
Online Geometric Optimization in the Bandit

Setting Against an Adaptive Adversary

H. Brendan McMahan and Avrim Blum

Carnegie Mellon University, Pittsburgh, PA, 15213,
{mcmahan,avrim}@cs.cmu.edu

Abstract. We give an algorithm for the bandit version of a very general
online optimization problem considered by Kalai and Vempala [1], for the
case of an adaptive adversary. In this problem we are given a bounded
set S ⊆ Rn of feasible points. At each time step t, the online algorithm
must select a point xt ∈ S while simultaneously an adversary selects a
cost vector ct ∈ Rn. The algorithm then incurs cost ct · xt. Kalai and
Vempala show that even if S is exponentially large (or infinite), so long as
we have an efficient algorithm for the offline problem (given c ∈ Rn, find
x ∈ S to minimize c ·x) and so long as the cost vectors are bounded, one
can efficiently solve the online problem of performing nearly as well as
the best fixed x ∈ S in hindsight. The Kalai-Vempala algorithm assumes
that the cost vectors ct are given to the algorithm after each time step.
In the “bandit” version of the problem, the algorithm only observes its
cost, ct ·xt. Awerbuch and Kleinberg [2] give an algorithm for the bandit
version for the case of an oblivious adversary, and an algorithm that
works against an adaptive adversary for the special case of the shortest
path problem. They leave open the problem of handling an adaptive
adversary in the general case. In this paper, we solve this open problem,
giving a simple online algorithm for the bandit problem in the general
case in the presence of an adaptive adversary. Ignoring a (polynomial)
dependence on n, we achieve a regret bound of O(T 3/4

p

ln(T)).

1 Introduction

Kalai and Vempala [1] give an elegant, efficient algorithm for a broad class of
online optimization problems. In their setting, we have an arbitrary (bounded)
set S ⊆ Rn of feasible points. At each time step t, an online algorithm A must
select a point xt ∈ S and simultaneously an adversary selects a cost vector
ct ∈ Rn (throughout the paper we use superscripts to index iterations). The
algorithm then observes ct and incurs cost ct ·xt. Kalai and Vempala show that
so long as we have an efficient algorithm for the offline problem (given c ∈ Rn

find x ∈ S to minimize c ·x) and so long as the cost vectors are bounded, we can
efficiently solve the online problem of performing nearly as well as the best fixed
x ∈ S in hindsight. This generalizes the classic “expert advice” problem, because
we do not require the set S to be represented explicitly: we just need an efficient
oracle for selecting the best x ∈ S in hindsight. Further, it decouples the number

of experts from the underlying dimensionality n of the decision set, under the
assumption the cost of a decision is a linear function of n features of the decision.
The standard experts setting can be recovered by letting S = {e1, . . . , en}, the
columns of the n × n identity matrix.

A problem that fits naturally into this framework is an online shortest path
problem where we repeatedly travel between two points a and b in some graph
whose edge costs change each day (say, due to traffic). In this case, we can
view the set of paths as a set S of points in a space of dimension equal to the
number of edges in the graph, and ct is simply the vector of edge costs on day t.
Even though the number of paths in a graph can be exponential in the number
of edges (i.e., the set S is of exponential size), since we can solve the shortest
path problem for any given set of edge lengths, we can apply the Kalai-Vempala
algorithm. (Note that a different algorithm for the special case of the online
shortest path problem is given by Takimoto and Warmuth [3].)

A natural generalization of the above problem, considered by Awerbuch and
Kleinberg [2], is to imagine that rather than being given the entire cost vector ct,
the algorithm is simply told the cost incurred ct ·xt. For example, in the case of
shortest paths, rather than being told the lengths of all edges at time t, this would
correspond to just being told the total time taken to reach the destination. Thus,
this is the “bandit version” of the Kalai-Vempala setting. Awerbuch and Klein-
berg present two results: an algorithm for the general problem in the presence
of an oblivious adversary, and an algorithm for the special case of the shortest
path problem that works in the presence of an adaptive adversary. The difference
between the two adversaries is that an oblivious adversary must commit to the
entire sequence of cost vectors in advance, whereas an adaptive adversary may
determine the next cost vector based on the online algorithm’s play (and hence,
the information the algorithm received) in the previous time steps. Thus, an
adaptive adversary is in essence playing a repeated game. They leave open the
question of achieving good regret guarantees for an adaptive adversary in the
general setting.

In this paper we solve the open question of [2], giving an algorithm for the
general bandit setting in the presence of an adaptive adversary. Moreover, our
method is significantly simpler than the special-purpose algorithm of Awerbuch
and Kleinberg for shortest paths. Our bounds are somewhat worse: we achieve
regret bounds of O(T 3/4

√
lnT) compared to the O(T 2/3) bounds of [2]. We be-

lieve improvement in this direction may be possible, and present some discussion
of this issue at the end of the paper.

