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Abstract

This work concerns learning probabilistic models for ranking data in a heteroge-
neous population. The specific problem we study is learning the parameters of a
Mallows Mixture Model. Despite being widely studied, current heuristics for this
problem do not have theoretical guarantees and can get stuck in bad local optima.
We present the first polynomial time algorithm which provably learns the param-
eters of a mixture of two Mallows models. A key component of our algorithm is
a novel use of tensor decomposition techniques to learn the top-k prefix in both
the rankings. Before this work, even the question of identifiability in the case of a
mixture of two Mallows models was unresolved.

1 Introduction

Probabilistic modeling of ranking data is an extensively studied problem with a rich body of past
work [1, 2, 3, 4, 5, 6, 7, 8, 9]. Ranking using such models has applications in a variety of areas
ranging from understanding user preferences in electoral systems and social choice theory, to more
modern learning tasks in online web search, crowd-sourcing and recommendation systems. Tradi-
tionally, models for generating ranking data consider a homogeneous group of users with a central
ranking (permutation) π∗ over a set of n elements or alternatives. (For instance, π∗ might corre-
spond to a “ground-truth ranking” over a set of movies.) Each individual user generates her own
ranking as a noisy version of this one central ranking and independently from other users. The most
popular ranking model of choice is the Mallows model [1], where in addition to π∗ there is also a
scaling parameter φ ∈ (0, 1). Each user picks her ranking π w.p. proportional to φdkt(π,π

∗) where
dkt(·) denotes the Kendall-Tau distance between permutations (see Section 2).1 We denote such a
model asMn(φ, π∗).

The Mallows model and its generalizations have received much attention from the statistics, political
science and machine learning communities, relating this probabilistic model to the long-studied
work about voting and social choice [10, 11]. From a machine learning perspective, the problem is
to find the parameters of the model — the central permutation π∗ and the scaling parameter φ, using
independent samples from the distribution. There is a large body of work [4, 6, 5, 7, 12] providing
efficient algorithms for learning the parameters of a Mallows model.
∗This work was supported in part by NSF grants CCF-1101215, CCF-1116892, the Simons Institute, and a
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1In fact, it was shown [1] that this model is the result of the following simple (inefficient) algorithm: rank
every pair of elements randomly and independently s.t. with probability 1

1+φ
they agree with π∗ and with

probability φ
1+φ

they don’t; if all
(
n
2

)
pairs agree on a single ranking – output this ranking, otherwise resample.
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In many scenarios, however, the population is heterogeneous with multiple groups of people, each
with their own central ranking [2]. For instance, when ranking movies, the population may be di-
vided into two groups corresponding to men and women; with men ranking movies with one under-
lying central permutation, and women ranking movies with another underlying central permutation.
This naturally motivates the problem of learning a mixture of multiple Mallows models for rankings,
a problem that has received significant attention [8, 13, 3, 4]. Heuristics like the EM algorithm have
been applied to learn the model parameters of a mixture of Mallows models [8]. The problem has
also been studied under distributional assumptions over the parameters, e.g. weights derived from
a Dirichlet distribution [13]. However, unlike the case of a single Mallows model, algorithms with
provable guarantees have remained elusive for this problem.

In this work we give the first polynomial time algorithm that provably learns a mixture of two
Mallows models. The input to our algorithm consists of i.i.d random rankings (samples), with
each ranking drawn with probability w1 from a Mallows modelMn(φ1, π1), and with probability
w2(= 1− w1) from a different modelMn(φ2, π2).

Informal Theorem. Given sufficiently many i.i.d samples drawn from a mixture of two Mallows
models, we can learn the central permutations π1, π2 exactly and parameters φ1, φ2, w1, w2 up to
ε-accuracy in time poly(n, (min{w1, w2})−1, 1

φ1(1−φ1)
, 1
φ2(1−φ2)

, ε−1).

It is worth mentioning that, to the best of our knowledge, prior to this work even the question of iden-
tifiability was unresolved for a mixture of two Mallows models; given infinitely many i.i.d. samples
generated from a mixture of two distinct Mallow models with parameters {w1, φ1, π1, w2, φ2, π2}
(with π1 6= π2 or φ1 6= φ2), could there be a different set of parameters {w′1, φ′1, π′1, w′2, φ′2, π′2}
which explains the data just as well. Our result shows that this is not the case and the mixture is
uniquely identifiable given polynomially many samples.

Intuition and a Naı̈ve First Attempt. It is evident that having access to sufficiently many random
samples allows one to learn a single Mallows model. Let the elements in the permutations be denoted
as {e1, e2, . . . , en}. In a single Mallows model, the probability of element ei going to position j (for
j ∈ [n]) drops off exponentially as one goes farther from the true position of ei [12]. So by assigning
each ei the most frequent position in our sample, we can find the central ranking π∗.

The above mentioned intuition suggests the following clustering based approach to learn a mixture
of two Mallows models — look at the distribution of the positions where element ei appears. If the
distribution has 2 clearly separated “peaks” then they will correspond to the positions of ei in the
central permutations. Now, dividing the samples according to ei being ranked in a high or a low
position is likely to give us two pure (or almost pure) subsamples, each one coming from a single
Mallows model. We can then learn the individual models separately. More generally, this strategy
works when the two underlying permutations π1 and π2 are far apart which can be formulated as
a separation condition.2 Indeed, the above-mentioned intuition works only under strong separator
conditions: otherwise, the observation regarding the distribution of positions of element ei is no
longer true 3. For example, if π1 ranks ei in position k and π2 ranks ei in position k + 2, it is likely
that the most frequent position of ei is k+1, which differs from ei’s position in either permutations!

Handling arbitrary permutations. Learning mixture models under no separation requirements is
a challenging task. To the best of our knowledge, the only polynomial time algorithm known is
for the case of a mixture of a constant number of Gaussians [17, 18]. Other works, like the recent
developments that use tensor based methods for learning mixture models without distance-based
separation condition [19, 20, 21] still require non-degeneracy conditions and/or work for specific
sub cases (e.g. spherical Gaussians).

These sophisticated tensor methods form a key component in our algorithm for learning a mixture
of two Mallows models. This is non-trivial as learning over rankings poses challenges which are
not present in other widely studied problems such as mixture of Gaussians. For the case of Gaus-
sians, spectral techniques have been extremely successful [22, 16, 19, 21]. Such techniques rely on
estimating the covariances and higher order moments in terms of the model parameters to detect
structure and dependencies. On the other hand, in the mixture of Mallows models problem there is

2Identifying a permutation π over n elements with a n-dimensional vector (π(i))i, this separation condition
can be roughly stated as ‖π1 − π2‖∞ = Ω̃

(
(min{w1, w2})−1 · (min{log(1/φ1), log(1/φ2)}))−1

)
.

3Much like how other mixture models are solvable under separation conditions, see [14, 15, 16].
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no “natural” notion of a second/third moment. A key contribution of our work is defining analogous
notions of moments which can be represented succinctly in terms of the model parameters. As we
later show, this allows us to use tensor based techniques to get a good starting solution.

