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Abstract: Resource allocation and admission control are critical tasks in a communication
network that often must be performed online. Algorithms for these types of problems have
been considered both under benefit models (e.g., with a goal of approximately maximizing
the number of requests accepted) and under cost models (e.g., with a goal of approximately
minimizing the number of requests rejected). Unfortunately, algorithms designed for these
two measures can often be quite different, even polar opposites. In this work we consider
the problem of combining algorithms designed for each of these objectives in a way that is
good under both measures simultaneously. More formally, we are given an algorithmA that
is cA competitive with respect to the number of accepted requests and an algorithmR that
is cR competitive with respect to the number of rejected requests. We show how to derive a
combined algorithm with competitive ratioO(cRcA) for rejection andO(cA) for acceptance.
We also build on known techniques to show that given a collection ofk algorithms, we can
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construct one master algorithm that performs similarly to the best algorithm among thek
for the acceptance problem and another master algorithm that performs similarly to the best
algorithm among thek for the rejection problem. Using our main result we can combine the
two master algorithms to a single algorithm that guarantees both rejection and acceptance
competitiveness.

1 Introduction

Resource allocation is one of the most critical tasks in communication networks. Many network re-
sources are in constant “short supply”: this includes bandwidth (of the various links), queuing delays
(or rather the lack of queuing delays in the switches), the ability to route with bounded jitter, and many
more. If one would like to guarantee Quality of Service (QoS), one needs to allocate resources to the
requesting calls, and since those resources are bounded, it implies that requests must be rejected due to
the lack of sufficient resources in certain cases. A simple example is bandwidth allocation. Suppose we
have a link with a given capacity, and different calls request bandwidth allocation on that link. Since the
system cannot allocate more than the link capacity, it may be forced to reject some of the requests.

The resource allocation (or admission control) decision must typically be done online. That is, the
algorithm has to decide for each request whether or not to accept that request (and grant it the resources)
while having minimal (or no) knowledge of future requests. This leads very naturally to the setting
of online algorithms and using competitive analysis to evaluate performance. In fact, a wide range of
resource allocation problems have been considered in this general online setting, including call control,
admission control, active queue management, and switch throughput.

When one applies competitive analysis, one needs to decide what performance measure to focus on.
One can try either to minimize the number of rejected requests or alternatively to maximize the number
of accepted requests. We say that an algorithm isc-reject-competitiveif it rejects at mostc times the
number of requests rejected by the optimal algorithmOPT andc-accept-competitiveif it accepts at least
1/c times as many requests asOPT. Even thoughOPT simultaneously both maximizes the number
of accepted requests and minimizes the number of rejected requests, it is a well known phenomena
in approximation and online algorithms that approximation ratios are not preserved when considering
the two complementary problems. In the literature the minimization version is referred to as acost
problemand the maximization version is referred to as abenefit problem. There might be one algorithm
A that achieves a good ratio for maximizing benefit but has a poor ratio in terms of cost, and a different
algorithmR that has a good ratio for minimizing cost but a poor ratio in terms of benefit. For example,
consider a 2-accept-competitive algorithmA and a 2-reject-competitive algorithmR. If the optimal
solutionOPT accepts 98% of the input, algorithmR accepts at least 96%, but algorithmA may accept
only 49%. However, ifOPT accepts 50% of the input, algorithmA accepts at least 25%, but algorithm
Rmay accept nothing.

In the offline setting, the fact that we have two different algorithms, one for each measure, is not
really a problem: given any problem instance, we can always simulatebothalgorithms and take the best
solution found, which will be good under both measures simultaneously. However, in the online setting,
it is not so clear how to achieve simultaneous guarantees because we need to make the accept/reject
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decisions as we go.
In this paper, we describe a procedure that given algorithmsA andR that arecA-accept-competitive

andcR-reject-competitive respectively, derives a combined algorithm that is simultaneously good under
both measures. Specifically, the combined algorithm is simultaneouslyO(cA)-accept-competitive and
O(cRcA)-reject-competitive.1 The combined algorithm uses preemption — the ability to later reject
a request that had previously been accepted (preempted requests are regarded as rejected) — which
is known to be necessary to achieve any nontrivial guarantee in the rejection measure. At the high
level, the procedure uses the following simple intuitive notion: On the one hand, ifOPT rejects only
a small fraction of the requests, the reject-competitiveness of algorithmR guarantees that it accepts a
large fraction of requests and thus it is accept-competitive as well. On the other hand, ifOPT rejects
many requests, being reject-competitive is trivial (even rejectingall requests is fine), so algorithmA is
competitive by both measures. Thus, by internally simulating both algorithms, and switching between
them at just the right time, we might hope to perform well in both measures. The difficulty is showing
that requests rejected by one algorithm do not adversely affect the competitive ratio of the other. Our
algorithm does not use randomness to make its decisions, so the combined algorithm is deterministic
unless one of the input algorithms is randomized.