The basic idea of our approach is as follows. We begin by noticing that the
only history information used by the Kalai-Vempala algorithm in determining
its action at time t is the sum c1:t−1 =

∑t−1

τ=1
cτ of all cost vectors received so far

(we use this abbreviated notation for sums over iteration indexes throughout the
paper). Furthermore, the way this is used in the algorithm is by adding random
noise µ to this vector, and then calling the offline oracle to find the xt ∈ S
that minimizes (c1:t−1 + µ) · xt. So, if we can design a bandit algorithm that
produces an estimate ĉ1:t−1 of c1:t−1, and show that with high probability even

an adaptive adversary will not cause ĉ1:t−1 to differ too substantially from c1:t−1,
we can then argue that the distribution ĉ1:t−1 + µ is close enough to c1:t−1 + µ

for the Kalai-Vempala analysis to apply. In fact, to make our analysis a bit more
general, so that we could potentially use other algorithms as subroutines, we will
argue a little differently. Let OPT(c) = minx∈S(c · x). We will show that with
high probability, OPT(ĉ1:T) is close to OPT(c1:T) and ĉ1:T satisfies conditions
needed for the subroutine to achieve low regret on ĉ1:T . This means that our
subroutine, which believes it has seen ĉ1:T , will achieve performance on ĉ1:T

close to OPT(c1:T). We then finish off by arguing that our performance on c1:T

is close to its performance on ĉ1:T .
The behavior of the bandit algorithm will in fact be fairly simple. We begin

by choosing a basis B of (at most) n points in S to use for sampling (we address
the issue of how B is chosen when we describe our algorithm in detail). Then,
at each time step t, with probability γ we explore by playing a random basis
element, and otherwise (with probability 1− γ) we exploit by playing according
to the Kalai-Vempala algorithm. For each basis element bj , we use our cost
incurred while exploring with that basis element, scaled by n/γ, as an estimate
of c1:t−1 · bj . Using martingale tail inequalities, we argue that even an adaptive
adversary cannot make our estimate differ too wildly from the true value of
c1:t−1 · bj , and use this to show that after matrix inversion, our estimate ĉ1:t−1

is close to its correct value with high probability.

2 Problem Formalization

We can now fully formalize the problem. First, however, we establish a few nota-
tional conventions. As mentioned previously, we use superscripts to index itera-
tions (or rounds) of our algorithm, and use the abbreviated summation notation
c1:t when summing variables over iterations. Vectors quantities are indicated in
bold, and subscripts index into vectors or sets. Hats (such as ĉt) denote esti-
mates of the corresponding actual quantities. The variables and constants used
in the paper are summarized in Table (1).

As mentioned above, we consider the setting of [1] in which we have an
arbitrary (bounded) set S ⊆ Rn of feasible points. At each time step t, the
online algorithm A must select a point xt ∈ S and simultaneously an adversary
selects a cost vector ct ∈ Rn. The algorithm then incurs cost ct · xt. Unlike [1],
however, rather than being told ct, the algorithm simply learns its cost ct · xt.

For simplicity, we assume a fixed adaptive adversary V and time horizon T
for the duration of this paper. Since our choice of algorithm parameters depends
on T , we assume1 T is known to the algorithm. We refer to the sequence of
decisions made by the algorithm so far as a decision history, which can be written
ht = [x1, . . . ,xt]. Let H∗ be the set of all possible decision histories of length 0
through T − 1. Without loss of generality (e.g., see [5]), we assume our adaptive
adversary is deterministic, as specified by a function V : H∗ → Rn, a mapping

1 One can remove this requirement by guessing T , and doubling the guess each time
we play longer than expected (see, for example, Theorem 6.4 from [4]).

from decision histories to cost vectors. Thus, V(ht−1) = ct is the cost vector for
timestep t.

We can view our online decision problem as a game, where on each iteration
t the adversary V selects a new cost vector ct based on ht−1, and the online
algorithm A selects a decision x ∈ S based on its past plays and observations, and
possibly additional hidden state or randomness. Then, A pays ct ·xt and observes
this cost. For our analysis, we assume a L1 bound on S, namely ‖x‖1 ≤ D/2 for
all x ∈ S, so ‖x − y‖1 ≤ D for all x,y ∈ S. We also assume that |c · x| ≤ M
for all x ∈ S and all c played by V . We also assume S is full rank, if it is not we
simply project to a lower-dimensional representation. Some of these assumptions
can be lifted or modified, but this set of assumptions simplifies the analysis.

For a fixed decision history hT and cost history kT = (c1, . . . , cT), we de-

fine loss(hT , kT) =
∑T

t=1
(ct · xt). For a randomized algorithm A and adver-

sary V , we define the random variable loss(A,V) to be loss(hT , kT), where
hT is drawn from the distribution over histories defined by A and V , and
kT = (V(h0), . . . ,V(hT−1)). When it is clear from context, we will omit the
dependence on V , writing only loss(A).

Our goal is to define an online algorithm with low regret. That is, we want
a guarantee that the total loss incurred will, in expectation, not be much larger
than the optimal strategy in hindsight against the cost sequence we actually
faced. To formalize this, first define an oracle R : Rn → S that solves the offline
optimization problem, R(c) = argmin

x∈S(c · x). We then define OPT(kT) =
c1:T · R(c1:T). Similarly, OPT(A,V) is the random variable OPT(kT) when kT

is generated by playing V against A. We again drop the dependence on V and
A when it is clear from context. Formally, we define expected regret as

E [loss(A,V) − OPT(A,V)] = E[loss(A,V)] − E

[

min
x∈S

T
∑

t=1

(ct · x)

]

. (1)

Note that the E[OPT(A,V)] term corresponds to applying the min operator
separately to each possible cost history to find the best fixed decision with respect
to that particular cost history, and then taking the expectation with respect to
these histories. In [5], an alternative weaker definition of regret is given. We
discuss relationships between the definitions in Appendix B.