Overview of Techniques. One key difficulty in arguing about the Mallows model is the lack of
closed form expressions for basic propositions like “the probability that the i-th element of π∗ is
ranked in position j.” Our first observation is that the distribution of a given element appearing at
the top, i.e. the first position, behaves nicely. Given an element e whose rank in the central ranking
π∗ is i, the probability that a ranking sampled from a Mallows model ranks e as the first element is
∝ φi−1. A length n vector consisting of these probabilities is what we define as the first moment
vector of the Mallows model. Clearly by sorting the coordinate of the first moment vector, one can
recover the underlying central permutation and estimate φ. Going a step further, consider any two
elements which are in positions i, j respectively in π∗. We show that the probability that a ranking
sampled from a Mallows model ranks {i, j} in (any of the 2! possible ordering of) the first two
positions is ∝ f(φ)φi+j−2. We call the n × n matrix of these probabilities as the second moment
matrix of the model (analogous to the covariance matrix). Similarly, we define the 3rd moment
tensor as the probability that any 3 elements appear in positions {1, 2, 3}. We show in the next
section that in the case of a mixture of two Mallows models, the 3rd moment tensor defined this way
has a rank-2 decomposition, with each rank-1 term corresponds to the first moment vector of each of
two Mallows models. This motivates us to use tensor-based techniques to estimate the first moment
vectors of the two Mallows models, thus learning the models’ parameters.

The above mentioned strategy would work if one had access to infinitely many samples from the
mixture model. But notice that the probabilities in the first-moment vectors decay exponentially, so
by using polynomially many samples we can only recover a prefix of length ∼ log1/φ n from both
rankings. This forms the first part of our algorithm which outputs good estimates of the mixture
weights, scaling parameters φ1, φ2 and prefixes of a certain size from both the rankings. Armed
with w1, w2 and these two prefixes we next proceed to recover the full permutations π1 and π2.
In order to do this, we take two new fresh batches of samples. On the first batch, we estimate
the probability that element e appears in position j for all e and j. On the second batch, which is
noticeably larger than the first, we estimate the probability that e appears in position j conditioned
on a carefully chosen element e∗ appearing as the first element. We show that this conditioning is
almost equivalent to sampling from the same mixture model but with rescaled weights w′1 and w′2.
The two estimations allow us to set a system of two linear equations in two variables: f (1) (e→ j) –
the probability of element e appearing in position j in π1, and f (2) (e→ j) — the same probability
for π2. Solving this linear system we find the position of e in each permutation.

The above description contains most of the core ideas involved in the algorithm. We need two
additional components. First, notice that the 3rd moment tensor is not well defined for triplets
(i, j, k), when i, j, k are not all distinct and hence cannot be estimated from sampled data. To get
around this barrier we consider a random partition of our element-set into 3 disjoint subsets. The
actual tensor we work with consists only of triplets (i, j, k) where the indices belong to different
partitions. Secondly, we have to handle the case where tensor based-technique fails, i.e. when the
3rd moment tensor isn’t full-rank. This is a degenerate case. Typically, tensor based approaches for
other problems cannot handle such degenerate cases. However, in the case of the Mallows mixture
model, we show that such a degenerate case provides a lot of useful information about the problem.
In particular, it must hold that φ1 ' φ2, and π1 and π2 are fairly close — one is almost a cyclic
shift of the other. To show this we use a characterization of the when the tensor decomposition is
unique (for tensors of rank 2), and we handle such degenerate cases separately. Altogether, we find
the mixture model’s parameters with no non-degeneracy conditions.

Lower bound under the pairwise access model. Given that a single Mallows model can be learned
using only pairwise comparisons, a very restricted access to each sample, it is natural to ask, “Is it
possible to learn a mixture of Mallows models from pairwise queries?”. This next example shows
that we cannot hope to do this even for a mixture of two Mallows models. Fix some φ and π and
assume our sample is taken using mixing weights of w1 = w2 = 1

2 from the two Mallows models
Mn(φ, π) andMn(φ, rev(π)), where rev(π) indicates the reverse permutation (the first element of
π is the last of rev(π), the second is the next-to-last, etc.) . Consider two elements, e and e′. Using
only pairwise comparisons, we have that it is just as likely to rank e > e′ as it is to rank e′ > e and
so this case cannot be learned regardless of the sample size.
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3-wise queries. We would also like to stress that our algorithm does not need full access to the
sampled rankings and instead will work with access to certain 3-wise queries. Observe that the first
part of our algorithm, where we recover the top elements in each of the two central permutations,
only uses access to the top 3 elements in each sample. In that sense, we replace the pairwise query
“do you prefer e to e′?” with a 3-wise query: “what are your top 3 choices?” Furthermore, the
second part of the algorithm (where we solve a set of 2 linear equations) can be altered to support
3-wise queries of the (admittedly, somewhat unnatural) form “if e∗ is your top choice, do you prefer
e to e′?” For ease of exposition, we will assume full-access to the sampled rankings.

Future Directions. Several interesting directions come out of this work. A natural next step is to
generalize our results to learn a mixture of k Mallows models for k > 2. We believe that most
of these techniques can be extended to design algorithms that take poly(n, 1/ε)k time. It would
also be interesting to get algorithms for learning a mixture of k Mallows models which run in time
poly(k, n), perhaps in an appropriate smoothed analysis setting [23] or under other non-degeneracy
assumptions. Perhaps, more importantly, our result indicates that tensor based methods which have
been very popular for learning problems, might also be a powerful tool for tackling ranking-related
problems in the fields of machine learning, voting and social choice.

Organization. In Section 2 we give the formal definition of the Mallow model and of the problem
statement, as well as some useful facts about the Mallow model. Our algorithm and its numerous
subroutines are detailed in Section 3. In Section 4 we experimentally compare our algorithm with a
popular EM based approach for the problem. The complete details of our algorithms and proofs are
included in the supplementary material.

2 Notations and Properties of the Mallows Model

Let Un = {e1, e2, . . . , en} be a set of n distinct elements. We represent permutations over the
elements in Un through their indices [n]. (E.g., π = (n, n − 1, . . . , 1) represents the permutation
(en, en−1, . . . , e1).) Let posπ(ei) = π−1(i) refer to the position of ei in the permutation π. We
omit the subscript π when the permutation π is clear from context. For any two permutations π, π′
we denote dkt(π, π′) as the Kendall-Tau distance [24] between them (number of pairwise inversions
between π, π′). Given some φ ∈ (0, 1) we denote Zi(φ) = 1−φi

1−φ , and partition function Z[n](φ) =∑
π φ

dkt(π,π0) =
∏n
i=1 Zi(φ) (see Section 6 in the supplementary material).

Definition 2.1. [Mallows model (Mn(φ, π0)).] Given a permutation π0 on [n] and a parameter
φ ∈ (0, 1),4, a Mallows model is a permutation generation process that returns permutation π w.p.

Pr (π) = φdkt(π,π0)/Z[n](φ)

In Section 6 we show many useful properties of the Mallows model which we use repeatedly
throughout this work. We believe that they provide an insight to Mallows model, and we advise
the reader to go through them. We proceed with the main definition.

