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Abstract constant-factor approximation, and admits a PTAS in Eu-
Approximation algorithms for clustering points in metri€lidean spaces for constant number of clustefkSS04].
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spaces is a flourishing area of research, with much resea oe min-sum clustering problgm admits &r(log , n)-
proximation for general metric spaces, and admits a PTAS

effort spent on getting a better understanding of the appr@g ,
imation guarantees possible for many objective functio$€n # is @ constant [dIVKKRO3]. For most of these

such ag-median k-means, and min-sum clustering. problems, the approximation guarantees do not match the

This quest for better approximation algorithms is furthdfown hardness results, and much effort is spent on obtain-
fueled by the implicit hope that these better approximatiold tighter approximation guarantees. —
also yield more accurate clusterings. E.g., for many prob- Hoyvever,_ this seargh for better a_pproxmatlon algo-
lems such as clustering proteins by function, or clusteriffims iS motivated not just by the desire to pin down the
images by subject, there is some unknown correct “targ _ctablhty threshold forthese_ ObJ(.aCt'VeS.: th_ere is theler-
clustering and the implicit hope is that approximately op ying hope that better approximations will give more mean-

mizing these objective functions will in fact produce a eludngful qlustenngs of the underlying ‘?'ata- Indged, for many
tering that is close pointwise to the truth. clustering problems, such as clustering proteins by fomgti

In this paper, we show that if we make this implici®! Clustering images by subject, the real goal is to clashidy
assumption explicit—that is, if we assume that amy pomts cqrrectly, and these objectlv“es are”onlyaproxy.tTha
approximation to the given clustering objecti®eis e-close is, there IS some “”"F‘OW” correct “target clu_stenng—such
to the target—then we can produce clusterings thatirg- &S 9rouping the proteins by their actual functions, or group
close to the targegven for values for which obtaining a ing th? images by who IS actua_lly_ln them—and.the_lmpllcllt
c-approximation is NP-hardin particular, fork-median and _hope is that approxmate_ly optimizing the_se obJect|ve_$ W.'l
k-means objectives, we show that we can achieve this g grfact produce a clustering that is close in symmetric dif-

antee for any constant> 1, and for the min-sum objective erence to t.he truth.- In other WOI’dS,- implicit in taking the
we can do this for any constaat> 2 approximation-algorithms approach is the hope that any

Our results also highlight a surprising conceptual difPProximation to our given objective will be pointwise aos
ference between assuming that thtimal solution to, say, to the t-rue answer, and our-m0t|.vat|0n for Improving-a
the k-median objective is-close to the target, and assum@PProximation to a;-approximation (forc, < c») is that
ing that anyapproximately optimasolution ise-close to the perhaps _th's closeness property_holdsa‘pbut notcy.
target, even for approximation factor say= 1.01. In the In.thls paper, we show that if we make th'§ 'mP“C't as-
former case, the problem of finding a solution thafi&)- sumption explicit, and assume that anpproximation to

close to the target remains computationally hard, and yet %Be_ glver? Ob]eCt'V@_'s]f'Close gothlsle to the tarr]get clus-
the latter we have an efficient algorithm. tering, then we can in fact produce a ¢ usj[enng t _z@@s)-
close to the targegven for values for which obtaining a

c-approximation is provably NP-hardin particular, fork-
The field of approximation algorithms for clustering pointgiedian andc-means objectives, we achieve this guarantee
in metric spaces is a very active one, with a large numberfof any constant > 1, and for min-sum we do this for any
algorithms having been developed for clustering objestiveonstant > 2 when the target clusters are “large”. More-
like k-median,k-means, and min-sum clustering. The over, if clusters are sufficiently large compared_t8; then
median problem has&-+ e-approximation [AGK"04], and for k-median we can actually getclose (rather tha®(e)-
it is NP-hard to approximate to better than-2/e [JIMS02]. close) to the target.
The k-means problem for general metric spaces has a Thus, we show that we do not need to find a better
approximation algorithm in order to get the properties that
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Our results also show that there is a perhaps unexpedasqthirwise similarity function are sufficient to produce eetr
conceptual difference between assuming thabghtenalso- such that some unknown pruning is close to the target, or a
lution to, say, thé-median objective is-close to the target, small list of clusterings such that the target is close toa@ne
and assuming that argpproximately optimasolution ise- them. In relation to implicit assumptions about approxima-
close to the target, even for approximation factoe 1.01 tion algorithms, [BBV08] made the observation that for
(say). In the former case, the problem of finding a solutionedian, the assumption that alyapproximation is-close
that isO(e)-close to the target remains computationally hatd the target implies that most of the data satisfies a certain
(see Section 2.1 and Appendix A), and yet for the latter casaparation property, which they then use to construct a hier
we give efficient algorithms. archical clustering such that the target clustering iselms
some pruning of the hierarchy. Inspired by their approath, i
1.1 Related Work _ _ this paper we initiate a systematic investigation of the-con
Work on approximation algorithms: Fork-median O(1)-  sequences of such assumptions about approximation algo-
approximations were given by [CGTS99, JVO1, CG99] anfihms Moreover, the goals in this paper will be stronger —

the bestJrapproximatio_n guarantee known(is+ ¢) due e want to output aingleapproximately correct clustering
to [AGK™04]. A reduction from maxk-coverage shows an(,s gpposed to a list of clusterings or a hierarchy), and we
easy(1 + 2/e)-hardness of approximation [GK99, IMS02], .o nt to succeed for any> 1.

