satisfied), in which
case we output it and then go back to raisingτ .

We claim that every time we output a cluster in Step 4,
this cluster completely contains someXi and includes no



points in anyXj 6=i. More specifically, we show that as
we increaseτ , the condition in Step4 will be satisfied
after all the good points in the some cluster have been fully
connected, butbeforeany edges appear between good points
in different clusters. It suffices to show that the first cluster
output by the algorithm contains someXi entirely; the claim
for the subsequent output clusters is the same. Assume that
|C∗

1 | ≥ |C
∗
2 | ≥ . . . ≥ |C∗

k |, and letni = |C∗
i |. Define

di = α
30

w
ǫ

1
|C∗

i
| and recall thatminx,y∈Xi

d(x, y) ≤ di.
We first claim that as long asτ ≤ 3 d1, no two

points belonging to differentXi’s can lie in the sameH-
component. Since the distance between points in anyXi

and Xj 6=i is strictly greater thanα
5

1
ǫ

w
min(|C∗

i
|,|C∗

j
|) ≥ 2τ

for any τ ≤ 3 d1, everyx ∈ Xi and y ∈ Xj share no
common neighbors; hence, by an argument identical to that
in Lemma 3.3,x andy belong to different components ofH .

Next, we claim that for values ofτ < min{di, 3d1},
theH-component containingXi cannot be output by Step 4.
Indeed, sinceτ < 3d1, noXi andXj belong to the sameH-
component by the above claim, and hence anyH-component
containing points fromXi has size at most|C∗

i |+|B| <
3ni

2 ;
however, the minimum size bound120

αw
ǫτ > 3ni

2 for values
of τ < di, and hence the condition of Step 4 is not satisfied.
Note that whenτ ≥ di, all the points ofXi lie in the same
H-component.

Finally, we show that the condition in Step 4 becomes
true for someH-component fully containing someXi for
some valueτ = [d1, 3d1]. (By the argument in the previous
paragraph,τ ≥ di, and hence the output component will
fully contain Xi.) For the sake of contradiction, suppose
not. But note at timeτ = 3d1, at least theH-component
containingX1 has size at least|C∗

1 | − |B| > n1/2 and
will satisfy the condition (which at timeτ = 3d1 requires a
cluster of size1

20
αw
ǫ

30ǫni

3αw = n1/2), giving the contradiction.
To recap, by time3d1 none of the clusters have merged

together, and the Step 4 condition was satisfied for at least
the component containingX1 (and hence for the largest
component) at some time prior to that. Moreover, this largest
component must fully contain some setXi and no points in
Xj 6=i. Finally, we can iterate the same argument on the set
S \Xi to complete the proof for the case when we knoww.

The case when we do not knoww. In this case, we do
not want to use aβ-approximation algorithm for balanced
k-median to obtain a clustering that isO(βǫ/α)-close to
the target, because the balanced-k-median (and minsum
clustering) problems only have a logarithmic approximation
for arbitrary k, and hence our error would blow up by
a logarithmic factor. Instead, we use the idea of trying
increasing values ofw: we then stop the first time when we
outputk clusters that cover at leastn−b = (1−O(ǫ/α))n of
the points inS. Clearly, if we reached the correct value ofw
we would succeed in covering all the goodn−b points using
our k clusters; we now argue that we will never mistakenly
output a high-error clustering.

The argument is as follows. Let us say wemarkXi the
first time we output a cluster containing at least one point

from it. There are three possible sources of mistakes: (a) we
may output a cluster prematurely, it may contain some but
not all points fromXi, (b) we may output a cluster which
contains points from one or more previously marked setsXj

(but no unmarkedXi), or (c) we may output a cluster with
points from an unmarkedXi and one or more previously
markedXj . In case (a), if we end up with all butO(ǫ/α)-
fraction of the points, we did not miss too many points from
the Xi’s, so our error isO(ǫ/α). In case (b), we use up
too many clusters and would end with missing someXi

completely, which would result in more thanb unclustered
points, and we would try a larger guess forw. The dangerous
case is case (c), but we claim case (c) in fact cannot happen.
Indeed, the value ofτ at which we would form connected
components containing points from bothXi and Xj is a
constant times larger than the valueτ< at which all ofXi

would be in a singleH-component. Moreover, since our
guess forw is too small, thisH-component would certainly
satisfy the condition of Step 4 and be output as a cluster
instead.

6 Conclusions and Open Questions

A concrete open question is designing an efficient algorithm
for the min-sum property which works in the presence of
small target clusters. Another natural direction for investiga-
tion is designing faster algorithms for all the properties ana-
lyzed in this paper. The case of large clusters can be handled
by using standard sampling ideas [MOP01, CS04, BD07],
however these techniques do not seem to immediately apply
in the case where the target clusters are small.