Definition 2.2. [Mallows Mixture model w1Mn(φ1, π1) ⊕ w2Mn(φ2, π2).] Given parameters
w1, w2 ∈ (0, 1) s.t. w1 + w2 = 1, parameters φ1, φ2 ∈ (0, 1) and two permutations π1, π2, we call
a mixture of two Mallows models to be the process that with probabilityw1 generates a permutation
fromM (φ1, π1) and with probability w2 generates a permutation fromM (φ2, π2).

Our next definition is crucial for our application of tensor decomposition techniques.

Definition 2.3. [Representative vectors.] The representative vector of a Mallows model is a vector
where for every i ∈ [n], the ith-coordinate is φposπ(ei)−1/Zn.
The expression φposπ(ei)−1/Zn is precisely the probability that a permutation generated by a model
Mn(φ, π) ranks element ei at the first position (proof deferred to the supplementary material).
Given that our focus is on learning a mixture of two Mallows modelsMn(φ1, π1) andMn(φ2, π2),
we denote x as the representative vector of the first model, and y as the representative vector of the
latter. Note that retrieving the vectors x and y exactly implies that we can learn the permutations π1
and π2 and the values of φ1, φ2.

4It is also common to parameterize using β ∈ R+ where φ = e−β . For small β we have (1− φ) ≈ β.
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Finally, let f (i→ j) be the probability that element ei goes to position j according to mixture
model. Similarly f (1) (i→ j) be the corresponding probabilities according to Mallows modelM1

andM2 respectively. Hence, f (i→ j) = w1f
(1) (i→ j) + w2f

(2) (i→ j).

Tensors: Given two vectors u ∈ Rn1 , v ∈ Rn2 , we define u⊗v ∈ Rn1×n2 as the matrix uvT . Given
also z ∈ Rn3 then u⊗v⊗z denotes the 3-tensor (of rank- 1) whose (i, j, k)-th coordinate is uivjzk.
A tensor T ∈ Rn1×n2×n3 has a rank-r decomposition if T can be expressed as

∑
i∈[r] ui ⊗ vi ⊗ zi

where ui ∈ Rn1 , vi ∈ Rn2 , zi ∈ Rn3 . Given two vectors u, v ∈ Rn, we use (u; v) to denote the
n× 2 matrix that is obtained with u and v as columns.

We now define first, second and third order statistics (frequencies) that serve as our proxies for the
first, second and third order moments.
Definition 2.4. [Moments] Given a Mallows mixture model, we denote for every i, j, k ∈ [n]

• Pi = Pr (pos (ei) = 1) is the probability that element ei is ranked at the first position

• Pij = Pr (pos ({ei, ej}) = {1, 2}), is the probability that ei, ej are ranked at the first two
positions (in any order)

• Pijk = Pr (pos ({ei, ej , ek}) = {1, 2, 3}) is the probability that ei, ej , ek are ranked at
the first three positions (in any order).

For convenience, let P represent the set of quantities (Pi, Pij , Pijk)1≤i<j<k≤n. These can be esti-
mated up to any inverse polynomial accuracy using only polynomial samples. The following simple,
yet crucial lemma relates P to the vectors x and y, and demonstrates why these statistics and repre-
sentative vectors are ideal for tensor decomposition.
Lemma 2.5. Given a mixture w1M (φ1, π1)⊕ w2M (φ2, π2) let x, y and P be as defined above.

1. For any i it holds that Pi = w1xi + w2yi.

2. Denote c2(φ) = Zn(φ)
Zn−1(φ)

1+φ
φ . Then for any i 6= j it holds that Pij = w1c2(φ1)xixj +

w2c2(φ2)yiyj .

3. Denote c3(φ) =
Z2
n(φ)

Zn−1(φ)Zn−2(φ)
1+2φ+2φ2+φ3

φ3 . Then for any distinct i, j, k it holds that
Pijk = w1c3(φ1)xixjxk + w2c3(φ2)yiyjyk.

Clearly, if i = j then Pij = 0, and if i, j, k are not all distinct then Pijk = 0.

In addition, in Lemma 13.2 in the supplementary material we prove the bounds c2(φ) = O(1/φ)
and c3(φ) = O(φ−3).

Partitioning Indices: Given a partition of [n] into Sa, Sb, Sc, let x(a), y(a) be the representative
vectors x, y restricted to the indices (rows) in Sa (similarly for Sb, Sc). Then the 3-tensor
T (abc) ≡ (Pijk)i∈Sa,j∈Sb,k∈Sc = w1c3(φ1)x(a) ⊗ x(b) ⊗ x(c) + w2c3(φ2)y(a) ⊗ y(b) ⊗ y(c).

This tensor has a rank-2 decomposition, with one rank-1 term for each Mallows model. Finally for
convenience we define the matrix M = (x; y), and similarly define the matrices Ma = (x(a); y(a)),
Mb = (x(b); y(b)), Mc = (x(c); y(c)).

Error Dependency and Error Polynomials. Our algorithm gives an estimate of the parameters
w, φ that we learn in the first stage, and we use these estimates to figure out the entire central rankings
in the second stage. The following lemma essentially allows us to assume instead of estimations, we
have access to the true values of w and φ.
Lemma 2.6. For every δ > 0 there exists a function f(n, φ, δ) s.t. for every n, φ and φ̂ satisfying

|φ−φ̂| < δ
f(n,φ,δ) we have that the total-variation distance satisfies ‖M (φ, π)−M

(
φ̂, π

)
‖TV ≤ δ.

For the ease of presentation, we do not optimize constants or polynomial factors in all parameters.
In our analysis, we show how our algorithm is robust (in a polynomial sense) to errors in various
statistics, to prove that we can learn with polynomial samples. However, the simplification when
there are no errors (infinite samples) still carries many of the main ideas in the algorithm — this in
fact shows the identifiability of the model, which was not known previously.
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3 Algorithm Overview

Algorithm 1 LEARN MIXTURES OF TWO MALLOWS MODELS, Input: a set S of N samples from
w1M (φ1, π1)⊕ w2M (φ2, π2), Accuracy parameters ε, ε2.

1. Let P̂ be the empirical estimate of P on samples in S.
2. Repeat O(logn) times:

(a) Partition [n] randomly into Sa, Sb and Sc. Let T (abc) =
(
P̂ijk

)
i∈Sa,j∈Sb,k∈Sc

.

(b) Run TENSOR-DECOMP from [25, 26, 23] to get a decomposition of T (abc) = u(a) ⊗ u(b) ⊗
u(c) + v(a) ⊗ v(b) ⊗ v(c).

(c) If min{σ2(u(a); v(a)), σ2(u(b); v(b)), σ2(u(c); v(c))} > ε2
(In the non-degenerate case these matrices are far from being rank-1 matrices in the sense that
their least singular value is bounded away from 0.)

i. Obtain parameter estimates (ŵ1, ŵ2, φ̂1, φ̂2 and prefixes of the central rankings π1
′, π2

′)

from INFER-TOP-K(P̂ , M ′a , M ′b , M
′
c), with M ′i = (u(i); v(i)) for i ∈ {a, b, c}.

ii. Use RECOVER-REST to find the full central rankings π̂1, π̂2.
Return SUCCESS and output (ŵ1, ŵ2, φ̂1, φ̂2, π̂1, π̂2).