In fact, we give two different combining algorithms. Both achieveO(cA)-accept-competitiveness
andO(cAcR)-reject-competitiveness, but the first needs to be given the value ofcA in advance, while the
second does not (neither needs to knowcR). There is an added benefit to designing an algorithm that
does not need to use the values of the competitive ratios; the ratios achieved by our second algorithm
depend only on the behavior ofA andRon the specific input sequence. For example, if algorithmsA and
Rhave log-factor competitive ratios, but happen to be constant-competitive on the actual input sequence,
then the combined algorithm is constant-competitive overall (for that input sequence).

In addition to our main result, we show how to apply known techniques to combine several admission
control algorithms so that the result performs nearly as well (according to either the cost or benefit
measure) on any given input sequence as the best of them. More specifically, givenk algorithms, we
can construct a combined randomized preemptive algorithm that isO(logk)-reject-competitive to the
best algorithm among thek using techniques of Baeza-Yates et al. [8], Fiat et al. [11], and Azar et
al. [7]. Alternately, we can construct a combined randomized preemptive algorithm that isO(logk)-
accept-competitive to the best algorithm among thek using techniques of Awerbuch et al. [2]. These
two combined algorithms can be combined to one master algorithm using our main result to guarantee
both rejection and acceptance competitiveness.

1.1 Applications of the main result

Our main result can be applied to several problems. One, which motivated this work, is admission
control and call control on the line graph. Requests are intervals on the line and each edge in the graph
has acapacity, which is the maximum number of accepted requests that can use that edge. Adler and
Azar [1] give a constant accept-competitive algorithm for the problem and Blum et al. [9] give a constant

1This paper is based on conference papers by Azar et al. [6] and Bunde and Mansour [10]. The first of these had a worse
O(c2

A) guarantee on accept-competitiveness and furthermore needed to be givencA andcR in advance, as well as the ability
to compute OPT over the requests seen in the past. The second paper improved the accept-competitive ratio toO(cA) and
removed the need to compute OPT or to knowcA or cR.
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reject-competitive algorithm for the same problem. We conclude that there is a combined algorithm that
is simultaneously constant competitive for both measures. What is interesting here is that the algorithms
are almost polar opposites. For example, if the capacity of each edge is 2, and three requests share an
edge, the algorithm of Blum et al. [9] rejects the two “outside” requests (the one that extends farthest to
the left and the one that extends farthest to the right) but the algorithm of Adler and Azar [1] rejects the
one in the middle.

Our result can also be applied when the graph is a tree and accepted requests must be disjoint.
Awerbuch et al. [4] and Awerbuch et al. [5] give O(logd)-competitive randomized (non-preemptive)
algorithms for maximizing the number of accepted requests whend is the diameter of the tree. Blum et
al. [9] shows a constant competitive algorithm for the number of rejected requests in this case. By com-
bining these two, we get an algorithm that is simultaneouslyO(logd)-accept-competitive andO(logd)-
reject-competitive.

Another application is the admission control problem on general graphs where each edge is of log-
arithmic capacity and each request is for a fixed path. Awerbuch et al. [3] provide anO(logn)-accept-
competitive non-preemptive algorithm and Blum et al. [9] provide anO(logn)-reject-competitive (pre-
emptive) algorithm. We conclude there are algorithms simultaneouslyO(logn)-accept-competitive and
O(log2n)-reject-competitive.

We should remark that for many natural online problems it is impossible to achieve competitiveness
in the rejection measure and hence in both measures. For example, if the online algorithm can be forced
to reject a request while the offline might have not rejected any requests, then the algorithm has an
unbounded competitive ratio.