The k-median problem on constant-dimensional Euclidean o o
spaces admits a PTAS [ARR99]. 2 Definitions and Preliminaries
For k-meanson general metric spaces, one can derivghe clustering problems in this paper fall into the follogin
a constant approximation using ideas frégnmedian—the general framework: we are given a metric spaté =
squared distances do not form a metric, but are close enoyghd) with point setX and a distance functiod : ()2‘) —
for the proofs to go through; an approximation-hardness Rf,; satisfying the triangle inequality—this is the ambient
1 + 8/e follows from the ideas of [GK99, JMS02]. Thisspace. We are also given the actual pointS$ef X we
problem is very often studied in Euclidean space, whereyant to cluster; we use to denote the cardinality of. A
near-linear timg(1 + ¢)-approximation algorithm is known i-clusteringC is a partition ofS into k setsC;, Cs, . . . , Cj.
for the case of constarit and e [KSSO04]. Lloyd's local |n this paper, we always assume that theretisia or target
search algorithm [LI082] is often used in practice, despiteclusteringC; for the point sefS.
having poor worst-case performance [AV06]. Ostrovsky et Commonly used clustering algorithms seek to min-
al. [ORSSO06] study ways of seeding Lloyd’s local searghize some objective function or “score”; e.g., the
algorithm:  they show that on instances satisfying @n k-median clustering objective assigns to each cluster
separationproperty, this seeding results in solutions witli, a “median” ¢; € X and seeks to minimize
provable approximation guarantees. We show in Section 22(C) = Zle > wec, d(w, ¢;), k-meansclustering mini-
that their assumption can be quite a bit stronger than ourmes%(c) _ 21;21 S ¢ d(x,¢;)?, andmin-sum clus-
though their goal is different (they want to approximate the o ’ reC )
objective whereas we want to approximate the target).  tefing minimizes &y, = 555, 5., ¢, d(z,y). Given a
Min-sumk-clusteringon general metric spaces admits ginction ® and instanc¢ M, 5), let OPTg = mine ®(C),
PTAS for the case of constahtby Fernandez de la Vega etvhere the m!nimum is over all-clusterings of M, S).
al. [dIVKKRO3] (see also [Ind99)). For the case of arbitrary We define the distancelist(C,C’) between two
k there is anO(5~* log'™ n)-approximation algorithm in k-clusterings ¢~ = {C1,Cs,...,Cx} and C' =
time n°(1/%) due to Bartal et al. [BCRO1]. The problemC1,C3, ..., C}} as the fraction of points on which they
has also been studied in geometric spaces for congtarftisagree under the optimal matching of clusters to clus-
by Schulman [Sch00] who gave an algorithm fdt?, ¢2) tersinC’;i.e.,dist(C,C’) = minyes, = S | |C; — Cogiyls
that either output &1 + ¢)-approximation, or a solution thatwhere S;, is the set of bijections : [k] — [k]. We say
agreed with theoptimumclustering on(1 — ¢)-fraction of that two clustering€ andC’ aree-closeif dist(C,C’) < e.
the points (but could have much larger cost than optimunNote that if C and C’ are e-close and all clusters’;
the runtime isO(n!°¢!°¢™) in the worst case and linear forhave size at leas?en, then the bijections minimizing
sublogarithmic dimensiod. L G - C’, | is unique; in this case we call this the

Related K | ina: There h optimal bijections and we say thaf andC’ agreeon x if
elated work on error to a target clustering: There has "~ C; N C,;(i) for somesi.

been significant work in machine learning and theoretical The followina definition is central to our discussion:
computer science on clustering or learning with mixture 9 '
models [AMO5, AKOS5, DHS01, DGL96, KSV0S, VWO4,pepiniTioN 1. (THE (¢, €)-PROPERTY Given an objective

Das99]. That work, like ours, has an explici_t notion of fynctiond (such ask-median k-means, or min-sum), we say
correct ground-truth clustering of the data points; howeve,at instance M, S) satisfies théc, ¢)-property ford if all

it makes strong probabilistic assumptions about the data. cjysteringsc with ®(C) < ¢-OP T4 aree-close to the target
In recent work, Balcan et al. [BBVO08] investigated the|ysteringc; for (M, )

goal of approximating a desired target clustering without
probabilistic assumptions. They analyzed what propediesThe above assumption is often implicitly made when propos-



ing to use ac-approximation for objectivé to solve a clus- input, they show how to seed Lloyd’s method to obtain a
tering problem in which the true goal is to classify data p®inl + O(e?) approximation ind-dimensional Euclidean space
correctly; similarly, the motivation for improving & ap- in time O(nkd + k3d), and a(1 + §)-PTAS with run-time
proximation to ac; < cy approximation is that perhaps the,j2k(1+<*)/6_ |n Theorem 5.1 of their paper, they show
data satisfies théci,¢) property for® but not the(cz,€) that theire-separatedness assumption implies that any near-
property. optimal solution tok-means isO(e?)-close to the optimal
Note that for anyc > 1, the (c, ¢)-property does not clustering. However, the converse is not truan instance
require that the target clusterin@ exactly coincide with could satisfy our property without beingseparated_ For
the optimal clustering’* under objectived. However, it example, considér = 2 where target clustef; has(1—a)n
does imply the following simple facts: points and target cluster, hasan points. Any two points
inside the same cluster have distance 1 and any two points

FacT 2.1. If (M, S) satisfies the(c, ¢)-property for &, ' ; ’
( ) (¢, c)-property inside different clusters have distante- 1/¢. For anya €

then: ) o .
(a) The target clusteringr, and the optimal clustering* (€ 1 — ¢), this satisfies the2, ¢) property fork-median (and
are e-close. the (2, €2) property fork-means for anyr € (e2,1 — €2)).

g However, it need not satisfy theseparation property: for

hence dc, ¢) property with respect to the target clustering® — 2¢: (he optimal 2-median solution has cost- 2, but

; : o s
Cr implies a(c, 2¢) property with respect to the optimal he opt_|mal 1-median has Cost3n. Likewise fora = 2¢7,
clusteringC*. the optimal 2-means solution has cest 2, but the optimal

1-means has cost (3 + 4¢)n. Thus, the ratio of costs for
Thus, we can act as if the optimal clustering is indeed the= 1 andk = 2 is not so large.
target up to a constant factor loss in the error rate. 3 The k-Median Problem

2.1 Two Strawman Solutions, and Why They Falil i . .

Before proceeding to our results, we first consider t € flrstlstudyk-medlan clustering under tife, e)-property.
“strawman” approaches to achieving our goals, and indic gl main re"‘sults :’:’lre that for any constant- 1, (1) |f-aII
why they do not work. Clusters are _Iarge , then this property allows us to effitie

find a clustering that is-close to the target clustering, and (2)
e First, suppose that the, ¢)-property for some objective for anycluster sizes, we can efficiently find a clustering that
® implied, say, the(2c, 2¢) property. Then it would is O(¢)-close to the target. To prove these results, we first
be sufficient to simply apply a®(c) approximation investigate the implications of the, ¢)-property in Section

in order to have errof)(¢) with respect to the target.3.1. We then give our algorithm for the case that all clusters

However, for anye; < ¢, and anye, o« > 0, for each are large in Section 3.2, and our algorithm for arbitrary

of the three objectives we considérnediank-means, cluster sizes in Section 3.3.

and min-sum), there exists a family of metric spaces agg Implications of the (c, ¢)-Property

target clusterings satisfying the,, €) property for that Given an instance ok-median specified by a metric
objective, and yet that do not satisfy even thg 1/2 — spaceM = (X,d) and a set of points C X, fix an
«) property (See Appendix, Theorem A.1). Thus, th@ptimal k-median clustering* = {C%, ... ’_CZ}, and let
result of a direct application of a-approximation is ¢ be the center point fo€;. Letw(z) = min; d(z, c})

(b) The distance betweeérclusterings is a metric, an

nearly as poor as possible. be the contribution of: to the k-median objective inC*
e Second, perhaps tife, ¢) assumption implies that find-(i--, 'S “weight’), and letws(x) be r's d|staDce to the
ing a c-approximation is somehow trivial. HoweverS€cond-closest center point amofi, ¢3, ..., ¢;}. Also,

J € . _ 1 _ OPT ;
this is not the case either: for amy> 1, the problem letw = 237" | w(f) = =, - be the average weight of the
of finding ac-approximation to any of the three objecPOINts. Fl*nally, let” = dist(Cr,C"); so, by our assumption
tives we consider under tie, ¢) assumption is as hardWe havee™ < e.