3. Run HANDLE DEGENERATE CASES (P̂ ).

Our algorithm (Algorithm 1) has two main components. First we invoke a decomposition algo-
rithm [25, 26, 23] over the tensor T (abc), and retrieve approximations of the two Mallows models’
representative vectors which in turn allow us to approximate the weight parameters w1, w2, scale
parameters φ1, φ2, and the top few elements in each central ranking. We then use the inferred pa-
rameters to recover the entire rankings π1 and π2. Should the tensor-decomposition fail, we invoke
a special procedure to handle such degenerate cases. Our algorithm has the following guarantee.
Theorem 3.1. Let w1M (φ1, π1) ⊕ w2M (φ2, π2) be a mixture of two Mallows models and let
wmin = min{w1, w2} and φmax = max{φ1, φ2} and similarly φmin = min{φ1, φ2}. Denote
ε0 =

w2
min(1−φmax)

10

16n22φ2
max

. Then, given any 0 < ε < ε0, suitably small ε2 = poly( 1
n , ε, φmin, wmin)

and N = poly
(
n, 1

min{ε,ε0} ,
1

φ1(1−φ1)
, 1
φ2(1−φ2)

, 1
w1
, 1
w2

)
i.i.d samples from the mixture model,

Algorithm 1 recovers, in poly-time and with probability ≥ 1 − n−3, the model’s parameters with
w1, w2, φ1, φ2 recovered up to ε-accuracy.
Next we detail the various subroutines of the algorithm, and give an overview of the analysis for
each subroutine. The full analysis is given in the supplementary material.

The TENSOR-DECOMP Procedure. This procedure is a straight-forward invocation of the al-
gorithm detailed in [25, 26, 23]. This algorithm uses spectral methods to retrieve the two vec-
tors generating the rank-2 tensor T (abc). This technique works when all factor matrices Ma =
(x(a); y(a)),Mb = (x(b); y(b)),Mc = (x(c); y(c)) are well-conditioned. We note that any algorithm
that decomposes non-symmetric tensors which have well-conditioned factor matrices, can be used
as a black box.
Lemma 3.2 (Full rank case). In the conditions of Theorem 3.1, suppose our algorithm picks
some partition Sa, Sb, Sc such that the matrices Ma,Mb,Mc are all well-conditioned — i.e. have
σ2(Ma), σ2(Mb), σ2(Mc) ≥ ε′2 ≥ poly( 1

n , ε, ε2, w1, w2) then with high probability, Algorithm
TENSORDECOMP of [25] finds M ′a = (u(a); v(a)),M ′b = (u(b); v(b)),M ′c = (u(c); v(c)) such
that for any τ ∈ {a, b, c}, we have u(τ) = ατx

(τ) + z
(τ)
1 and v(τ) = βτy

(τ) + z
(τ)
2 ; with

‖z(τ)1 ‖, ‖z
(τ)
2 ‖ ≤ poly( 1

n , ε, ε2, wmin) and, σ2(M ′τ ) > ε2 for τ ∈ {a, b, c}.

The INFER-TOP-K procedure. This procedure uses the output of the tensor-decomposition to
retrieve the weights, φ’s and the representative vectors. In order to convert u(a), u(b), u(c) into an
approximation of x(a), x(b), x(c) (and similarly with v(a), v(b), v(c) and y(a), y(b), y(c)), we need to
find a good approximation of the scalars αa, αb, αc. This is done by solving a certain linear system.
This also allows us to estimate ŵ1, ŵ2. Given our approximation of x, it is easy to find φ1 and the top
first elements of π1 — we sort the coordinates of x, setting π′1 to be the first elements in the sorted
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vector, and φ1 as the ratio between any two adjacent entries in the sorted vector. We refer the reader
to Section 8 in the supplementary material for full details. The RECOVER-REST procedure. The
algorithm for recovering the remaining entries of the central permutations (Algorithm 2) is more
involved.

Algorithm 2 RECOVER-REST, Input: a set S of N samples from w1M (φ1, π1)⊕w2M (φ2, π2),
parameters ŵ1, ŵ2, φ̂1, φ̂2 and initial permutations π̂1, π̂2, and accuracy parameter ε.

1. For elements in π̂1 and π̂2, compute representative vectors x̂ and ŷ using estimates φ̂1 and φ̂2.
2. Let |π̂1| = r1, |π̂2| = r2 and wlog r1 ≥ r2.

If there exists an element ei such that posπ̂1
(ei) > r1 and posπ̂2

(ei) < r2/2 (or in the symmetric
case), then:
Let S1 be the subsample with ei ranked in the first position.

(a) Learn a single Mallows model on S1 to find π̂1. Given π̂1 use dynamic programming to find π̂2

3. Let ei∗ be the first element in π̂1 having its probabilities of appearing in first place in π1 and π2 differ

by at least ε. Define ŵ′1 =
(

1 + ŵ2
ŵ1

ŷ(ei∗ )
x̂(ei∗ )

)−1

and ŵ′2 = 1− ŵ′1. Let S1 be the subsample with ei∗

ranked at the first position.
4. For each ei that doesn’t appear in either π̂1 or π̂2 and any possible position j it might belong to

(a) Use S to estimate f̂i,j = Pr (ei goes to position j), and S1 to estimate f̂ (i→ j|ei∗ → 1) =
Pr (ei goes to position j|ei∗ 7→ 1).

(b) Solve the system

f̂ (i→ j) = ŵ1f
(1) (i→ j) + ŵ2f

(2) (i→ j) (1)

f̂ (i→ j|ei∗ → 1) = ŵ′1f
(1) (i→ j) + ŵ′2f

(2) (i→ j) (2)

5. To complete π̂1 assign each ei to position arg maxj{f (1) (i→ j)}. Similarly complete π̂2 using
f (2) (i→ j). Return the two permutations.

Algorithm 2 first attempts to find a pivot — an element ei which appears at a fairly high rank in
one permutation, yet does not appear in the other prefix π̂2. Let Eei be the event that a permutation
ranks ei at the first position. As ei is a pivot, then PrM1

(Eei) is noticeable whereas PrM2
(Eei)

is negligible. Hence, conditioning on ei appearing at the first position leaves us with a subsample in
which all sampled rankings are generated from the first model. This subsample allows us to easily
retrieve the rest of π1. Given π1, the rest of π2 can be recovered using a dynamic programming
procedure. Refer to the supplementary material for details.

The more interesting case is when no such pivot exists, i.e., when the two prefixes of π1 and π2
contain almost the same elements. Yet, since we invoke RECOVER-REST after successfully calling
TENSOR-DECOMP , it must hold that the distance between the obtained representative vectors x̂ and
ŷ is noticeably large. Hence some element ei∗ satisfies |x̂(ei∗) − ŷ(ei∗)| > ε, and we proceed by
setting up a linear system. To find the complete rankings, we measure appropriate statistics to set
up a system of linear equations to calculate f (1) (i→ j) and f (2) (i→ j) up to inverse polynomial
accuracy. The largest of these values

{
f (1) (i→ j)

}
corresponds to the position of ei in the central

ranking ofM1.