2 Model

We assume an abstract model where one request arrives at every time unit. Either the request is served
(with benefit one and cost zero), or the request is rejected (with benefit zero and cost one). A request can
also be preempted, in which case its benefit is set to zero and its cost is set to one. In this abstract model,
the only assumption we make about the resource constraints (which are what prevent us from accepting
every request) is monotonicity: ifF is a feasible set of requests, then any subset ofF is feasible as well.
Given a sequenceσ and algorithmALG, let BENEFITALG(σ) be the number of requests served byALG
andCOSTALG(σ) be the number of requests rejected byALG. By definition, the sum of benefit and cost
is always the number of time steps, i.e.BENEFITALG(σ)+ COSTALG(σ) = |σ | for all algorithmsALG.

An optimal algorithmOPT can either maximize the benefitBENEFITOPT(σ) or minimize the cost
COSTOPT(σ). Note that for any input sequence, the optimal schedule is identical for both maximizing
benefit and minimizing cost.

We are given two algorithms. The first is a possibly randomized preemptive algorithmA that guar-
antees a competitive ratio ofcA≥ 1 for benefit. That is, for any sequenceσ

E
[
BENEFITA(σ)

]
≥ 1

cA
BENEFITOPT(σ) .

In addition, we are given a possibly randomized preemptive algorithmR that has a guarantee of
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cR≥ 1 for cost. That is, for any sequenceσ

E
[
COSTR(σ)

]
≤ cRCOSTOPT(σ) .

Notation: Given an input sequenceσ , denote byσt the requests arriving by timet. As a convention,
the first request is number 1.

3 Algorithm S2

Now we describeS2, our first combining algorithm.2 Internally,S2 simulates algorithmsA andRon the
input σt . That is,S2 keeps track of what requests would have been accepted or rejected had it followed
algorithmA from the start, and which would have been accepted or rejected had it followed algorithm
R from the start. If either algorithm is randomized, then the simulation is just of a single execution (not
an average over multiple runs), and our definition of quantities such asCOSTR(σ) (e.g.,Lemma 3.1and
Lemma 3.2below) are with respect to the execution observed. At any time,S2 is in either anA phase or
anR phase. We call the algorithm corresponding to the current phase thephase algorithm. Algorithm
S2 accepts, rejects, and preempts requests in exactly the same way as the phase algorithm. Algorithm
S2 is in anR phase ifCOSTR(σt)/t ≤ τ, whereτ = 1/(8cA), and in anA phase otherwise. WheneverS2
switches phases, it preempts any accepted requests that the new phase algorithm did not accept. Thus,
the requests accepted byS2 are feasible since they are a subset of the requests accepted by the phase
algorithm.

3.1 Analysis of rejections

We definerequests rejected because of algorithm Ato be the requests rejected or preempted during an
A phase (including those rejected when switchingto anA phase) and denote their number at timet with
RA(σt). Thus,COSTS2(σt)≤ RA(σt)+ COSTR(σt).

Lemma 3.1. At any time t, RA(σt) < COSTR(σt)/τ.

Proof. If S2 is in anA phase at timet, COSTR(σt) > τt. Since algorithmA cannot reject more thant
requests,RA(σt)≤ t < COSTR(σt)/τ.

Now consider the case thatS2 is in anR phase at timet. Let T be the last time whenS2 was in an
A phase. By the reasoning above,RA(σT) < COSTR(σT)/τ. SinceS2 has been in anR phase since time
T +1, RA(σt) = RA(σT). Also, since the number of rejections ofR is a non-decreasing function of time,
COSTR(σT)≤ COSTR(σt). Thus,RA(σt) < COSTR(σt)/τ.

SinceCOSTS2(σt)≤ RA(σt)+ COSTR(σt), Lemma 3.1implies that

COSTS2(σt)≤ (1+1/τ)COSTR(σt) .

2We call the algorithmS2 because it is based on and improves over a previous algorithm “SWITCH” [6].
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Note that if algorithmR is randomized, then the above holds for the specific execution simulated by
algorithmS2. Now, using the fact that algorithmR is cR-reject-competitive, we can bound the reject-
competitive ratio ofS2 by

E
[
COSTS2(σt)

]
COSTOPT(σt)

≤
(
1+ 1

τ

)
E

[
COSTR(σt)

]
COSTOPT(σt)

≤
(

1+
1
τ

)
cR = O(cAcR) .