as finding ac-approximation in general (Theorem A.2). . -
LEMMA 3.1. If the k-median instancéM, S) satisfies the

It is also interesting to note that results of the form wid + «, €)-property with respect t@7, and each cluster in
are aiming for areot possible given only th@, ¢) property. Cr has size at leasten, then
Indeed, because the standard hardness-of-approximation ¢a) less thane — ¢*)n pointsz € S on whichCy andC*
duction fork-median produces a metric in which all pairwise agree havewv,(z) — w(r) < 2, and
distances lie in a bounded range, the reduction also impligb) at mosten/a pointsz € S havew(x) > £2.
that it is NP-hard, given a data set satisfying thec) prop- For the case of general cluster size<in we replace (a) and
erty, to find a clustering of errad(¢); see Theorem A.3.  (b) with:

2.2 Relationship to Similar Concepts (&) less tharGen pointsz € S havews () —w(z) < ¢
> aw

Ostrovsky et al. [ORSS06] studymeans in Euclidean (P) atmostlOen/a pointsz € S havew(z) > .
space; they call &-means instance-separatedf the op-
timal k-means cost is at most times the cost of opti- ~ I[ORSS06] shows an implication in this direction (Theorer)5how-
mally openingk — 1 means; under this assumption on thever, the notion of closeness used there is much stronger.



Proof: To prove Property (a), assume to the contrary. Thedges going betweeX; and X,.;, or betweenX,; and
one could tak&* and move(e — €*)n pointsz on whichCr  N¢. (X+;). We now show how we can use this to find a
andC* agree to their second-closest clusters, increasing thestering of error at most if the size of eachX; is large
objective by at mosttOPT. Moreover, this new clustering(Section 3.2) and how we can get erOf¢) for general
C'={C1,...,C}} has distance at leasfrom Cr, because cluster sizes (Section 3.3).

we begin at distance’ from Cr and each move increases thi§'2 An algorithm for large clusters We begin with the
distance by: (here we use the fact that because each CIU%TOWing lemma. Recall that = |B|.

in Cr has size at leagkn, the optimal bijection betweefr

andC’ remains the same as the optimal bijection betw&en | emma 3.3. Given a graphG = (S, E) satisfying proper-
andC~). Hence we have a clustering that is ratlose toCr  ties (i), (ii) of Lemma 3.2 and where ealhi;| > b+ 2, there

with cost only(1 + «)OPT, a contradiction. Property (b)is an efficient algorithm that outputsiaclustering with each
follows from the definition of the average weight and . contained in a distinct cluster.

Markov’s inequality. For Property (a’), we use Lemma
A.1 in the Appendix which addresses the case of smRlMoof: Construct a graptH = (S, E’) where we place
clusters. Specifically, assuming for contradiction that an edge{x,y} € E’ if 2 andy have at leasb common
points satisfy (a’), Lemma A.1l states that we can findreighbors inG. By property (i) eachX; is a clique of
subset oRen of them such that starting fro@i, for each one size > b + 2 in G, so each paiw,y € X; has at least
that we move to its second-closest cluster, the distanee fro common neighbors 7 and hence{z,y} € E’. Now
C* increases b%. Therefore, by increasing the objective bgonsiderz € X; U Ng(X;), andy ¢ X; U Ng(X;): we
at mostaOPT we can create a clusteridj that is distance claim {x,y} ¢ E’. Indeed, by propert{i), = andy cannot
at leaste from C*, and so is not-close toCr. Property (b’) share neighbors that lie ifX; (sincey ¢ X; U Ng(X;)),
again follows from Markov'’s inequality. B nor in someX;, (sincez ¢ X; U Ng(X;)). Hence the
) common neighbors of, y all lie in B, which has sizé.

For the case that each cluster@n has size at leastyioreover, at least one of andy must itself belong ta3,
2en, define t.hecrmcal distanced,,;; = <, else_ define gise they would have no common neighbors by prop@ty
derie = 5¢5 1.€., these are the values in properties (b) apfnce the number of distinct common neighbors is at most
(b’) respectively of Lemma 3.1. We call point good !f b — 1, which implies thatz, y} ¢ E.
bothw(xz) < derit @andwz(z) — w(x) > Sderit, elsex is Thus eachX; is contained within a distinct component
called bad, by Lemma 3.1 and the definition ef, if all ¢ the graphH; the remaining components df contain
clusters in the target have size greater thanthen at most a \ g rtices from the “bad bucketB. Since theX,’s are larger
(1 +5/a)e fraction of points are bad, and in general at MOg{an B, we can obtain the claimed clustering by taking the
a(6 +10/a)e fraction of points are bad. LeX; be thegood |5rgesti: components inff, adding the vertices of all other

points in the optimal clustef;, and letB = S\ UX; be the gmajler components to any of these, and using this as the
bad points. Leb = |B|. k-clustering. u

I}]EM“:]AIS"Z' (TgESEOL%GRAPE) Define ) the” i We now show how we can use Lemma 3.3 to find a
thresho graphci, = (S, E7) by connecting all pairs ¢,;stering that is-close toCs. For simplicity, we begin by
{z,y} € () with d(x,) < 7. For an instance satisfying assuming that we are given the valueot- OPT "and then

the (1 + a, €)-property andr = 2d..;, the threshold graph \ye show how this assumption can be removed.
G has the following properties:

(i) Forall z,y in the sameX;, the edge(z, y} € E(G,). THEOREM3.1. (THE “KNOWN w” CASE) If the k-median
(iy For = € X, andy € X, {z.yt & E(G.). instance satisfies the + «, €)-property and each cluster in

Moreover, such points, y do not share any neighbors inCz Nas size at leasB + 10/a)en + 2, then givenw we can
G.. efficiently find a clustering that isclose toCr.

Proof: For part (i), sincer,y are both good, they are atProof:  Since each clusterinthe target cIust_ering has at least
distance less tha.,.;; to their cluster center, by Lemma 3.13+10/a)en+2 points, and theptimalk-median clustering

(b or b). By the triangle inequality, the distandér, y) < c* dn‘fer_s from the target clustering hyn < en points, gach
d(z,¢t) + d(ci,y) < 2 X duig = 7. For part (i), the cluster inC* must have at lead® + 10/a)en + 2 points.
distance fromz to y's cluster center? is at leastsd.,.i;, Moreover, by Le_mma 3.1, the bad poif<onstitute at most

by Lemma 3.1 (a or a). Again by the triangle inequalit;%1 + 5/a)en points, and hence eadlX;| = [C \ B| >
d(z,y) > d(z, c;‘) —d(y, c;*) > Bdepit — depiy = 27. Since (1 + 5/a)en_—|— 2=0b+2. _

each edge it . is between points at distance at mesthe Now, givenw, we can construct the grapfi; with

pointsz, y cannot share any common neighbors. m 7 = 2dci (Which we can compute from the given value
of w), and apply Lemma 3.3 to find/aclusteringC’ where