3 Algorithm

We introduce an algorithm we call BGA, standing for Bandit-style Geomet-
ric decision algorithm against an Adaptive adversary. The algorithm alternates
between playing decisions from a fixed basis to get unbiased estimates of costs,
and playing (hopefully) good decisions based on those estimates. In order to
determine the good decisions to play, it uses some online geometric optimization
algorithm for the full observation problem. We denote this algorithm by GEX
(Geometric Experts algorithm). The implementation of GEX we analyze is based
on the FPL algorithm of Kalai and Vempala [1]; we detail this implementation

Choose parameters γ and ǫ, where ǫ is a parameter of GEX
t = 1
Fix a basis B = {b1, . . . ,bn} ⊆ S
while playing do

Let χt = 1 with probability γ and χt = 0 otherwise
if χt = 0 then

Select xt from the distribution GEX(ĉ1, . . . , ĉt−1)
Incur cost zt = ct · xt

ĉt = 0 ∈ Rn

else

Draw j uniformly at random from {1, . . . , n}
xt = bj

Incur cost and observe zt = ct · xt

Define ℓ̂
t

by ℓ̂t
i = 0 for i 6= j and ℓ̂t

j = (n/γ)zt

ĉt = (B†)−1ℓ̂
t

end if

ĉ1:t = ĉ1:t−1 + ĉt

t = t + 1
end while

Algorithm 1: BGA

and analysis in Appendix A. However, other algorithms could be used, for exam-
ple the algorithm of Zinkevich [6] when S is convex. We view GEX as a function
from the sequence of previous cost vectors (ĉ1, . . . , ĉt−1) to distributions over
decisions.

Pseudocode for our algorithm is given in Algorithm (1). On each timestep,
we make decision xt. With probability (1 − γ), BGA plays a recommendation
xt = x̃t ∈ S from GEX. With probability γ, we ignore x̃t and play a basis
decision, xt = bi uniformly at random from a sampling basis B = {b1, . . . ,bn}.
The indicator variable χt is 1 on exploration iterations and 0 otherwise.

Our sampling basis B is a n×n matrix with columns bi ∈ S, so we can write
x = Bw for any x ∈ Rn and weights w ∈ Rn. For a given cost vector c, let
ℓ = B†c (the superscript † indicates transpose). This is the vector of decision

costs for the basis decisions, so ℓt
i = ct · bi. We define ℓ̂

t
, an estimate of ℓt, as

follows: Let ℓ̂
t
= 0 ∈ Rn on exploitation iterations. If on an exploration iteration

we play bj , then ℓ̂
t

is the vector where ℓ̂t
i = 0 for i 6= j and ℓ̂t

j = n
γ (ct · bj).

Note that ct · bj is the observed quantity, the cost of basis decision bj . On each

iteration, we estimate ct by ĉt = (B†)−1ℓ̂
t
. It is straightforward to show that

ℓ̂
t

is an unbiased estimate of basis decision costs and that ĉt is an unbiased
estimate of ct on each timestep t.

The choice of the sampling basis plays an important role in the analysis of
our algorithm. In particular, we use a baricentric spanner, introduced in [2]. A
baricentric spanner B = {b1, . . . ,bn} is a basis for S such that bi ∈ S and for
all x ∈ S we can write x = Bw with coefficients wi ∈ [−1, 1]. It may not be easy

to find exact baricentric spanners in all cases, but [2] proves they always exist
and gives an algorithm for finding 2-approximate baricentric spanners (where
the weights wi ∈ [−2, 2]), which is sufficient for our purposes.

Table 1. Summary of notation

S ⊆ Rn set of decisions, a compact subset of Rn

D ∈ R L1 bound on diameter of S, ∀x,y ∈ S, |x − y|1 ≤ D
n ∈ N dimension of decision space
ht decision history , ht = x1, . . . ,xt

H∗ set of possible decision histories
V : H∗ → Rn adversary, function from decision histories to cost vectors
A an online optimization algorithm
Gt−1 history of BGA randomness for timesteps 1 through t − 1
ct ∈ Rn cost vector on time t
ĉt ∈ Rn BGA’s estimate of the cost vector on time t
M ∈ R+ bound on single-iteration cost, |ct · xt| ≤ M
B ⊆ S sampling basis B = {b1, . . . ,bn}

β∞ ∈ R matrix max norm on (B†)−1

ℓt ∈ [−M, M]n vector, ℓt
i = ct · bi for bi ∈ B

ℓ̂
t
∈ Rn BGA’s estimate of ℓt

T ∈ N end of time, index of final iteration
xt ∈ S BGA’s decision on time t
x̃t ∈ S decision recommended by GEX on time t
χt ∈ {0, 1} indicator, χt = 1 if BGA explores on t, 0 otherwise
γ ∈ [0, 1] the probability BGA explores on each timestep
zt ∈ [−M, M] BGA’s loss on iteration t, zt = ct · xt,
ẑt ∈ [−R, R] loss of GEX, ẑt = ĉt · x̃t