More broadly, it would be interesting to further explore
and analyze other commonly used clustering objective func-
tions in our framework.
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A Appendix

THEOREM A.1. For any1 ≤ c1 < c2, anyǫ, α > 0, there
exists a family of metric spacesG and target clusterings
that satisfy the(c1, ǫ) property for thek-median objective
(likewise,k-means and min-sum) and yet do not satisfy even
the(c2, 1/2− α) property for that objective.

Proof: We focus first on thek-median objective. Consider
a set ofn points such that the target clustering consists of
one clusterC1 with n(1−2α) points all at the same location
(d(u, v) = 0 for all u, v,∈ C1) andk−1 clustersC2, . . . , Ck

each consisting of2αn
k−1 points, all at distance 1. The distance

between points in any two distinct clustersCi, Cj for i, j ≥ 2
is D, whereD > 1 will be defined below. Points inC1 are
at distance greater thanc2n from any of the other clusters.

In this construction, the target clusteringis the optimal
k-median solution, and has a totalk-median cost of2αn −
(k − 1). We now defineD so that there (just barely) exists
a c2 approximation that splits clusterC1. In particular,
consider the solution that mergesC2 andC3 into a single
cluster (C4, . . . , Ck will each be their own cluster) and uses
2 clusters to evenly splitC1. This clearly has error at
least1/2 − α, and furthermore this solution has a cost of
2αn
k−1D +(2αn− 2αn

k−1 − (k− 2)), and we defineD to set this
equal toc2(2αn− (k − 1)) = c2OPT.

Any c1 approximation, however, must beǫ-close to the
target fork > 1 + 2α/ǫ. In particular, by definition ofD,
anyc1-approximation cannot merge twoCi, Cj into a single
cluster: it must have one median inside eachCi, and can
have error on fewer than2αn

k−1 points. This is less thanǫn by
definition ofk.

The same construction, withD defined appropriately,
applies tok-means and min-sum objectives as well.

THEOREM A.2. For k-median,k-means, and min-sum ob-
jectives, the problem of finding ac-approximation can be
reduced to the problem of finding ac-approximation under
the(c, ǫ) assumption. Therefore, the problem of finding ac-
approximation under the(c, ǫ) assumption is as hard as the
problem of finding ac-approximation in general.

Proof: Given a metricG with n nodes and a valuek (a
generic instance of the clustering problem) we construct a
new instance satisfying the(c, ǫ) assumption. In particular
we create a new graphG′ by adding an extran/ǫ nodes that
are all very far away from each other and from the nodes in
G (call this distanceD). We now letk′ = k+n/ǫ and define
the target clustering to be the optimal (k-median,k-means,
or min-sum) solution onG, together with each of the points
in G′ \G in its own singleton cluster.

We first claim thatG′ satisfies the(c, ǫ) property. This
is because for sufficiently largeD, any solution that does not
put each of the new nodes into its own singleton cluster will
incur too high a cost. So ac-approximation can only differ
from the target onG (which has less than anǫ fraction of
the nodes). Furthermore, ac-approximation inG′ yields a
c-approximation inG because the singleton clusters do not
contribute to the overall cost.

The following shows that unlike the(1.01, ǫ)-property,
obtaining anO(ǫ)-close clustering is NP-hard under the
(1, ǫ)-property.

THEOREM A.3. For any contantc′, for anyǫ < 1/(ec′), it
is NP-hard to find a clustering of error at mostc′ǫ for the
k-median andk-means problem under the(1, ǫ)-property.

Proof Sketch: We start from the hard instances ofk-
median arising from max-k-coverage (using edges of cost1
and3): the reduction implies that it is hard to distinguish



cases when there arek medians that cover all the points at
distance1 (the “yes” case), from instances where any set of
k medians covers at least a(1/e − δ)-fraction of the points
at distance3 (the “no” case) for any constantδ > 0. Let
us add infinitesimal noise to make a unique optimal solution
and call this the target; the uniqueness of the optimal solution
ensures that we satisfy the(1, ǫ) assumption.

Now, in the “yes” case, any clustering with errorc′ǫ
will have cost at mostn[(1 − c′ǫ) + 3c′ǫ]. This is less than
the cost of the optimal solution in the “no” case (which is
still at leastn[(1 − 1/e + δ) + 3(1/e − δ)]) as long as
c′ǫ ≤ 1/e−δ, and would allow us to distingush the “yes” and
“no” instances. This completes the proof for thek-median
case, and the proof can be altered slightly to work for the
k-means problem as well.

LEMMA A.1. Let C = {C1, . . . , Ck} be a k-clustering
in which each cluster is nonempty, and letR =
{(x1, j1), (x2, j2), . . . , (xt, jt)} be a set oft reassignments
of points to clusters (assume thatxi 6∈ Cji

for all i). Then
there must exist a setR′ ⊆ R of size at leastt/3 such that
the clusteringC′ produced by reassigning points inR′ has
distance at least1n |R

′| fromC.