Hence, the grapty.. for the above value of is fairly simple eachX; is contained within a distinct cluster. Note that this
to describe: eaclX; forms a clique, and the neighborhoodlusteringC’ differs from the optimal clustering* only in
N¢.(X;) of X; lies entirely in the bad buckeB with no the bad points which constitute a@M(e/a) fraction of the



total. Hence, it is at distano@(e/« + €) from the target. if the k largest components have size greater thathen

However, our goal is to getclose to the target, which we dowe never misclassify the good points lying in these largest

as follows. components. We might misclassify all the bad points (at
Call a pointx “red” if it satisfies condition (a) in Lemma mostb of these), and might fail to cluster at mdsbf the

3.1(i.e.wa(x) —w(x) < 5derir), “yellow” if itis notred but  points in the actuak;’s (i.e., those not lying in the largest

satisfies condition (b) in Lemma 3.1 (i.ex(x) > d...+), and &k components), but this nonetheless guarantees that each

“green” otherwise. So, the green points are those in the sdtssterC/ contains at leasfX;|—b > b+2 correctly clustered

X;, and we have partitioned the bad g&tinto red points green points (with respect &) and at mosb misclassified

and yellow points. LeC’ = {C1,...,C}.} and recall that points. Therefore, as shown in the proof of Theorem 3.1,

C’ agrees withC* on the green points, so without loss othe resulting clustering” will correctly cluster all non-red

generality we may assum&, C C!. We now construct points as irC* and so is at distance at m@st— ¢*) +¢* = ¢

a new clustering’”’ that agrees witlC* on both the green from Cr. ]

and yellow points. Specifically, for each pointand each ) _

clusterC’, compute the median distandg..(x, j) between 3.3 An Algorithm for the General Case The algorithm

2 and all points irCé; then insertz into the clustel”” for in the previous section requ_lred the minimum cluster size in

i = argmin;dyca(z, j). Since each non-red pointsatisfies the target to_ be Iarge (of siz@(en)). In this sgcnon, we

wo(z)—w(z) > 5dur, and all green pointgsatisfyw(g) < show.how this r_equwement can be removed using a different

deris, this means that any non-red pointmust satisfy the algorithm Fhat finds a.clust.en_ng that@(e/a)—close to the

following two conditions: (1) for a green poing in the (arget while the_algorlthm is just as s!mple, we needto be a

samecluster ase in C* we haved(z, g1) < w() + derit, bit more czggfful in the_ analysis. (Agam, we WI|| assume we

and (2) for a green poing, in a differentcluster than: in  KNOWw = ==, and discharge this assumption later.)

C* we haved(z, g2) > wa(x) — depir > w(x) + 4deris. : : :

Therefored(z, g1) < d(z, g»). Since each cluster i’ has Algorithm 1 k-median Algorithm: General Case

a strict majority of green points (even with pointemoved) Input: w,e <1,a > 0, k.

all of which are clustered as i6*, this means that for aStep 1: Construct ther-threshold graphG, with 7 =

non-red pointz, the median distance to points in its correct  2d..;; = = %2,

5 €
cluster with respect t6* is less than the median distance t6tep2: Forj =1 to k do:
points in any incorrect cluster. Thus; agrees wittC* on Pick the vertex); of highest degree it .
all non-red points. Finally, since there are at mest ¢*)n Removev; and its neighborhood fror&- and call this

red points on whictCy andC* agree by Lemma 3.1—and clusterC(v;).
C" andCr might disagree on all these points—this implieStep3: Output the & clusters C(vy),...,C(vg-1),S —
dist(C",Cr) < (e — €*) + ¢* = € as desired. n U=l C(v;).

We now extend the above argument to the case where
we are not given the value af. THEOREM3.3. (k-MEDIAN: GENERAL CASE) If the k-
median instance satisfies tlie+ «, €)-property and we are
THEOREM3.2. (THE “UNKNOWN w"” CASE) If the k- given the value ofv, the above algorithm produces a clus-
median instance satisfies tlie + «, ¢)-property and each tering which isO(e/«)-close to the target.
cluster inCp has size at least4 + 15/a)en + 2, then we

can efficiently find a clustering that ésclose toCy-. Proof:  Recall the notation from Section 3.1: the grah
satisfies propertie@),(ii) of Lemma 3.2. We show that the

Proof: If we are not given the value, we instead run the greedy method of Step 2 above correctly captures most of the
algorithm of Lemma 3.3 repeatedly for different valuesiof cliquesX, Xs, ..., Xy in G,—in particular, we show there
starting withw = 0 (so the graplG,, is empty) and at eachis a bijectiono : [k] — [k] such that)_, | X, \ C(v)| =
step increasing to the next value such thét, contains at O(b). Since theh bad points (i.e., those iB = S\ UF_, X;)
least one new edge (so we have at mgstlifferent guesses may potentially all be misclassified, this gives an addiion
to try). If some guess fow causes thé largest componentserror ofb.
of H to miss more thah = (2+10/«)en points, or if any of Let us think of each cliquel; as initially “unmarked”,
these components have sige), then we reject, and increasend then “marking” it the first time we choose a cluster
w. Otherwise, we defin€’ to be thek largest componentsC(v;) that intersects it. We now consider two cases. If the
in H (so up tob points may be unclustered) and continug” clusterC(v;) intersects somenmarkedclique X;, we
to the second phase of the algorithm for the knawease will assigno(j) = 4. (Note that it is not possible faf'(v;)
constructing clustering”. to intersect two cliquex’; and.X ;,;, since by Lemma 3 (&)
Note that we still might have too small a guess #ar these cliques have no common neighbors’(f;) misses
but this just means that the resulting grajghsand # can r; points from X;, then since the vertex; defining this
only have fewer edges than the corresponding graphs éarster had maximum degree aid is a clique, we must
the correctw. Hence, some of th&;'s might not have have picked at least elements fromB in C(v;). Therefore
fully formed into connected components . However, the total sum of these; can be at most = | B|, and hence



> 1Xo) \ C(v;)| < b, where the sum is ovef's that with:
correspond to the first case. (@) less tharGen pointsz € S havew, (z) < (29ET)1/2,

The other case is If’(j) intersects a previously marked (b’) at most 50en/« points z € S have i}e&) >
clique X;. In this case we assign(j) to any arbitrary clique £ (22L)1/2,
X, that is not marked by the end of the process. Note that . .
the total number of points in suafi(j)'s must be at most .The proof is similar to the proof for Lemma 3.1, and is
the number of points remaining in the marked cliques (i.é’mltted here. Note that the threshold fog(z) in part (a)

S 1), and possibly the bad points (at mdsbf them) above is agaii times the threshold faw(z) in part (b), and
gl :

Since the cliques(;; were unmarked at the end, their sizegi.milarly for (&) and (b’). We can thus define the critical

: N tanced.,.;; as the value in (b) or (b") respectively, and
must be bounded by the size of th&j)'s, and hence by ISt ¢ . . .
IB| + 3, r; < 2b. This shows thatht}fﬁe)sum over sugh, define theb = (1 + 25/a)en points that satisfy either (a)

X o \ C(v;)] < 2b. Therefore, overall, the total error®' (0) abov_e (in the Igrge—c,luster ,Cas.e) or the= (6 +
g\:/]el all%)’(zj) (Wjit)r|1 r_espect to thet-median optimal is the p0/a)en points satisfying (@) or (1) (in the general case)

two sums above, plus potentially the bad points, which givag bad The rest of the proof for achieving afi(c/c)-

us at mostlb points. Adding in the extran to account for Close clustering fok-median now goes through unchanged

. . : n the k-means case as well. Note thameans also has a
the distance between tllemedian optimum and the targe o
) ) X constant-factor approximation, so the results for the cdise
clustering yields the claimetb + en = O(e/a)n result for

: unknownw go through similarly, with different constants.
the case that we are given the value.of
Unfortunately, the argument for exaetcloseness breaks
down because property (a) in Lemma 4.1 is weaker than
(property (a) in Lemma 3.1. We therefore have the following
orem.