4 Analysis

4.1 Preliminaries

At each time step, BGA either (with probability 1−γ) plays the recommendation
x̃t from GEX, or else (with probability γ) plays a random basis vector from
B. For purposes of analysis, however, it will be convenient to imagine that we
request a recommendation x̃t from GEX on every iteration, and also that we
randomly pick a basis to explore, bt ∈ {b1, . . . ,bn}, on each iteration. We then
decide to play either x̃t or bt based on the outcome χt of a coin of bias γ.
Thus, the complete history of the algorithm is specified by the algorithm history
Gt−1 = [χ1, x̃1,b1, χ2, x̃2,b2, . . . , χt−1, x̃t−1,bt−1], which encodes all previous
random choices. The sample space for all probabilities and expectations is the
set of all possible algorithm histories of length T . Thus, for a given adversary V ,
the various random variables and vectors we consider, such as xt, ct, ĉt, x̃t, and

others, can all be viewed as functions on the set of possible algorithm histories.
Unless otherwise stated, our expectations and probabilities are with respect to
the distribution over these histories.

A partial history Gt−1 can be viewed a subset of the sample space (an event)
consisting of all complete histories that have Gt−1 as a prefix. We frequently
consider conditional distributions and corresponding expectations with respect
to partial algorithm histories. For instance, if we condition on a history Gt−1,

the random variables c1, . . . , ct, ℓ1, . . . , ℓt, ℓ̂
1

, . . . , ℓ̂
t−1

, ĉ1, . . . ĉt−1, x1, . . . ,xt−1,
and χ1, . . . , χt−1 are fully determined.

We now outline the general structure of our argument. Let ẑt = ĉt · x̃t be
the loss perceived by the GEX on iteration t. In keeping with earlier definitions,
loss(BGA) = z1:T and loss(GEX) = ẑ1:T . We also let OPT = OPT(BGA,V) =
c1:T · R(c1:T), the performance of the best post-hoc decision, and similarly

ÔPT = OPT(ĉ1, . . . , ĉT) = ĉ1:t · R(ĉ1:t).

The base of our analysis is a bound on the loss of GEX with respect to the
cost vectors ĉt of the form

E[loss(GEX)] ≤ E[ÔPT] + (terms). (2)

Such a result is given in Appendix A, and follows from an adaptation of the
analysis from [1]. We then prove statements having the general form

E[loss(BGA)] ≤ E[loss(GEX)] + (terms) (3)

and

E[ÔPT] ≤ E[OPT] + (terms). (4)

These statements connect our real loss to the “imaginary” loss of GEX, and
similarly connect the loss of the best decision in GEX’s imagined world with the
loss of the best decision in the real world. Combining the results corresponding
to Equations (2), (3), and (4) leads to an overall bound on the regret of BGA.

4.2 High Probability Bounds on Estimates

We prove a bound on the accuracy of BGA’s estimates ℓ̂
t
, and use this to show

a relationship between OPT and ÔPT of the form in Equation 4.

Define random variables e0 = 0 and et = ℓt − ℓ̂
t
. We are really interested

in the corresponding sums e1:t, where e1:t
i is the total error in our estimate of

c1:t · bi. We now bound |e1:t
i |.

Theorem 1. For λ > 0,

Pr

[

∣

∣e1:t
i

∣

∣ ≥ λ
nM

γ

√
t

]

≤ 2e−λ2/2.

Proof. It is sufficient to show the sequence e0, e1, e1:2, e1:3, . . . , e1:T of random
variables is a bounded martingale sequence with respect to the filter G0, G1, . . . , GT ;
that is, E[e1:t

i | Gt−1] = e1:t−1

i . The result then follows from Azuma’s Inequality
(see, for example,[7]).

First, observe that e1:t
i = ℓt

i − ℓ̂t
i + e1:t−1

i . Further, the cost vector ct is
determined if we know Gt−1, and so ℓt

i is also fixed. Thus, accounting for the γ
n

probability we explore a particular basis decision bi, we have

E
[

e1:t
i | Gt−1

]

=
γ

n

[

ℓt
i −

n

γ
ℓt
i + e1:t−1

i

]

+
(

1 − γ

n

)

[ℓt
i − 0 + e1:t−1

i] = e1:t−1

i ,

and so we conclude that the e1:t
i forms a martingale sequence. Notice that |e1:t

i −
e1:t−1

i | = |ℓt
i − ℓ̂t

i|. If we don’t sample, ℓ̂t
i = 0 and so |e1:t

i − e1:t−1

i | ≤ M . If we do

sample, we have ℓ̂t
i = n

γ ℓt
i, and so |e1:t

i − e1:t−1

i | ≤ nM
γ . This bound is worse, so

it holds in both cases. The result now follows from Azuma’s inequality. ⊓⊔
Let β∞ = ‖(B†)−1‖∞, a matrix L∞-norm on (B†)−1, so that for any w,

‖(B†)−1w‖∞ ≤ β∞ ‖w‖∞.