3.2 Analysis of acceptances

We definerequests rejected because of algorithm Rto be the requests rejected or preempted during an
Rphase and denote their number at timet with RR(σt).

Lemma 3.2. At any time t, RR(σt)≤ BENEFITOPT(σt)/(7cA).

Proof. If time t is during anRphase, the lemma follows from

BENEFITOPT(σt)≥ BENEFITR(σt)≥ (1− τ)t ≥ 7t/8

andRR(σt)≤ COSTR(σt)≤ τt = t/(8cA).
Consider timet in an A phase. IfS2 has not had anR phase,RR(σt) = 0 so the lemma holds.

Otherwise, lett ′ be the time at which the latestRphase ended. By the argument above,

RR(σt ′)≤ BENEFITOPT(σt ′)/(7cA) .

SinceS2 was in anA phase since timet ′,

RR(σt) = RR(σt ′)≤ BENEFITOPT(σt ′)/(7cA) .

Since optimal benefit is non-decreasing with the input length,RR(σt)≤ BENEFITOPT(σt)/(7cA).

Now we can prove thatS2 is O(cA)-accept-competitive. We do this by bounding the number of
requests accepted by both algorithms, which is a lower bound on the number of requests accepted byS2.
Since algorithmA is cA-accept-competitive,E

[
BENEFITA(σ)

]
≥ BENEFITOPT(σ)/cA. By Lemma 3.2,

algorithmRcausesRR(σt)≤ BENEFITOPT(σ)/(7cA) additional rejections. Thus,

E
[
BENEFITS2(σ)

]
≥ BENEFITOPT(σ)/cA− BENEFITOPT(σ)/(7cA) = (6/(7cA))BENEFITOPT(σ)

and the accept-competitive ratio ofS2 is at most(7/6)cA = O(cA).

4 Algorithm RO

Now we defineRO, our second combining algorithm.3 One problem with our previous algorithmS2
is that, while simple, it required knowingcA in advance. AlgorithmRO is a bit more complicated but

3We call this algorithmRO for Ratio Oblivious because it does not need to know the competitive ratios of the input
algorithms.
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does not need to be given either of the competitive ratios as input. Internally, algorithmROkeeps times
tA andtR, plus input prefixesσA andσR of these lengths. It maintains simulations of algorithmsA and
R on inputsσA andσR respectively. Whenever either of these algorithms decides to reject a request,
that request is marked. TimestA and tR advance in phases, pausing and resuming the simulations as
necessary so that max{tA, tR} = t at timet. Specifically, phasek≥ 0 has anR subphase, during which
time tR advances untilCOSTR(σR) = 4k, followed by anA subphase, during which timetA advances
until BENEFITA(σA) = 8 ·4k (note that a subphase may correspond to an empty set of requests). When
a new request arrives,RO accepts it if the resulting set of accepted requests is feasible. While the
resulting set is not feasible,RO preempts an arbitrary marked request (some such request must exist
since max{tA, tR} = t). The idea of using marks to delay rejections as long as possible is calledlazy
rejection.

4.1 Analysis of rejections

To analyze rejections, we first show that the algorithm maintains the invariant thatBENEFITA(σA) ≤
32COSTR(σR). (If eitherAorR is randomized, then this statement is with respect to the specific execution
of each algorithm performed byRO.) During the firstRsubphase, the inequality holds vacuously because
BENEFITA(σA) = 0. During the firstA subphase,COSTR(σR) = 1 andBENEFITA(σA)≤ 8. Finally, during
phases after the first,COSTR(σR)≥ 4k−1 andBENEFITA(σA)≤ 8·4k.

Using the above inequality, we can boundCOSTA(σA) from above by

COSTA(σA) ≤ tA = COSTOPT(σA)+ BENEFITOPT(σA)
≤ COSTOPT(σA)+cAE

[
BENEFITA(σA)

]
≤ COSTOPT(σA)+32cAE

[
COSTR(σR)

]
.

Thus, the rejection competitive ratio ofRO is at most

E
[
COSTA(σA)+ COSTR(σR)

]
COSTOPT(σt)

≤ 1+
32cAE

[
COSTR(σR)

]
COSTOPT(σt)

+cR = O(cAcR) .