Not Knowing the Value of w. If we do not know the value
of w (and hence ofr), unfortunately the method used i
the proof of Theorem 3.2 may not work, because we mi

split some large cluster causing substantial error, and Rtz 5rem4.1. If the instance satisfies thél + a, e)-

be able to recognize our mistake (because we only Mig§ery for thek-means objective, we can efficiently pro-
small clusters which do not result in very many points being,co 4 clustering which i€ (¢/a)-close to the target.

left over). However, we can instead run an off-the-shelf
k-median approximation algorithm to produce an estimase The Min-sum Clustering Problem
for w that is off by only a constant factor, and use th
estimate instead. In particular, if we havg-@pproximation
w (i.e., sayw < w < pw, an analog of Lemma 3.2
holds for the threshold grapi. with the altered threshold J
= %% with the number of bad points now bounded o(C) = Z Z d(x,y).

by ¥ = (6 + 108/a)e. The rest of the proof follows i=1z,y€C;

unchanged with alis replaced by's, to give us a final boundIn this section, we show that if our data satisfies(thea, €)-

of O(B¢/a) on the number of misclassified points. property for the min-sum objective, a-nd if all the glusteTs i.
4 The k-Means Problem the target are “large”, then we can find a clustering that is
O(e)-close to the targefr. The general idea is reduce to
The algorithm in Section 3.3 for thé-median problem g problem known as “balancédmedian” (which is within
can be easily altered to work for tiemeans problem asa factor of 2 of the min-sum objective) and extend the
well. Indeed, if we can prove the existence of a structuéchniques from the previous sections to this problem.

like that promised by Lemma 3.1 and Lemma 3.2 (albgit . . .
with different parameters), the same algorithm and pr(;%Tl Properties of Min-Sum Clustering

. : S . The balancedk-medianclustering objective assigns to
would give a good clustering for any objective functmr&ach cluster’; a “median’c; € X and seeks to minimize

Given some optimal solution fok-means definev(z) = U(C) — Zk—l ICiI'S, e d(x,c;). We begin with a useful

min; d(z, ¢;) to be the dist.anc_e af 10 its center, WhiCh. is lemma, which shows that the two objective functiobs
the square root ofr’s contribution to thek-means objective (for min-sum clustering) and (for balancedk-median) are

i . — 2 i —
functlon, henceOPT = > w(x)?. Again, letwy(z) = related to within a factor of.
min;; d(z, ¢;) be the distance to the second-closest centet,
and lete” = dist(Cr,C”). LEMMA 5.1. ([BCRO1]) Let ¥ be the balanced-median

i . - objective and letd be the min-sum objective. For arty
LEmMMA 4.1. If the k-means instancéM, S) satisfies the cl[usteringC of S we have:l(€)/2 < &(C) < W(C).

(1 + «a, €)-property and each cluster in the target has size &

Recall that the min-surh-clustering problem asks to find a
k-clusteringC = {C4,Cs,...,C}} to minimize the objec-
tive function ,

least2en, then _ _ LEMMA 5.2. If the instance(M, S) satisfies the(2(1 +
(a) less than(e — ¢*)n pointsz € S onwhichCr andC™ ) )-property for the min-sum objective, théivt, 5) sat-
agree haveus(z) < (“27+)"/?, and isfies the(1 + o, ¢)-property for balanced:-median.
(b) at most25en/a points z € S have w(z) >
1(20BT)1/2, Henceforth, we will work with the balancedrmedian

For the case of general cluster sizes we replace (a) and @#)jective function. Let the balancektmedian optimal



clustering beC* = {C7,...,Cy} with objective function where we use thaC| = min(|C} |, [C}|). Part (iii) follows
value OPT = T(C*). For each clusteC?, let ¢ be the from Lemma 5.3 and the trivial union bound. |
median point in the cluster. Far € C}, definew(z) =
|C¥ld(z,cf) and letw = avg,w(z) = O_ST, Define While Lemma 5.4 is similar in spiritto Lemma 3.2, there
wy(x) = minjz; d(z,c)|Cr|. Letdo- = Y, d(z,¢;), Isacrucial difference: the distance between the good point
and henc®PT = >, |'(j;|dc:_ in X; and X is no longer lower bounded by some absolute
' o value 7, but rather the bound depends on the sizesKpf
LEMMA 5.3. If the balancedk-median instancg.M, S) and.x,. However, a redeeming feature is that the separation
satisfies the(1 + a, €)-property with respect to the targetyenyeen them is large compared to the diameters of ioth
clustering, then as long as the minimum cluster size is &id x;: we will use this feature crucially in our algorithm.

leastmax(6,6/a) - en we have: , : .
(a) at moste-fraction of pointsr € S havews(z) < o 5.2 Algorithm for Min-Sum/Balanced-k-Median Clus-
" tering

(b) at most0¢e/a-fraction ofz € S havew(z) > &~ . o
For the algorithm below, defineritical thresholds

60€ "
Proof: To prove Property (a), assume to the contrary. Theg, 1, 72,... as: 7o = 0 andr; is theith smallest distinct
one could move &ce fraction of points from their clusters indistanced(x, y) for 2,y € S. Thus,G.,,G,,,... are the
the optimal clustering* to the clusters that define their, only distinct threshold graphs possible.
value. This may increase the sizes of the clusters; let the ne
clustering beC’ = (C1, ..., C},), where|C! \ C¥| = 6;n, so THEOREMS5.1. If the balancedk-median instance satisfies
that", 4, = 2e. If a pointz moves to cluste€’ from some the(1 + o, ¢)-property and we are given the valuewfthen
other cluster, then it now contributes (z) - }gl‘ Summing SO long as the smalle_st correct cluster has size greater t_han
over all the points, we get that the castC’) is at most (6 + 120/«)en, Algorithm 2 produces a cIl_Jsterlng that is
' O(e/a)-close to the target. If we are not given then we
/ k X ow |CIl+6in can use Algorithm 2 as a subroutine to produce a clustering
V() = Xia ((|Ci |+ din)de: +dim - 52 - Som ) that isO(e/a)-close to the target.