Corollary 1. For δ ∈ (0, 1], and all t from 1 to T ,

Pr
[

‖ĉ1:t − c1:t‖∞ ≥ β∞J(δ, γ)
√

t
]

≤ δ.

where J(δ, γ) = 1

γ nM
√

2 ln(2n/δ).

Proof. Solving δ/n = 2e−λ2/2 yields λ =
√

2 ln(2n/δ), and then using this value
in Theorem (1) gives

Pr
[

|e1:t
i | ≥ J(δ, γ)

√
t
]

≤ δ/n.

for all i ∈ {1, 2, . . . , n}. Then,

Pr
[

‖e1:t‖∞ ≥ J(δ, γ)
√

t
]

≤
n
∑

i=1

Pr
[

|e1:t
i | ≥ J(δ, γ)

√
t
]

≤ δ

by the union bound. Now, notice that we can relate ℓ̂
1:t

and ĉ1:t by

(B†)−1ℓ̂
1:t

= (B†)−1

t
∑

τ=1

ℓτ =

t
∑

τ=1

(B†)−1ℓτ =

t
∑

τ=1

ĉτ = ĉ1:t.

and similarly for ℓ1:t and c1:t. Then

Pr
[

‖ĉ1:t − c1:t‖∞ ≥ β∞J(δ, γ)
√

t
]

= Pr
[

‖(B†)−1(ℓ̂
1:t − ℓ1:t)‖∞ ≥ β∞J(δ, γ)

√
t
]

≤ Pr
[

β∞‖e1:t‖∞ ≥ β∞J(δ, γ)
√

t
]

= Pr
[

‖e1:t‖∞ ≥ J(δ, γ)
√

t
]

≤ δ.

⊓⊔

We can now prove our main result for the section, a statement of the form

of Equation (4) relating OPT and ÔPT:

Theorem 2. If we play V against BGA for T timesteps,

E[ÔPT] ≤ E[OPT] + (1 − δ)

(

3

2
Dβ∞J(δ, γ)

√
T

)

+ δMT.

Proof. Let Φ = ĉ1:T − c1:T . By definition of R, R(ĉ1:T) · ĉ1:T ≤ R(c1:T) · ĉ1:T or
equivalently R(c1:T +Φ) · (c1:T +Φ) ≤ R(c1:T) · (c1:T +Φ), and so by expanding
and rearranging we have

R(c1:T + Φ) · c1:T −R(c1:T) · c1:T ≤ (R(c1:T) −R(c1:T + Φ)) · Φ
≤ D‖Φ‖∞. (5)

Then,

|OPT−ÔPT| = |R(c1:T) · c1:T −R(c1:T + Φ) · (c1:T + Φ)|
≤ |(R(c1:T) −R(c1:T + Φ)) · c1:T | + |R(c1:T + Φ) · Φ|
≤ (D + D/2)‖Φ‖∞,

where we have used Equation (5). Recall from Section (2), we assume ‖x‖1 ≤
D/2 for all x ∈ S, so ‖x − y‖1 ≤ D for all x,y ∈ S. The theorem follows by
applying the bound on Φ given by Corollary (1), and then observing that the
above relationship holds for at least a 1 − δ fraction of the possible algorithm
histories. For the other δ fraction, the difference might be as much as δMT .
Writing the overall expectation as the sum of two expectations conditioned on
whether or not the bound holds gives the result. ⊓⊔

4.3 Relating the Loss of BGA and its GEX Subroutine

Now we prove a statement like Equation (3), relating loss(BGA) to loss(GEX).

Theorem 3. If we run BGA with parameter γ against V for T timesteps,

E[loss(BGA)] ≤ (1 − γ)E[loss(GEX)] + γMT.

Proof. For a given adversary V , Gt−1 fully determines the sequence of cost vec-
tors given to algorithm GEX. So, we can view GEX as a function from Gt−1

to probability distributions over S. If we present a cost vector ĉ to GEX, then
the expected cost to GEX given history Gt−1 is

∑

x̃∈S Pr(x̃ | Gt−1) (ĉ · x̃). If
we define x̄t =

∑

x̃∈S Pr(x̃ | Gt−1) x̃, we can re-write the expected loss of GEX
against ĉ as ĉ · x̄t; that is, we can view GEX as incurring the cost of some convex

combination of the possible decisions in expectation. Let ℓ̂
t,j

be ℓ̂
t
given that we

explore by playing basis vector bj on time t, and similarly let ĉt,j = (B†)−1ℓ̂
t,j

.

Observe that ℓ̂t,j
i = n

γ ℓt
i for j = i and 0 otherwise, and so

n
∑

j=1

ℓ̂
t,j

=
n

γ
ℓt =

n

γ
B†ct. (6)

Now, we can write

E[ẑt | Gt−1] = (1 − γ) 0 + γ

n
∑

j=1

1

n

∑

x̃
t∈S

Pr(x̃t | Gt−1) (ĉt,j · x̃t)

= γ

n
∑

j=1

1

n
ĉt,j

 · x̄t

=
γ

n
(B†)−1

n
∑

j=1

ℓ̂
t,j

 · x̄t, and using Equation (6),

= ct · x̄t.