4.2 Analysis of acceptances

To show that algorithmRO is O(cA)-accept-competitive, we show

BENEFITRO(σt)≥ (1/2)BENEFITA(σt)

for all timest, all inputs, and all sequences of random bits. The desired result then follows from the
competitiveness of algorithmA.

SinceROdoes not reject any requests during the firstRsubphase, it is optimal andBENEFITRO(σt) =
BENEFITA(σt). The firstA subphase begins when algorithmR rejects (or preempts) a requestC. Algo-
rithm ROaccepts the same requests as algorithmA except possibly forC. However,BENEFITRO(σt)≥ 1
sinceRO uses lazy rejection. (This is the only part of the argument in which we use lazy rejection,
but this property is necessary since otherwiseRO may reject every request when it begins the first
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A subphase.) Thus,BENEFITRO(σt) ≥ (1/2)BENEFITA(σt). After the first subphase,COSTR(σR) ≤
(1/2)BENEFITA(σA) sinceCOSTR(σR)≤ 4k andBENEFITA(σA)≥ 8·4k−1 = 2·4k. Using this, we get

BENEFITRO(σt) ≥ t−COSTA(σA)−COSTR(σR)
≥ (t− tA)+ BENEFITA(σA)−COSTR(σR)
≥ (t− tA)+(1/2)BENEFITA(σA) .

SinceBENEFITA cannot increase faster than new requests arrive,BENEFITRO(σt)≥ (1/2)BENEFITA(σt).

5 Combining admission control algorithms

In this section we briefly describe how to combine a collection of online algorithms into one master
algorithm that performs on any input sequence nearly as well as the best algorithm from the collection.
This is done separately for the acceptance problem and for the rejection problem. Results of this form
already exist in the literature [2, 7, 8, 11] but our main point here is that (a) these known techniques can
be applied in our abstract model, and (b) using our main result we can combine the two master algorithms
that result into one combined algorithm that guarantees both rejection and acceptance competitiveness.

The main ingredient in the combining algorithms is the process for switching between algorithms.
Note that switching algorithms might mean that we need to preempt some or all requests that we cur-
rently serve. In fact, the combining algorithms have a very different structure, depending on whether
they are minimizing the number of rejected requests or maximizing the number of accepted requests.
The algorithms to be combined can be either randomized or deterministic.

5.1 Combining algorithms to minimize rejection

First we show how to combinek (possibly preemptive) online algorithmsR1,R2, . . . ,Rk into a mas-
ter algorithm that for any sequence is reject-competitive with the best algorithm among thek for the
given sequence. For a sequence of requestsσ let COST∗(σ) = mini COSTRi (σ). We construct a deter-
ministic preemptive online combining algorithmREJdet such that for anyσ , we haveCOSTREJdet(σ) =
O(kCOST∗(σ)). We also provide a randomized preemptive online algorithmREJrand that guarantees

E
[
COSTREJrand(σ)

]
= O(COST∗(σ) logk) .

The deterministic algorithmREJdet uses a simple greedy strategy. Let min(t) = min{COSTRi (σt)}.
The algorithmREJdet at timet follows one of the algorithms that made fewest rejections, i.e.min(t).
It preempts all the requests that the selected algorithm rejected or preempted. In the worst caseREJdet

might rejectk ·min(t) requests up to timet, establishing the following theorem.

Theorem 5.1. The deterministic algorithm REJdet rejects at most kCOST∗(σ) for any sequenceσ of
requests.

The randomized algorithmREJrand uses a simple doubling strategy. Initially, it accepts all requests
as long as possible with no rejection and then setsλ = 1. When it is not possible to avoid a rejection,
it chooses a randomi such thatCOSTRi (σ)≤ λ . Whenever the conditionCOSTRi (σ)≤ λ is violated, it
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setsλ ← 2λ and chooses a randomi such thatRi(σ) ≤ λ . (If such a value ofi does not exist then the
condition is immediately violated and we double the value ofλ .)

To bound the performance of this algorithm, we observe that our problem can be reduced to the
problem oflayered graph traversalof disjoint paths tied together at a common source. The input for
layered graph traversal is a weighted graph whose vertices are partitioned into setsL0,L1, . . . ,Lk and
whose edges connect vertices in sets with adjacent indices. The objective is to move from a specified
source vertex inL0 to a specified target vertex inLk. Initially, neither the target vertex nor the edge
weights are known to the algorithm. The weights of edges betweenLi andLi+1 become known when the
algorithm visits a vertex inLi . The target vertex becomes known when the algorithm visits a vertex in
Lk−1. In the disjoint path version of the problem, the graph is the union of paths that are disjoint except
for the source vertex.