To compute the values
{
f (r) (i→ j)

}
r=1,2

we consider f (1) (i→ j|ei∗ → 1) – the probability that
ei is ranked at the jth position conditioned on the element ei∗ ranking first according toM1 (and
resp. forM2). Using w′1 and w′2 as in Algorithm 2, it holds that

Pr (ei → j|ei∗ → 1) = w′1f
(1) (i→ j|ei∗ → 1) + w′2f

(2) (i→ j|ei∗ → 1) .

We need to relate f (r) (i→ j|ei∗ → 1) to f (r) (i→ j). Indeed Lemma 10.1 shows that
Pr (ei → j|ei∗ → 1) is an almost linear equations in the two unknowns. We show that if ei∗ is
ranked above ei in the central permutation, then for some small δ it holds that

Pr (ei → j|ei∗ → 1) = w′1f
(1) (i→ j) + w′2f

(2) (i→ j)± δ
We refer the reader to Section 10 in the supplementary material for full details.
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The HANDLE-DEGENERATE-CASES procedure. We call a mixture model w1M (φ1, π1) ⊕
w2M (φ2, π2) degenerate if the parameters of the two Mallows models are equal, and the edit dis-
tance between the prefixes of the two central rankings is at most two i.e., by changing the positions
of at most two elements in π1 we retrieve π2. We show that unlessw1M (φ1, π1)⊕w2M (φ2, π2) is
degenerate, a random partition (Sa, Sb, Sc) is likely to satisfy the requirements of Lemma 3.2 (and
TENSOR-DECOMP will be successful). Hence, if TENSOR-DECOMP repeatedly fail, we deduce our
model is indeed degenerate. To show this, we characterize the uniqueness of decompositions of rank
2, along with some very useful properties of random partitions. In such degenerate cases, we find
the two prefixes and then remove the elements in the prefixes from U , and recurse on the remaining
elements. We refer the reader to Section 9 in the supplementary material for full details.

4 Experiments
Goal. The main contribution of our paper is devising an algorithm that provably learns any mixture
of two Mallows models. But could it be the case that the previously existing heuristics, even though
they are unproven, still perform well in practice? We compare our algorithm to existing techniques,
to see if, and under what settings our algorithm outperforms them.

Baseline. We compare our algorithm to the popular EM based algorithm of [5], seeing as EM based
heuristics are the most popular way to learn a mixture of Mallows models. The EM algorithm starts
with a random guess for the two central permutations. At iteration t, EM maintains a guess as to
the two Mallows models that generated the sample. First (expectation step) the algorithm assigns a
weight to each ranking in our sample, where the weight of a ranking reflects the probability that it
was generated from the first or the second of the current Mallows models. Then (the maximization
step) the algorithm updates its guess of the models’ parameters based on a local search – minimizing
the average distance to the weighted rankings in our sample. We comment that we implemented
only the version of our algorithm that handles non-degenerate cases (more interesting case). In our
experiment the two Mallows models had parameters φ1 6= φ2, so our setting was never degenerate.

Setting. We ran both the algorithms on synthetic data comprising of rankings of size n = 10. The
weights were sampled u.a.r from [0, 1], and the φ-parameters were sampled by sampling ln(1/φ)
u.a.r from [0, 5]. For d ranging from 0 to

(
n
2

)
we generated the two central rankings π1 and π2 to

be within distance d in the following manner. π1 was always fixed as (1, 2, 3, . . . , 10). To describe
π2, observe that it suffices to note the number of inversion between 1 and elements 2, 3, ..., 10; the
number of inversions between 2 and 3, 4, ..., 10 and so on. So we picked u.a.r a non-negative integral
solution to x1 + . . .+xn = d which yields a feasible permutation and let π2 be the permutation that
it details. Using these models’ parameters, we generated N = 5 · 106 random samples.

Evaluation Metric and Results. For each value of d, we ran both algorithms 20 times and counted
the fraction of times on which they returned the true rankings that generated the sample. The results
of the experiment for rankings of size n = 10 are in Table 1. Clearly, the closer the two centrals
rankings are to one another, the worst EM performs. On the other hand, our algorithm is able to
recover the true rankings even at very close distances. As the rankings get slightly farther, our algo-
rithm recovers the true rankings all the time. We comment that similar performance was observed
for other values of n as well. We also comment that our algorithm’s runtime was reasonable (less
than 10 minutes on a 8-cores Intel x86 64 computer). Surprisingly, our implementation of the EM
algorithm typically took much longer to run — due to the fact that it simply did not converge.

distance between rankings success rate of EM success rate of our algorithm
0 0% 10%
2 0% 10%
4 0% 40%
8 10% 70%

16 30% 60 %
24 30% 100%
30 60% 100%
35 60% 100%
40 80% 100%
45 60% 100%

Table 1: Results of our experiment.
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6 Properties of the Mallows Model

In this section, we outline some of the properties of the Mallows model. Some of these proper-
ties were already shown before (see [27]), but we add them in this appendix for completion. Our
algorithm and its analysis rely heavily on these properties.

Notation. Given a Mallows modelMn (φ, π0) we denote Zn = 1−φn
1−φ , and we denote Z[n] as the

sum all weights of all permutations: Z[n] =
∑
π φ

dkt(π,π0). Given an element e, we abuse notation
and denote by π \e the permutation we get by omitting the element e (projecting π over all elements
but e). The notation π = (e, σ) denotes a permutation whose first element is e and elements 2
through n are as given by the permutation over n− 1 elements σ.

The first property shows that for any element e, conditioning on e being ranked at the first position
results in a reduced Mallows model.
Lemma 6.1. Let M (φ, π) be a Mallows model over [n]. For any i, the conditional distribu-
tion (given that i is ranked at position 1) of rankings over [n] \ {i}, i.e. Pr (π|π(i) = 1) is the
same as that ofM (φ, π \ i).

The above lemma can be extended to conditioning on prefixes as follows.
Lemma 6.2. Let M (φ, π) be a Mallows model over [n]. For any prefix I of π, the marginal
distribution of rankings over [n] \ I is the same as that ofM (φ, π \ I).

The following lemma describe a useful trick that allows us to simulate the addition of another el-
ement that is added to the start of the central ranking π, using the knowledge of φ. This will be
particularly useful to simplify certain degenerate cases.
Lemma 6.3. LetM (φ, π) be a Mallows model over [n]. Given oracle access toM (φ, π) and a
new element e0 /∈ [n] we can efficiently simulate an oracle access toM (φ, (e0, π)).

6.1 Proofs of Lemmas 6.1, 6.2, 6.3

Observation. All of the properties we state and prove in this appendix are based on the following
important observation. Given two permutations π and π′, denote the first element in π as e1. Then
we have that

#pairs (e1, ei)i 6=1 that π, π′ disagree on = (position of e1 in π′)− 1 = posπ′(e1)− 1

The same holds for the last element, denoted en, only using the distance between posπ′(en) and the
nth-position (i.e., n− posπ′(en)).

We begin by characterizing Z[n].

Property 6.4. For every n and any π0 ∈ Sn we have that Z[n] =
∑
π φ

dkt(π,π0) =
∏n
i=1 Zi =∏

i

(∑i=1
j=0 φ

j
)

.