Now, we consider the conditional expectation of zt and see that

E[zt | Gt−1] = (1 − γ)(ct · x̄t) + γ
n
∑

i=1

1

n
(ct · bi)

≤ (1 − γ)E[ẑt | Gt−1] + γM, (7)

Then we have,

E[zt] = E
[

E[zt | Gt−1]
]

≤ E
[

(1 − γ)E[ẑt | Gt−1] + γM
]

= (1 − γ)E
[

E[ẑt | Gt−1]
]

+ γM

= (1 − γ)E[ẑt] + γM, (8)

by using the inequality from Equation (7). The theorem follows by summing the
inequality (8) over t from 1 to T and applying linearity of expectation. ⊓⊔

4.4 A Bound on the Expected Regret of BGA

Theorem 4. If we run BGA with parameter γ using subroutine GEX with pa-
rameter ǫ (as defined in Appendix A), then for all δ ∈ (0, 1],

E[loss(BGA)]

≤ E[OPT] + O
(

D
1

γ
nM

√

2 ln(2n/δ)
√

T + δMT +
ǫ

γ2
n3M2T +

n

ǫ
+ γMT

)

Proof. In Appendix A, we show an algorithm to plug in for GEX, based on
the FPL algorithm of [1] and give bounds on regret against a deterministic
adaptive adversary. We first show how to apply that analysis to GEX running
as a subroutine to BGA.

First, we need to bound |ĉt · x|. By definition, for any x ∈ S, we can write
x = Bw for weights w with wi ∈ [−1, 1] (or [−2, 2] if it is an approximate

baricentric spanner). Note that ‖ℓ̂t‖1 ≤ (n
γ)M , and for any x ∈ S, we can write

x as Bw where wi ∈ [−2, 2]. Thus,

|ĉt · x| = |(B†)−1ℓ̂
t · Bw| = |(ℓ̂t

)†B−1Bw| = |ℓ̂t · w| ≤ ‖ℓ̂t‖1 ‖w‖∞ ≤ 2nM

γ
.

Let R = 2nM/γ. Suppose at the beginning of time we fix the random deci-
sions of BGA that are not made by GEX, that is, we fix a sequence X =
[χ1,b1, . . . , χT ,bT]. Fixing this randomness together with V determines a new
deterministic adaptive adversary V̂ that GEX is effectively playing against. To
see this, let h̃t−1 = [x̃1, . . . , x̃t−1]. If we combine h̃t−1 with the information in
X , it fully determines a partial history Gt−1. If we let ht−1 = [x1, . . . ,xt−1] be
the partial decision history that can be recovered from Gt−1, then V̂(h̃t−1) =
χt d

γV(ht−1). Thus, when GEX is run as a subroutine of BGA, we can apply

Lemma (3) from the Appendix and conclude

E[loss(GEX) | X] ≤ E[ÔPT | X] + ǫ(4n + 2)R2T +
4n

ǫ
(9)

For the remainder of this proof, we use big-Oh notation to simplify the presen-
tation. Now, taking the expectation of both sides of Equation (9),

E[loss(GEX)] ≤ E[ÔPT] + O
(

ǫnR2T +
n

ǫ

)

Applying Theorem (3),

E[loss(BGA)] ≤ (1 − γ)E[ÔPT] + O
(

ǫnR2T +
n

ǫ
+ γMT

)

and then using Theorem (2) we have

E[loss(BGA)]

≤ (1 − γ)E[OPT] + O
(

J(δ, γ)D
√

T + δMT + ǫnR2T +
n

ǫ
+ γMT

)

≤ E[OPT] + O
(

D
1

γ
nM

√

2 ln(2n/δ)
√

T + δMT +
ǫ

γ2
n3M2T +

n

ǫ
+ γMT

)

For the last line, note that while E[OPT] could be negative, it is still bounded by
MT , and so this just adds another γMT term, which is captured in the big-Oh
term. ⊓⊔

Ignoring the dependence on n, M , and D and simplifying, we see BGA’s
expected regret is bounded by

E[regret(BGA)] = O
(√

T
√

ln(1/δ)

γ
+ δT +

ǫT

γ2
+

1

ǫ
+ γT

)

.

Setting γ = δ = T−1/4 and ǫ = T−3/4, we get a bound on our loss of order
O(T 3/4

√
lnT).

5 Conclusions and Open Problems

We have presented a general algorithm for online optimization over an arbitrary
set of decisions S ⊆ Rn, and proved regret bounds for our algorithm that hold
against an adaptive adversary.

A number of questions are raised by this work. In the “flat” bandits prob-
lem, bounds of the form O(

√
T) are possible against an adaptive adversary [4].

Against a oblivious adversary in the geometric case, a bound of O(T 2/3) is
achieved in [2]. We achieve a bound of O(T 3/4

√
lnT) for this problem against

an adaptive adversary. In [4], lower bounds are given showing that the O(
√

T)
result is tight, but no such bounds are known for the geometric decision-space
problem. Can the O(T 3/4

√
lnT) and possibly the O(T 2/3) bounds be tightened

to O(
√

T)? A related issue is the use of information received by the algorithm;
our algorithm and the algorithm of [2] only use a γ fraction of the feedback they
receive, which is intuitively unappealing. It seems plausible that an algorithm
can be found that uses all of the feedback, possibly achieving tighter bounds.