Before proving the lemma, note that we cannot necessarily
just chooseR′ = R because, for instance, it could be
that R moves all points inC1 to C2 and all points in
C2 to C1: in this case, performing all reassignments in
R produces the exact same clustering as we started with
(just with different indices). Instead, we need to ensure
that each reassignment inR′ has an associated certificate
ensuring that if implemented, it will increase the resulting
distance fromC. Note also that ifC consists of 3 singleton
clusters: C1 = {x}, C2 = {y}, C3 = {z}, and if R =
{(x, 2), (y, 3), (z, 1)}, then any subset of reassignments inR
will produce a clustering that differs in at most one element
from C; thus, the factor of 3 is tight.

Proof: The proof is based on the following lower-bounding
technique. Given two clusteringsC andC′, suppose we can
produce a listL of disjoint subsetsS1, S2, . . ., such that for
eachi, all points inSi are in thesamecluster in one ofC orC′

and they are all indifferentclusters in the other. ThenC and
C′ must have distance at least1

n

∑

i(|Si| − 1). In particular,
any bijectionσ on the indices can have agreement between
C andC′ on at most one point from eachSi.

We constructR′ and witness-listL as follows. While
there exists a reassignment(x, j) ∈ R such thatx is in a
clusterC(x) with at least 3 points: choose an arbitrary point
y ∈ C(x) and add{x, y} to L, add(x, j) to R′, and remove
(x, j) from R as well as the reassignment involvingy if one
exists. In addition, removex andy from the point setS.
This process guarantees that all pairs added toL are disjoint,
and we remove at most twice as many reassignments fromR
as we add toR′. (So, if R becomes empty, we will have
achieved our desired result with|R′| = t/2). Moreover,
because we only perform this step if|C(x)| ≥ 3, this process
does not produce any empty clusters.

We now have that for all reassignments(x, j) ∈ R, x
is in a singleton or doubleton cluster. LetRsingle be the set
of reassignments(x, j) ∈ R such thatx is in a singleton
cluster. Viewing these reassignments as directed edges,
Rsingle forms a graph on the clustersCi where each node
has outdegree≤ 1. Therefore, each component of this graph
must be an arborescence with possibly one additional edge
from the root. We now proceed as follows. WhileRsingle

contains a source (a node of outdegree 1 and indegree 0),
choose an edge(x, j) such that (a)x is a source and (b) for
all other edges(y, j), y is either a source or part of a cycle.
We then consider two cases:

1. Nodej is not a sink inRsingle: that is, there exists an
edge(z, jz) ∈ Rsingle for z ∈ Cj . In this case, we
add toR′ the edge(x, j) and all other edges(y, j) such
that y is a source, and we remove fromR (and from
Rsingle) the edges(z, jz), (x, j), and all edges(y, j)
(including the at most one edge(y, j) such thaty is part
of a cycle). We then add toL the set{x} ∪ {z} ∪ {y :
(y, j) was just added toR′} and remove these points
from S. Note that the number of edges removed from
R is at most the number of edges added toR′ plus 2,
giving a factor of 3 in the worst case. Note also that we
maintain the invariant that no edges inRsingle point to
empty clusters, since we deleted all edges intoCj , and
the pointsx andy added toL were sources inRsingle.

2. Otherwise, nodej is a sink in Rsingle. In this
case, we add toR′ the edge (x, j) along with
all other edges(y, j) ∈ Rsingle (removing those
edges fromR and Rsingle). We choose an arbi-
trary point z ∈ Cj and add toL the set{x} ∪
{z}∪{y : (y, j) was just added toR′}, removing those
points fromS. In addition, we remove fromR all (at
most two) edges exiting fromCj (we are forced to re-
move any edge exiting fromz sincez was added toL,
and there might be up to one more edge ifCj is a dou-
bleton). Again, the number of edges removed fromR is
at most the number of edges added toR′ plus 2, giving
a factor of 3 in the worst case.

At this point, if Rsingle is nonempty, its induced graph must
be a collection of disjoint cycles. For each such cycle, we
choose every other edge (half the edges in an even-length
cycle, at least1/3 of the edges in an odd cycle), and for each
edge(x, j) selected, we add(x, j) to R′, remove(x, j) and
(z, jz) for z ∈ Cj from R and Rsingle, and add the pair
{x, z} to L.

Finally, Rsingle is empty and we finish off any remain-
ing doubleton clusters using the same procedure as in the
first part of the argument. Namely, while there exists a re-
assignment(x, j) ∈ R, choose an arbitrary pointy ∈ C(x)
and add{x, y} to L, add(x, j) to R′, and remove(x, j) from
R as well as any reassignment involvingy if one exists.

By construction, the setR′ has size at least|R|/3, and
the setL ensures that each reassignment inR′ increases the
resulting distance fromC as desired.