However,d;n < . 6;n < 2en < wwﬂ (since each

A Algorithm 2 Bal d:-median Algorith
cluster size is at leashax(6, 6/«) - en). Hence, we have gorhm 2 balancedv-median Agorhim

Input: (M, S), w,e <1,a>0,kb:=(2+60/a)en.
vy < Z§:1 (1+2) |G ldes + 4 Zle w Let the initial threshold- = 7.
< (1+«a)OPT. Step 1: If k = 0or S = (), stop.

. . . . Step 2: Construct ther-threshold graph.. on the current
This would give a clustering with cost at mast+ a)OPT setS of points.

that is not2e¢-close to the optimal clustering*, which is i . .
. . Step 3: Create a new grapli/ by connecting two points
impossible by Fact 2.1(b). Property (b) above follows from by in S an edge if they share at leasmeighbors in

Markov’s inequality. | COmmon in(:
-

We call pointz goodif it both w(z) < 22 andws(z) > Step 4: Let 10 be largest connected componentfih If
aw elsez is calledbad; let X; be thegood points in the |C| > 557, thenoutputC as a cluster, sét — k —1,

optimal clusteiC;, and letB = S \ UX; be the bad points. S «— S\ C, and go to Step 1Elseincreaser to the
next critical threshold and go to Step 1.

LEMMA 5.4. If the balancedk-median instance(M, S)
satisfies thé1l + «, €)-property, then as long as the minimum

cluster size is at leashax(6, 6/c) - en we have: Proof: Since each cluster in the target clustering has more

(i) Forall z,y inthe sameX;, we havel(z,y) < &1 oA than a(6 + 120/ «)e fraction of the points by the assumption,
i ) » al w ___ the optimal balanceds-median clusteringC* must differ
(”) Forz € X, andy € X”é_“ dlz,y) > 5 min([CTLICTD  from the target clustering by fewer than points, and hence
(iii) The number of bad points3| = |5\ UX;| is at mOSt gach cluster irg* must have at leagt + 120/a)en points.
b:= (2 +60/a)en. Moreover, by Lemma 5.3, the bad poini constitute at

Proof: For part (i), sincer,y € X; C C; are both good, most(2 + 60/« )e fraction of points, and hence eagk;| =

they are at distance less thgnt -4 to their cluster center |CE\ Bl > (3+60/a)en > (24 60/a)en +2 =b+2.

(Lemma 5.3(a)), and hence at distance at n%slgt‘c—w‘ to Ass-ume we knoww. Consider _What happens_ in the exe-
each other. For part (ii) assume without loss of gleneraI(%‘tlon of the algorithm: as we increase the sizes of the
that |Cf| > |C}]; using both parts of Lemma 5.3 an -components increase (since we are adding more edgesin
the fact that both € Ci.y @ Cj are good. we have L0 A o the conltion n Stop 4 gets satihed). i
Ay c;) < Gy ¢ el andd(z, ¢j) > wa(x) > § ¢y SO case ?Ne oijt.r;ut it and then go baf:)k t(g)] raising ’

w We claim that every time we output a cluster in Step 4,
min(|CTLICTN)  this cluster completely contains son and includes no

*

[

(5.1) d(x,y) > aw - (§ — 55) %|qu}\ > el



points in anyX;-,. More specifically, we show that asdrom it. There are three possible sources of mistakes: (a) we
we increaser, the condition in Step! will be satisfied may output a cluster prematurely, it may contain some but
after all the good points in the some cluster have been fuliypt all points from.X;, (b) we may output a cluster which
connected, buteforeany edges appear between good pointsntains points from one or more previously marked séts

in different clusters. It suffices to show that the first clurst (but no unmarkedX;), or (c) we may output a cluster with
output by the algorithm contains somg entirely; the claim points from an unmarked’, and one or more previously
for the subsequent output clusters is the same. Assume thatkedX;. In case (a), if we end up with all b@@(e/«)-

ICY| > |C5] > ... > |Cf|, and letn; = |C|. Define fraction of the points, we did not miss too many points from
d; = B%%ICI—I and recall thatnin, ,¢x, d(z,y) < d;. the X;’s, so our error isO(e/«). In case (b), we use up

We first claim that as long as < 3d;, no two t00 many clusters and would end with missing sonig
points be|onging to differeni;’s can lie in the samée?- Completely, which would result in more thanunclustered

component. Since the distance between points in_&ny Points, and we would try a larger guess fer The dangerous
and X; is strictly greater than%l > 9, caseis case (c), but we claim case (c) in fact cannot happen.

— = >
¢ min(|C7LIC7D) Indeed, the value of at which we would form connected

forany r < 3d;, everyz € X; andy € X, share no N taini ints f boff, and X i
common neighbors; hence, by an argument identical to tfgfnPonents contaning points from Doy and A; 1S a

in Lemma 3.3 andy belong to different components &f. consktjagt tllmes Igrgﬁerchan the vaI;ug I\jt which aII_ole-
Next, we claim that for values of < min{d;,3d}, would be in a singleH-component. Moreover, since our

the H/-component containing’; cannot be output by Step 49uess fornw is too small, thisi/-component would certainly

Indeed, since' < 3., no X, and.X; belong to the sam&- §atisfy the condition of Step 4 and be output as a cluster
component by the above claim, and henceHnyompanent instead. u
containing pomt_s fronXi has size at mogL; £+,|B| <27 g Conclusions and Open Questions
however, the minimum size boun# 22 > 32 for values o o o )
of 7 < d;, and hence the condition of Step 4 is not satisfieff.concrete open question is designing an efficient algorithm
Note that whenr > d;, all the points ofX; lie in the same for the min-sum property which works in the presence of
H-component. small target clusters. Another natural direction for irtiges-

Finally, we show that the condition in Step 4 becoméi®n is designing faster algorithms for all the propertiesa
true for someH-component fully containing som&,; for lyzed in this paper. The case of large clusters can be handled
some value- = [dy, 3d,]. (By the argument in the previoug?y using standard sampling ideas [MOPO1, CS04, BDO7],
paragraphs > d;, and hence the output component wilfowever these techniques do not seem to immediately apply
fully contain X;.) For the sake of contradiction, suppost the case where the target clusters are small.
not. But note at time- = 3d;, at least thel/-component More broadly, it would be interesting to further explore
containing X, has size at leagC;| — |B| > n;/2 and a}nd a_nalyze other commonly used clustering objective func-
will satisfy the condition (which at time = 3d; requires a tions in our framework.
cluster ofsiz%l—o%“_% = n1/2), giving the contradiction.