Acknowledgments

The authors wish to thank Adam Kalai, Geoff Gordon, Bobby Kleinberg, Tom
Hayes, and Varsha Dani for useful conversations and correspondence. Funding
provided by NSF grants CCR-0105488, NSF-ITR CCR-0122581, and NSF-ITR
IIS-0312814.

References

1. Kalai, A., Vempala, S.: Efficient algorithms for on-line optimization. In: Proceedings
of the The 16th Annual Conference on Learning Theory. (2003)

2. Awerbuch, B., Kleinberg, R.: Adaptive routing with end-to-end feedback: Distrib-
uted learning and geometric approaches. In: Proceedings of the 36th ACM Sympo-
sium on Theory of Computing. (2004) To appear.

3. Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. In: Pro-
ceedings of the 15th Annual Conference on Computational Learning Theory. Lecture
Notes in Artificial Intelligence, Springer (2002)

4. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32 (2002) 48–77

5. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA (1995) 322–331

6. Zinkevich, M.: Online convex programming and generalized infinitesimal gradi-
ent ascent. In: Proceedings of the Twentieth International Conference on Machine
Learning. (2003)

7. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press
(1995)

8. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. Technical Report CMU-CS-03-110, Carnegie Mellon University (2003)

A Specification of a Geometric Experts Algorithm

In this section we point out how the FPL algorithm and analysis of [1] can be
adapted to our setting to use as the GEX subroutine, and prove the correspond-
ing bound needed for Theorem (4). In particular, we need a bound for an arbi-
trary S ⊆ Rn and arbitrary cost vectors, requiring only that on each timestep,
|c · x| ≤ R. Further, the bound must hold against an adaptive adversary.

FPL solves the online optimization problem when the entire cost vector ct

is observed at each timestep. It maintains the sum c1:t−1, and on each timestep
plays decision xt = R(c1:t−1 + µ), where µ is chosen uniformly at random
from [0, 1/ǫ]n, given ǫ, a parameter of the algorithm. The analysis of FPL in [1]
assumes positive cost vectors c satisfying ‖c‖1 ≤ A, and positive decision vectors
from S ⊆ Rn

+ with ‖x − y‖1 ≤ D for all x,y ∈ S and |c · x − c · y| ≤ R for
all cost vectors c and x,y ∈ S. Further, the bounds proved are with respect to
a fixed series of cost vectors, not an adaptive adversary. We now show how to
bridge the gap from these assumptions to our assumptions.

First, we adapt an argument from [2], showing that by using our baricentric
spanner basis, we can transform our problem into one where the assumptions
of FPL are met. We then argue that a corresponding bound holds against an
adaptive adversary.

Lemma 1. Let S ⊆ Rn be a set of (not necessarily positive) decisions, and
kt = [c1, . . . , cT] a set of cost vectors on those decisions, such that |ct · x| ≤ R
for all x ∈ S and ct ∈ kt. Then, there is an algorithm A(ǫ) that achieves

E[loss(A(ǫ), kt)] ≤ OPT(kt) + ǫ(4n + 2)R2T +
4n

ǫ

Proof. This an adaptation of the arguments of Appendix A of [2]. Fix a bari-
centric spanner B = {b1, . . . ,bn} for S. Then, for each x ∈ S, let x = Bw and
define f(x) = [−

∑n
i=1

wi,w1, . . . ,wn]. Let f(S) = S′. For each cost vector ct

define g(ct) = [R, R + ct · bs1, . . . , R + ct · bn]. It is straightforward to verify
that ct · x = g(ct) · f(x), and further g(ct) ≥ 0, ‖g(ct)‖1 ≤ (2n + 1)R, and the
difference in cost of any two decisions against a fixed g(ct) is at most 2R. By
definition of a baricentric spanner, wi ∈ [−1, 1] and so the L1 diameter of S′ is
at most 4n. Note the assumption of positive decision vectors in Theorem 1 of [1]
can easily be lifted by additively shifting the space of decision vectors until it
is positive. This changes the loss of the algorithm and of the best decision by
the same amount, so additive regret bounds are unchanged. The result of this
lemma then follows from the bound of Theorem 1 from [1]. ⊓⊔

We now need to extend the above bound to adaptive adversaries. The key
point here is that the algorithm is self-oblivious. A self-oblivious algorithm al-
ways plays a decision from some distribution that depends only on the cost
history so far and not the outcome of its previous probabilistic choices. Thus, a
self-oblivious algorithm can be viewed as a function from cost histories to distrib-
utions over decisions. For such algorithms, for any (possibly adaptive) adversary

V there always exists an oblivious adversary that causes at least as much regret.
The idea for the proof below is due to Adam Kalai.2

Lemma 2. Fix T , let H∗ be the set of decision histories of length 0 to T − 1,
and let K∗ be the set of all cost histories of length 0 to T −1. Then, fix a decision
algorithm A : K∗ → ∆(S), where ∆(S) is the set of probability distributions on
the set S of possible decisions. Define

R(A,V) = EA,V

[

T
∑

t=1

ctxt − min
x∈S

T
∑

t=1

ctx

]

Let V be an arbitrary adversary. Then, there exists an oblivious adversary V ′

such that

R(A,V ′) ≥ R(A,V)

Proof. An adversary is t-oblivious if its first t costs are chosen obliviously; note
all adversaries are 1-oblivious. Let V be an arbitrary adversary, and suppose it is
k-oblivious. If k = T , we are done. Otherwise, let c1

o, . . . , c
k
o be the first k (obliv-

iously chosen) costs selected by V . Expectations are over the random variables
x1, . . . ,xT and c1, . . . , cT when V plays against A, though in this case c1, . . . , ck

are fully determined. Let KT = c1, . . . , cT , the random vector corresponding to
the cost history.