Proof. By induction on n. For n = 1 there’s a single permutation over the set {1} and Z1 = 1. For
any n > 1, given a permutation over n elements π ∈ Sn, denote its first element as eπ . Based on
our observation, we have that

dkt(π, π0) = #swaps involving eπ + dkt(π \ eπ, π0 \ eπ) = (posπ0
(eπ)− 1) + dkt(π \ eπ, π0 \ eπ)

And so we have

Z[n] =
∑
π φ

dkt(π,π0) =

n∑
j=1

∑
{π:eπ is the jth elements in π0}

φdkt(π,π0)
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=

n∑
j=1

∑
{π:eπ is the jth elements in π0}

φj−1φdkt(π\eπ,π0\eπ)

=

n−1∑
j=0

φj
∑

π∈Sn−1

φdkt(π,π
−j
0 )

induction
=

n−1∑
j=0

φj

(
n−1∏
i=1

Zi

)
=

(
n−1∏
i=1

Zi

)
Zn =

n∏
i=1

Zi

where π−j0 denotes the permutation we get by omitting the jth element from π0.

Observe that the proof essentially shows how to generate a random ranking from a Mallows model.
What we in fact showed is that the given a permutation π = (e, π \ e) we have that

Pr[π] = 1
Z[n]

φ(posπ0 (e)−1)+dkt(π\e,π0\e) =
φ(posπ0 (e)−1)

Zn
· φ

dkt(π\e,π0\e)

Z1:(n−1)

And so, to generate a random permutation using π0: place the jth elements of π0 at the first position
w.p. ∝ φj−1, and recourse over the truncated permutation. π0 \e1 to find the rest of the permutation
(positions 1, 2, . . . , j − 1, j + 1, . . . , n). This proves Lemma 6.1.

Note the symmetry between π and π0 in defining the weight of π. Therefore, denoting e1 as the
element π0 ranks at the first position, we have that

dkt(π, π0) = #swaps involving e1 + dkt(π \ e1, π0 \ e1) = (i− 1) + dkt(π \ e1, π0 \ e1)

and so, the probability of permutation π in which e1 is ranked at position j and the rest of the
permutation is as a given permutation σ over n− 1 elements is:

Pr[π] = 1
Z[n]

φ(j−1)+dkt(π\e1,π0\e1) =
φ(j−1)

Zn
· φ

dkt(π\e1,π0\e1)

Z1:(n−1)

So, an alternative way to generate a random permutation using π0 is to rank element e1 at position j
w.p. ∝ φj−1 and then to recourse over the truncated permutation π0 \ e1. Repeating this argument
for each element in a given prefix I of π0 proves Lemma 6.2.

Observe that the algorithms the generate a permutation for a given Mallows model also allow us
to simulate a random sample from a Mallows model over n + 1 elements. That is, given π0, we
can introduce a new element e0 and denote π′0 = (e0, π0). Now, to sample from a Mallows model
centered at π′0 all we need is to pick the position of e0 (moving it to position j w.p. φj−1/Zn+1),
then sampling from original Mallows model. This proves Lemma 6.3.

6.2 Total Variation Distance

In this subsection, our goal is to prove Lemma 2.6. Namely, we aim to show that given φ, for every
δ > 0 we can pick any φ̂ sufficiently close to φ, and have that the total variation distance between
the two modelsM (φ, π0) andM

(
φ̂, π0

)
is at most δ.

Proof of Lemma 2.6. First, denote φ = e−β and φ̂ = e−β̂ . And so it holds that

|β − β̂| = | ln(1/φ)− ln(1/φ̂)| = | ln(φ̂/φ)| ≤ | ln(1 + |φ−φ̂|
φmin

)| ≤ |φ−φ̂|φmin

assuming some global lower bound φmin on φ, φ̂.

Observe that for every π we have that

φdkt(π,π0) = exp(−βdkt(π, π0)) = exp(−β̂dkt(π, π0)) exp(−(β−β̂)dkt(π, π0)) ≤ e
1
2n

2|β−β̂|φ̂dkt(π,π0)
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Algorithm 3 LEARN MIXTURES OF TWO MALLOWS MODELS, Input: a set S ofN samples from
w1M (φ1, π1)⊕ w2M (φ2, π2), Accuracy parameters ε, ε2.

1. Set threshold ε2 = f2(ε).

2. Let P̂ be the empirical estimate of P on samples in S.
3. Run O(logn) times

(a) Partition [n] randomly into Sa, Sb and Sc.

(b) Set T (abc) =
(
P̂ijk

)
i∈Sa,j∈Sb,k∈Sc

.

(c) Run TENSOR-DECOMP as in Theorem 4.2 of([25]) to get a decomposition of Tabc = u(a) ⊗
u(b) ⊗ u(c) + v(a) ⊗ v(b) ⊗ v(c).

(d) Let M ′a = (u(a); v(a)), M ′b = (u(b); v(b)), M ′c = (u(c); v(c)).
(e) If min(σ2(M ′a), σ2(M ′b), σ2(M ′c)) ≥ ε2,

i. (ŵ1, ŵ2, φ̂1, φ̂2, π1
′, π2

′)← INFER-TOP-K(P̂ , M ′a , M ′b , M
′
c).

ii. (π̂1, π̂2)← RECOVER-REST(S, ŵ1, ŵ2, φ̂1, φ̂2, π1
′, π2

′ , ε2/
√

2n).
Return SUCCESS and output (ŵ1, ŵ2, φ̂1, φ̂2, π̂1, π̂2).

(f) Else if σ2(M ′a) < ε2 and σ2(M ′b) ≥ ε2, and σ2(M ′c) ≥ ε2 (or other symmetric cases),

let p(a) =
(
P̂i
)
i∈Sa

.

φ̂← ESTIMATE-PHI(p(a)).

(g) Else φ̂ = median
(

ESTIMATE-PHI(p(a)), ESTIMATE-PHI(p(b)), ESTIMATE-PHI(p(c))
)

.

(h) Else, (at least two of the three matrices M ′a,M ′b,M
′
c are essentially rank-1)

let τ ∈ {a, b, c} denote a matrix M ′τ s.t. σ2(M ′τ ) < ε2, and let p(τ) = (P̂i)i∈Sτ .
φ̂← ESTIMATE-PHI(p(τ)).

4. Run HANDLE-DEGENERATE-CASE(P̂ , φ̂, ε).

Summing over all permutation (and replacing the role of φ and φ̂) we have also that
∑
π φ

dkt(π,π0) ≥
e−

1
2n

2|β−β̂|∑
π φ̂

dkt(π,π0). Let pπ (resp. p̂π) denote the probability of sampling the permutation π

from a Mallows modelM (φ, π0) (resp.M
(
φ̂, π0

)
). It follows that for every π we have

pπ =
φdkt(π,π0)∑
π′ φ

dkt(π′,π0)
≤ en

2|β−β̂| φ̂dkt(π,π0)∑
π′ φ̂

dkt(π′,π0)
= en

2|β−β̂|p̂π

and similarly, p̂π ≤ en
2|β−β̂|pπ .