To recap, by time3d; none (_)1_‘ the cluster_s r_lave mergegheferences
together, and the Step 4 condition was satisfied for at least
the component containing’; (and hence for the largest
component) at some time prior to that. Moreover, this largddGK "04] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mu-
component must fully contain some st and no points in nagala,_c_':md V. I?andit. Local search heuristics for k-median
X4 Finally, we can iterate the same argument on the set and facility location problemsSIAM J. Comput.33(3):544—

562, 2004.
5\ X; to complete the proof for the case when we know [AKOS5] S. Arora and R. Kannan. Learning mixtures of arbigrar

. gaussians. IfProc. 37th STOC2005.
The case when we do not knoww. In this case, we do amos] D. Achlioptas and F. McSherry. On spectral learnirfg o
not want to use a-approximation algorithm for balance mixtures of distributions. 'COLT, 2005.
k-median to obtain a clustering that @3(3¢/a)-close to [ARR99] S. Arora, P. Raghavan, and S. Rao. Approximation
the target, because the balandediedian (and minsum schemes for Euclideak-medians and related problems. In
clustering) problems only have a logarithmic approximatio = STOC pages 106-113. 1999.
for arbitrary k, and hence our error would blow up b)[AVOG] D. Arthur and S. Vassilvitskii. Worst-case and smioed
a logarithmic factor. Instead, we use the idea of trying analyses of the icp algorithm, with an application to the k-
increasing values af:: we then stop the first time when we ___means method. IRroc. 47th FOC52006. o
outputk clusters that cover at least-b = (1—O(e/a))n of [BBV08] M.-F. Balcan, A. Blum, and S. Vempala. A discriman-

L . tive framework for clustering via similarity functions. In
the points inS. Clearly, if we reached the correct valuewf Proc. 40th STOC2008.

we would succeed in covering all the gor{)dr b points_using |[BCROl] Y. Bartal, M. Charikar, and D. Raz. Approximatingrmi
our k clusters; we now argue that we will never mistakenly  gym k-clustering in metric spaces. Poc. 33rd STOC2001.
output a high-error clustering. [BDO7] S. Ben-David. A framework for statistical clustegin

The argument is as follows. Let us say mark X; the with constant time approximation farmedian andi-means
first time we output a cluster containing at least one point clustering.Mach. Learn, 66(2-3):243 — 257, 2007.




[CG99] M. Charikar and S. Guha. Improved combinatorial algeach consisting oﬁc_‘—’{ points, all at distance 1. The distance
rithms for the facility location and k-median problems. Ibetween points in any two distinct clustérg C; fori, j > 2
Proc. 4th FOC$1999. is D, whereD > 1 will be defined below. Points if; are

[CGTS99] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoyt distance greater thann from any of the other clusters.

A constant-factor approximation algorithm for the k-media In this construction, the target clusterifggthe optimal
problem. INSTOG 1999. k-median solution, and has a tofamedian cost oRan —

[CS04] A. Czumaj and C. Sohler. Sublinear-time approxiorati . . .
for clustering via random samples. Rroc. 31st ICALR (k —1). We now defineD so that there (just barely) exists

pages 396-407, 2004 a co _approximatio_n that splits clustet,. I_n partic_ular,
[Das99] S. Dasgupta. Leaming mixtures of gaussians. ¢Qnsider the solution that mergés andC; into a single
Proc. 40th FOCS1999. cluster (Cy, . .., Cy will each be their own cluster) and uses
[DGL96] L. Devroye, L. Gyorfi, and G. LugosiA Probabilistic 2 clusters to evenly spliC;. This clearly has error at
Theory of Pattern Recognitiorspringer-Verlag, 1996. least1/2 — «, and furthermore this solution has a cost of
[DHSO01] R. O. Duda, P. E. Hart, and D. G. StorkPattern %D + (2an — % — (k—2)), and we definé to set this
Classification Wiley, 2001. equal tocy(2an — (k — 1)) = c;OPT.

[dIVKKRO3] W. Fernandez de la Vega, Marek Karpinski, Claire
Kenyon, and Yuval Rabani. Approximation schemes f
clustering problems. IfProc. 35th STOC2003.

[GK99] S. Guha and S. Khuller. Greedy strikes back:
proved algorithms for facility locationJournal of Algorithms

Any ¢; approximation, however, must keclose to the

?Ewget fork > 14 2a/e. In particular, by definition oD,

menycl-approximation cannot merge twg;, C; into a single
cluster: it must have one median inside ed¢h and can

31(1):228-248, 1999. have error on fewer thag®2 points. This is less tham by
[Ind99] P. Indyk. Sublinear time algorithms for metric spacdéfinition ofk.
problems. InProc. 31st STOC1999. The same construction, withh defined appropriately,

[IMS02] K. Jain, M. Mahdian, and A. Saberi. A new greedgpplies tok-means and min-sum objectives as well. =

approach for facility location problems. Froc. 34th STOC ) )
2002. THEOREMA.2. For k-median,k-means, and min-sum ob-

[JVO1] K. Jain and V. V. Vazirani. Approximation algorithmsjectives, the problem of finding @approximation can be
for mgtric facility location and k-me.dian problgms usingeduced to the problem of findingaapproximation under
the primal-dual schema and lagrangian relaxatiaPACM  the (¢, ¢) assumption. Therefore, the problem of finding a

48(2):274 — 296, 2001. approximation under théc, €) assumption is as hard as the

[KSS04] A. Kumar, Y. Sabharwal, and S. Sen. A simple "ne?froblem of finding a-approximation in general.
time (1 + ¢)-approximation algorithm fok-means clustering

in any dimensions. IrProc. 45th FOCSpages 454-462, proof:  Given a metricG' with n nodes and a valug (a
Washington, DC, USA'I 2004. J o Th Icﬁ;eneric instance of the clustering problem) we construct a
[KSVO5] R. Kannan, H. Salmasian, and S. Vempala. The speclia, instance satisfying the, ¢) assumption. In particular

gqoeégod for general mixture models. - Froc. 18th COLT we create a new grapH’ by adding an extra/e nodes that

[LIo82] S.P. Lloyd. Least squares quantization in PCNEEE are all very f_ar away from each oth/er and from the nqdes In
Trans. Inform. Theory28(2):129-137, 1982. G (call this dlstanf:é)). We now Ietk.: = k+n/e and define
[Mei06] M. Meila. The uniqueness of a good clustering for kthe target clustering to be the optimatedian k-means,
means. IrProc. 23rd ICML, 2006. or min-sum) solution ort7, together with each of the points
[MOPO1] N. Mishra, D. Oblinger, and L. Pitt. Sublinear timeén G’ \ G in its own singleton cluster.
approximate clustering. IBODA pages 439-447, 2001. We first claim thatG’ satisfies théc, ) property. This
[ORSS06] R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swanig.because for sufficiently largle, any solution that does not
The effectiveness of lloyd-type methods for the k-meanpropt each of the new nodes into its own singleton cluster will
lem. InProc. 47th FOC52006. L incur too high a cost. So aapproximation can only differ
[Sch00] L.J. Schulman. Clustering for edge-cost minimaratIn from the target or (which has less than anfraction of
Proc. STOCpages 547-555, 2000. , the nodes). Furthermore,@approximation inG’ yields a
[VWO04] S. Vempala and G. Wang. A spectral algorithm for . . .
learning mixture modelsJCSS 68(2):841-860, 2004. c-approximation inG because the singleton clusters do not
contribute to the overall cost. [ |
A Appendix