Let g(KT) = minx∈S

∑T
t=1

ctx. Using linearity of expectation, we can split
the expected regret R(A,V) into 3 terms:

E[
k
∑

t=1

ct
ox

t] + E[ck+1xk+1] + E[
T
∑

t=k+2

ctxt − g(KT)]

Since A and c1, . . . , ck are fixed, E[xk+1] = E[A(c1
o, . . . , c

k
o)] = x̄ is also

known. Since V is only k-oblivious, it gets to pick ck+1 with knowledge of
x1, . . . ,xk. We have

Pr(ck+1) =

∫

x
1,...,xk

Pr(x1, . . . ,xk)I[V(x1, . . . ,xk) = ck+1],

where I is an indicator function, returning 1 if V(x1, . . . ,xk) = ck+1 and zero
otherwise. The probability Pr(x1, . . . ,xk) is well defined because V and A are
fixed. Importantly, note that the distribution over ck+1 is independent of the
distribution over xk+1; this follows from the assumption that A is self-oblivious,
that is, it picks its distributions based only on the past cost vectors, not on its

2 We thank Tom Hayes and Varsha Dani for pointing out a bug in the proof we had
in the original version of this paper.

own actions. Thus, letting Lk = E[
∑k

t=1
ct

ox
t] we can write

R(A,V) = Lk + x̄E[ck+1] + E[
T
∑

t=k+2

ctxt − g(KT)] (10)

= Lk +

∫

c
k+1

Pr(ck+1)

[

ck+1x̄ + E[
T
∑

t=k+2

ctxt − g(KT) | ck+1]

]

dck+1

(11)

≤ Lk + sup
c

k+1

[

ck+1x̄ + E[
T
∑

t=k+2

ctxt − g(KT) | ck+1],

]

(12)

where the sup is over all ck+1 with Pr(ck+1) > 0. Observe that the quantity
inside the supremum is well defined before any costs or decisions are selected,
and so V could do at least as well by selecting ck+1 obliviously to be some c that
achieves the supremum. Thus, there is a (k + 1)-oblivious adversary that causes
at least as much regret as V . Extending this result inductively, we conclude there
is a fully oblivious (T -oblivious) adversary V ′ such that R(A,V ′) ≥ R(A,V). ⊓⊔

Lemma 3. The regret bound from Lemma 1 applies even if the adversary is
adaptive.

Proof. First, observe that as long as FPL re-randomizes at each timestep, it
is self-oblivious, and so Lemma 2 applies. Suppose some adaptive adversary V
causes regret that exceeds the bound in Lemma 1. We can apply Lemma 2 to V
and construct an oblivious V ′ that also exceeds the bound, a contradiction.

Thus, we can use A(ǫ) as our GEX subroutine for full-observation online geo-
metric optimization.

B Notions of Regret

In [5], an alternative definition of regret is given, namely,

E[lossV,A(hT)] − min
x∈S

E

[

T
∑

t=1

ct · x
]

. (13)

This definition is equivalent to ours in the case of an oblivious adversary, but
against an adaptive adversary the “best decision” for this definition is not the
best decision for a particular decision history, but the best decision if the decision
must be chosen before a cost history is selected according to the distribution over
such histories. In particular,

E

[

min
x∈S

T
∑

t=1

ct · x
]

≤ min
x∈S

E

[

T
∑

t=1

ct · x
]

and so a bound on Equation (1) is at least as strong as a bound on Equation (13).
In fact, bounds on Equation (13) can be very poor when the adversary is adap-
tive. There are natural examples where the stronger definition (1) gives regret
O(T) while the weaker definition (13) indicates no regret. Adapting an example
from [5], let S = {e1, . . . , en} (the “flat” bandit setting) and consider the algo-
rithm A that plays uniformly at random from S. The adversary V gives c1 = 0,
and if A then plays ei on the first iteration, thereafter the adversary plays the
cost vector ct where ct

i = 0 and ct
j = 1 for j 6= i. The expected loss of A is n−1

n T .

For regret as defined by Equation (13), minx∈S E[c1:T · x] = n−1

n T , indicating
no regret, while E[minx∈S(c1:T ·x)] = 0, and so the stronger definition indicates
O(T) regret.

Unfortunately, this implies like the proof techniques for bounds on expected
weak regret like those in [4] and [2] cannot be used to get bounds on regret as
defined by Equation (1). The problem is that even if we have unbiased estimates

of the costs, these cannot be used to evaluate the term E[minx∈S

∑T
t=1

(ct · x)]
in (1) because min is a non-linear operator. We surmount this problem by proving
high-probability bounds on our estimates of ct, which allows us to use a union
bound to evaluate the expectation over the min operator. Note that the high
probability bounds proved in [4] and [2] can be seen as corresponding to our
definition of expected regret.