Our problem can be reduced to disjoint paths layered graph traversal on a graph where each path
corresponds to an algorithm and theith edge on a path has weight equal to the number of requests
rejected when theith request arrives. (Note that this cost can be more than one if the algorithms being
combined are preemptive since the arrival of a request may cause some previously-accepted requests to
be preempted.) Actually, the reduction is to a slight variation of the problem since we are allowed to
return to the common source with no cost and may only need to pay part of the cost when we switch
to another path. This can only reduce the competitive ratio since it may help the online algorithm but it
does not help the optimum (since the optimum does not switch between paths). Applying the results of
Fiat et al. [11] and Azar et al. [7] to our problem gives the following theorem:

Theorem 5.2. The expected number of requests rejected by randomized algorithm REJrand is at most
O(logk) timesCOST∗(σ) for any sequence of requestsσ .

Clearly, we can apply the above theorems to a case where we havek algorithms and for each input
sequenceσ there existsi such thatE

[
COSTRi (σ)

]
≤ cRCOSTOPT(σ):

Corollary 5.3. When constructed from k algorithms such that for any input sequence at least one al-
gorithm is cR-reject-competitive for that sequence, the deterministic algorithm REJdet is O(cRk)-reject-
competitive and the randomized algorithm REJrand is O(cR logk)-reject-competitive.

5.2 Combining algorithms to maximize acceptance

Now we show how to combinek non-preemptive algorithmsA1,A2, . . . ,Ak into a master algorithm that
is accept-competitive with the best algorithm among thek for the given sequence. For a sequence of
requestsσ let A∗(σ) = maxi BENEFITAi (σ). We construct one randomized preemptive online algorithm
ACCsuch that for anyσ we have

E
[
BENEFITACC(σ)

]
≥ A∗(σ)/ logk .

As before, we combine the algorithms by switching between them. When switching to a certain
algorithm we might need to preempt all requests we currently have, and in the worst case we are left with
a single accepted request. This suggests that there is no deterministic competitive combining algorithm
so we use randomization in our combining algorithm.
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The basic idea is that our generic model is a variant of the problem of picking a winner [2]. In the
problem of picking a winner we havek options (algorithms, in our setting). At any time some options
yield a benefit of one, while the others have a benefit of zero. (Negative benefits would be possible if
the algorithms being combined are preemptive, which is why we restrict our attention to non-preemptive
algorithms.) The decision maker (our combining algorithm) switches between options. When switch-
ing, the decision maker loses all its current benefit and gets, from that time on, the benefit of the current
option. Switching between options corresponds in our setting to switching between algorithms while
possibly preempting all currently accepted requests. It is shown by Awerbuch et al. [2] that using poly-
logarithmic number of switches, the decision maker achieves benefit at least aO(logk) fraction of the
benefit yielded by the best choice with high probability. Therefore,

Theorem 5.4. The expected number of requests accepted by the randomized algorithm ACC is at least
a O(logk) fraction of A∗(σ) for any sequence of requestsσ .

As before, we can apply the above theorem to the case where we havek algorithms and for each
input sequenceσ there existsi such thatAi(σ)≥OPT(σ)/cA:

Corollary 5.5. When constructed from k algorithms such that for any input sequence at least one algo-
rithm is cA-accept-competitive for that sequence, the algorithm ACC is O(cA logk)-accept-competitive.

In fact, by slightly modifying the algorithm of Awerbuch et al. [2], allowing the combining algorithm
to disengage from all options, one can extend these results to the case of preemptive algorithms.

6 Conclusions and open problems

We have described procedures that take an algorithmA with competitive ratiocA for benefit, and an
algorithmRwith competitive ratiocR for cost, produce an online algorithm that simultaneously achieves
competitive ratioO(cA) for benefit andO(cAcR) for cost. We do not know if it is possible in general to
do better. In particular, an ideal result in this direction would achieveO(cA) for benefit andO(cR) for
cost simultaneously.
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