Therefore, assuming that |β − β̂| is sufficiently small, and using the fact that |1 − ex| ≤ 2|x| for
x ∈ (− 1

2 ,
1
2 ), then we have

‖M (φ, π)−M
(
φ̂, π

)
‖TV =

1

2

∑
π

|pπ − p̂π|

=
1

2

∑
π

pπ

∣∣∣∣1− p̂π
pπ

∣∣∣∣ ≤ 1

2

∑
π

2pπn
2|β − β̂| = n2

φmin
|φ− φ̂|

It follows that in order to bound the total variation distance by δ we need to have φ and φ̂ close up
to a factor of δ · φmin/n

2.

7 Algorithm and Subroutines

We now describe the algorithm and its subroutines in full detail. These will be followed by the
analysis of the algorithms and proof of correctness in the following sections. Broadly speaking, our
algorithm (Algorithm 1) has two main components.

Retrieving the Top Elements and Parameters. In the first part we use spectral methods to re-
cover elements which have a good chance of appearing in the first position. The algorithm tries
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Algorithm 4 INFER-TOP-K, Input: P̂ ,M ′a = (u(a); v(a)),M ′b = (u(b); v(b)),M ′c = (u(c); v(c)).

1. Let P̂a = P̂ (i ∈ a)

2. Set (αa, βa)T = (M ′a)
†
P̂a

(αb, βb)
T = (M ′b)

†
P̂b

(αc, βc)
T = (M ′c)

†
P̂c.

3. Set ŵ1 = ‖αau(a)‖1 + ‖αbu(b)‖1 + ‖αcu(c)‖1, ŵ2 = 1− ŵ1.

4. Let u =
(
αa
w1
u(a), αb

w1
u(b), αc

w1
u(c)

)
.

v =
(
βa
w2
v(a), βb

w2
v(b), βc

w2
v(c)
)

.

5. Sort the vectors u and v in decreasing order, i.e., U ←SORT(u), V ←SORT(v).

6. φ̂1 = U2
U1

and φ̂2 = V2
V1

.

7. Define γ = (1− ˆφmax)
2

4n ˆφmax
. Let r1 = log1/φ̂1

(
n10

w2
minγ

2

)
and r2 = log1/φ̂2

(
n10

w2
minγ

2

)
.

8. Output π′1 to be the first r1 ordered elements according to U and π′2 to be the first r2 ordered elements
according to V .

O(log n) different random partitions Sa, Sb, Sc, and constructs the tensor T (abc) from the samples
as described in step 3(b). We then try to find a rank-2 decomposition of the tensor using a black-box
algorithm for decomposing non-symmetric tensors. While we use the algorithm of [25] here, we can
use the more practically efficient algorithm of Jennrich [23], or other power-iteration methods that
are suitably modified to handle non-symmetric tensors.

These algorithms work when the factor matricesMa,Mb,Mc have polynomially bounded condition
number (in other words their second largest singular values σ2(·) is lower bounded by a polynomial
in the input parameters) — in such cases the tensor T (abc) has a unique rank-2 decomposition. If
this condition holds for any of the random partitions, then one can recover the top few elements of
both π1 and π2 correctly. In addition, we can also infer the parameters w’s and φ’s to good accuracy
ε (corresponding to INFER-TOP-K (Algorithm 4). This is detailed in section 8.

If any random partition Sa, Sb, Sc fails to produce a tensor T (abc) with well-conditioned factor
matrices, then we are already in a special case. We show that in this case, the scaling parameters
φ1 ≈ φ2 with high probability. We exploit the random choice of the partition to make this argument
(see Lemma 9.1). However, we still need to find the top few elements of the permutations and the
weights. If all these O(log n) random partitions fail, then we show that we are in the Degenerate
case that we handle separately; we describe a little later. Otherwise, if at least one of the random
partitions succeeds, then we have estimated the scaling parameters, the mixing weights and the top
few elements of both permutations.

Recovering Rest of the Elements. The second part of the algorithm (corresponding to RECOVER-
REST) takes the inferred parameters and the initial prefixes as input and uses this information to
recover the entire rankings π1 and π2. This is done by observing that the probability of an element
ei going to position j can be written as a weighted combination of the corresponding probabilities
under π1 and π2. In addition, as mentioned in Section 2, the reduced distribution obtained by
conditioning on a particular element ej going to position 1 is again a mixture of two Mallows models
with the same parameters. Hence, by conditioning on a particular element which appears in the
initial learned prefix, we get a system of linear equations which can be used to infer the probability
of every other element ei going to position j in both π1 and π2. This will allow us to infer the entire
rankings.

Degenerate Cases. In the case when none of the random partition produces a tensor which has
well-conditioned factor matrices (or alternately, a unique rank-2 decomposition), the instance is a
very special instance, that we term degenerate. The additional subroutine (HANDLE-DEGENERATE-
CASE) takes care of such degenerate instances. Before we do so, we introduce some notation to
describe these degenerate cases.
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Notation. Define Lε = {ei : Pi ≥ ε}. If ε not stated explicitly L refers to L√ε where ε is the
accuracy required in Theorem 3.1.

Now we have the following definition that helps us formally define the degenerate case.
Definition 7.1 (Bucketing by relative positions). For every ` ∈ Z, let B` =
{ei ∈ L : posπ1

(ei)− posπ2
(ei) = `}. Further let `∗ be the majority bucket for the elements in

L.

We call a mixture model w1M (φ1, π1) ⊕ w2M (φ2, π2) as degenerate if except for at most 2
elements, all the elements in L fall into the majority bucket. In other words, |`∗| ≥ |L| − 2.
Intuitively, in this case one of the partitions Sa, Sb, Sc constructed by the algorithm will have their
corresponding u and v vectors as parallel to each other and hence the tensor method will fail. We
show that when this happens, it can be detected and in fact this case provides useful information
about the model parameters. More specifically, we show that in a degenerate case, φ1 will be almost
equal to φ2 and the two rankings will be aligned in a couple of very special configurations (see
Section 9). Procedure HANDLE-DEGENERATE-CASE is designed to recover the rankings in such
scenarios.

8 Retrieving the Top elements

Here we show how the first stage of the algorithm i.e. steps (a)-(e.i) manages to recover the top few
elements of both rankings π1 and π2 and also estimate the parameters φ1, φ2, w1, w2 up to accuracy
ε. We first show that if Ma,Mb,Mc have non-negligible minimum singular values (at least ε′2 as
in Lemma 8.1), then the decomposition is unique, and hence we can recover the top few elements
and parameters from INFER TOP-K. Otherwise, we show that if this procedure did not work for all
O(log n) iterations, we are in the degenerate case (Lemma 9.1 and Lemma 9.6), and handle this
separately.

For the sake of analysis, we denote by γmin the smallest length of the vectors in the partition i.e.
γmin = minτ∈{a,b,c}min

{
‖x(τ)‖, ‖y(τ)‖

}
. Lemma 9.10 shows that with high probability γmin ≥

φC logn
min (1− φ) for some large constant C.