THEOREMA.1. Foranyl < ¢; < ¢y, anye,a > 0, there The following shows that unlike thel.01, €)-property,

X ; . . obtaining anO(e)-close clustering is NP-hard under the
exists a family of metric space&s and target clusterings (1, €)-propert
that satisfy the(cq, €) property for thek-median objective > €)-Property.
(likewise,k-means and min-sum) and yet do not satisfy evEAREOREMA.3. For any contant’, for anye < 1/(ec’), it
the(ce, 1/2 — ) property for that objective. is NP-hard to find a clustering of error at mos'e for the

] ] o . k-median andc-means problem under the, ¢)-property.
Proof: We focus first on thé-median objective. Consider

a set ofn points such that the target clustering consists Bfoof Sketch: We start from the hard instances @&f
one clusteC; with n(1 — 2«) points all at the same locationmedian arising from max-coverage (using edges of cdst
(d(u,v) = 0forall u,v,e Cy) andk—1 clusters, ..., C,, and3): the reduction implies that it is hard to distinguish



cases when there aftemedians that cover all the points at We now have that for all reassignmertts j) € R, z

distancel (the “yes” case), from instances where any set isfin a singleton or doubleton cluster. LBt;, 4. be the set

k medians covers at least(&/e — ¢)-fraction of the points of reassignmentéz, j) € R such thatr is in a singleton

at distance3 (the “no” case) for any constaat > 0. Let cluster. Viewing these reassignments as directed edges,

us add infinitesimal noise to make a unique optimal solutidty;, 4. forms a graph on the cluste€s; where each node

and call this the target; the uniqueness of the optimal mmluthas outdegreg 1. Therefore, each component of this graph

ensures that we satisfy tlig, ¢) assumption. must be an arborescence with possibly one additional edge
Now, in the “yes” case, any clustering with errdie  from the root. We now proceed as follows. Whil;,, ;¢

will have cost at most[(1 — ¢’e) + 3c’¢]. This is less than contains a source (a node of outdegree 1 and indegree 0),

the cost of the optimal solution in the “no” case (which ishoose an edggr, j) such that (a) is a source and (b) for

still at leastn[(1 — 1/e + &) + 3(1/e — §)]) as long as all other edgesy, j), v is either a source or part of a cycle.

c'e <1/e—4, and would allow us to distingush the “yes” andiVe then consider two cases:

“no” instances. This completes the proof for thenedian

case, and the proof can be altered slightly to work for thel' Nodej is not a sink inRs;,ge: that is, there exists an

edge(z,j.) € Rsingle for z € Cj. In this case, we

k- bl Il. [ |

means problem as we add toR’ the edg€z, j) and all other edgef, j) such
LEMMA A.1. Let C = {Ci,...,Cy} be a k-clustering thaty is a source, and we remove from (and from
in which each cluster is nonempty, and l&¢ = Rsingic) the edgegz, j.), («,j), and all edgegy, j)
{(z1,71), (2, j2), - .-, (x4, j:)} be a set of reassignments (including the at most one eddg, j) such that is part

of a cycle). We then add tb the set{z} U {z} U {y :
(y,7) was just added t&®'} and remove these points
from S. Note that the number of edges removed from
R is at most the number of edges addedrtoplus 2,
giving a factor of 3 in the worst case. Note also that we

Before proving the lemma, note that we cannot necessarily Maintain the invariant that no edges/iyngi. point to
just chooseR’ = R because, for instance, it could be ~ €mpty clusters, since we deleted all edges @ifpand
that R moves all points inC; to C, and all points in the pointse andy added tal. were sources iRy e
Cs to Cy: in this case, performing all reassignments in
R produces the exact same clustering as we started with’
(just with different indices). Instead, we need to ensure
that each reassignment iR’ has an associated certificate
ensuring that if implemented, it will increase the resgtin
distance fronC. Note also that i consists of 3 singleton
clusters: ¢, = {z},Cs = {y},C5 = {z}, and if R =
{(z,2), (y,3), (z,1)}, then any subset of reassignment&in

will produce a clustering that differs in at most one element
from C; thus, the factor of 3 is tight.

of points to clusters (assume that ¢ C;, for all 7). Then
there must exist a s’ C R of size at least/3 such that
the clusteringC’ produced by reassigning points iR has
distance at least | R'| fromC.

Otherwise, nodej is a sink in Rgingie.  In this
case, we add toR’ the edge(x,j) along with
all other edges(y,j) € Rsingie (removing those
edges fromR and Rginge). We choose an arbi-
trary point z € C; and add toL the set{z} U
{z}U{y : (y,j) was just added t&'}, removing those
points fromS. In addition, we remove fron® all (at
most two) edges exiting fror@’; (we are forced to re-
move any edge exiting from sincez was added td.,
and there might be up to one more edg€’jfis a dou-
bleton). Again, the number of edges removed frBris
at most the number of edges addedoplus 2, giving
a factor of 3 in the worst case.

Proof: The proofis based on the following lower-bounding
technique. Given two clusteringsandC’, suppose we can
produce a list, of disjoint subsets, Ss, .. ., such that for

eachi, all points inS; are in thesameclusterin one o€ orC’ - At this point, if Ry is nNonempty, its induced graph must
and they are all inlifferentclusters in the other. Thehand pe a collection of disjoint cycles. For each such cycle, we
C’ must have distance at leasty~,(|S;| — 1). In particular, choose every other edge (half the edges in an even-length
any bijections on the indices can have agreement betwegyicle, at least /3 of the edges in an odd cycle), and for each

C andC’ on at most one point from eac). _ edge(z, j) selected, we ad@lr, j) to R/, remove(z, j) and
We construct?’ and witness-listL as follows. While (z,j.) for z € C; from R and Ry g, and add the pair

there exists a reassignmefat, j) € R such thatzr is in a {z,2}to L.
clusterC'(z) with at least 3 points: choose an arbitrary point Finally, R.ing. is empty and we finish off any remain-
- / . . .
y € C(x) and add{z,y} to L, add(z, j) to R', and remove jng doubleton clusters using the same procedure as in the
(z,7) from R as well as the reassignment involvindf one  first part of the argument. Namely, while there exists a re-
exists. In addition, remove andy from the point setS. assignmentz, j) € R, choose an arbitrary point € C(z)
This process guarantees that all pairs addedaoe disjoint, and add{z, y} to L, add(z, j) to k', and removéz, ;) from
and we remove at most twice as many reassignments 0Ny, as well as any reassignment involvingf one exists.
as we add taR’. (So, if R becomes empty, we will have By construction, the sek’ has size at leastz|/3, and

achieved our desired result wiflk’| = ¢/2). Moreover, the setl, ensures that each reassignmengirincreases the
because we only perform this stepdf(x)| > 3, this process resulting distance frord as desired. m

does not produce any empty clusters.