The following lemma shows that when Ma,Mb,Mc are well-conditioned, Algorithm TENSORDE-
COMP finds a decomposition close to the true decomposition up to scaling. This Lemma essentially
follows from the guarantees of the Tensor Decomposition algorithm in [25]. It also lets us conclude
that σ2(M ′a), σ2(M ′b), σ2(M ′c) are all also large enough. Hence, these singular values of the ma-
trices M ′a,M

′
b,M

′
c that we obtain from TENSOR-DECOMP algorithm can be tested to check if this

step worked.
Lemma 8.1 (Decomposition guarantees). In the conditions of Theorem 3.1, suppose there exists
a partition Sa, Sb, Sc such that the matrices Ma = (x(a); y(a)),Mb = (x(b); y(b)) and Mc =
(x(c); y(c)) are well-conditioned i.e. σ2(Ma), σ2(Mb), σ2(Mc) ≥ ε′2, then with high probability,
Algorithm TENSORDECOMP finds M ′a = (u(a); v(a)),M ′b = (u(b); v(b)),M ′c = (u(c); v(c)) such
that

1. For τ ∈ {a, b, c}, we have u(τ) = αax
(τ) + z

(τ)
1 and v(τ) = βay

(τ) + z
(τ)
2 where

‖z(τ)1 ‖, ‖z
(τ)
2 ‖ ≤ ϑ8.1(n, ε, ε2, wmin)

2. σ2(M ′a) ≥ γmin(ε′2 − ϑ8.1) (similarly for M ′b,M
′
c).

where ϑ8.1 is a polynomial function ϑ8.1 = min
{√

ϑtensors(n, 1, κ = 1
ε2
, εsn3/2),

γ4
minwmin

4

}
and

ϑtensors is the error bound attained in Theorem 2.6 of [25].

Proof. Let ε′ = ϑ8.1. The entry-wise sampling error is εs ≤ 3 log n/
√
N . Hence, the rank-2

decomposition for T (abc) is n3/2εs close in Frobenius norm. We use the algorithm given in [25]
to find a rank-2 decomposition of T (abc) that is O(εs) close in Frobenius norm. Further, the rank-
1 term u(a) ⊗ u(b) ⊗ u(c) is ε′2-close to w1c3(φ1)x(a) ⊗ x(b) ⊗ x(c). Let us renormalize so that
‖u(a)‖ = ‖u(b)‖ = ‖u(c)‖ ≥ w1/3

min γmin.
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Applying Lemma 13.1, we see that u(a) = αax
(a) + z

(a)
1 where ‖z(a)1 ‖ ≤ ε′, and similarly v(a) =

βay
(a) + z

(a)
2 where ‖z2‖ ≤ ε′. Further w1/3

min γminφ1/4 ≤ αa ≤ 1/γmin. Further

σ2

(
αax

(a);βay
(a)
)
≥ min {αa, βa}σ2(Ma) ≥ w

1/3
min γminφ1

4
σ2(Ma).

Hence, σ2(M ′a) ≥ w1/3
min γminφ1σ2(Ma)/2−2ε′, as required. The same proof also works forM ′b,M

′
c.

Instead of using the enumeration algorithm of [25], the simultaneous eigen-decomposition algo-
rithms in [23] and [26] can also be used. The only difference is that the “full-rank conditions”
involving the Ma,Mb,Mc are checked in advance, using the empirical second moment. Note that
TENSOR-DECOMP only relies on elements that have a non-negligible chance of appearing in the
first position L: this can lead to large speedup for constant φ1, φ2 < 1 by restricting to a much
smaller tensor.

Lemma 3.2 captures how Algorithm 1 (steps 3 (a - e.i)) performs the first stage using Algorithm 4 and
recovers the weights w1, w2 and x, y when the factor matrices Ma,Mb,Mc are well-conditioned.

In the proof we show that in this case, for one of the O(log n) random partitions, Lemma 8.1 suc-
ceeds and recovers vectors u(a), v(a) which are essentially parallel to x(a) and y(a) respectively
(similarly for u(b), u(c), v(b), v(c)). Sorting the entries of u(a) would give the relative ordering among
those in Sa of the top few elements of π1. However, to figure out all the top-k elements, we need
to figure out the correct scaling of u(a), u(b), u(c) to obtain x(a). This is done by setting up a linear
system.

Now we present the complete proof of the lemmas.

8.1 Proof of Lemma 3.2: the Full Rank Case

If such a partition S∗a , S
∗
b , S

∗
c exists such that σ2(Ma) ≥ ε′2, then there exists a 2-by-2 submatrix of

Ma corresponding to elements ei1 , ej1 which has σ2(·) ≥ ε′2. Similarly there exists such pairs of
elements ei2 , ej2 and ei3 , ej3 in Sb and Sc respectively. But with constant probability the random par-
tition Sa, Sb, Sc has ei1 , ej1 ∈ Sa, ei2 , ej2 ∈ Sb, ei3 , ej3 ∈ Sc respectively. Hence in the O(log n)
iterations, at least one iteration will produce sets Sa, Sb, Sc such that σ2(Ma), σ2(Mb), σ2(Mc) ≥ ε′2
with high probability. Further, Lemma 8.1 also ensures that σ2(M ′a), σ2(M ′b), σ2(M ′c) ≥ ε2.

Lemma 8.1 recovers vectors u(a), v(a) which are essentially parallel to x(a) and y(a) respectively
(similarly for u(b), u(c), v(b), v(c)). While sorting the entries of u(a) would give the relative ordering
among those in Sa of the top few elements of π1, we need to figure out the correct scaling of
u(a), u(b), u(c) to recover the top few elements of π1.

From Lemma 8.1, we can express

w1x
(a) = α′au

(a) + z
(a)
1 where z(a)1 ⊥ u(a)where ‖z(a)1 ‖ ≤ ϑ8.1(n, εs, ε

′
2).

Similarly w2y
(a) = β′av

(a) + z
(a)
2 , where ‖z(a)2 ‖ ≤ ϑ8.1. If εs is the sampling error for each entry

in p(a), we have

‖w1x
(a) + w2x

(b) − p(a)‖ <
√
nεs (3)

‖α′au(a) + βv(a) − p(a)‖ <
√
nεs +

1

2
w

1/3
min φ1γminϑ8.1 (4)

Eq (4) allows us to define a set of linear equations with unknowns α′a, β
′
a, constraint matrix given

by M ′a = (u(a); v(a)). Hence, the error in the values of α′a, β
′
a is bounded by the condition number

of the system and the error in the values i.e.

εα ≤ κ(M ′a).w
1/3
min γminϑ8.1 ≤

(
1

4
w

1/3
min φminγminε

′
2 − ϑ8.1

)−1
· φmin

2
w

1/3
min γminϑ8.1.

The same holds for αb, αc, βb, βc.
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Algorithm 5 REMOVE-COMMON-PREFIX, Input: a set S of N samples from w1M (φ, π1) ⊕
w2M (φ, π2), ε.

1. Initialize I ← ∅, S = [n].
2. for t = 1 to n,

(a) For each element x ∈ [n] \ I , estimate p̂x,1 = Pr(x goes to position t).
(b) Let xt = arg maxx∈[n]\I p̂x,1.
(c) If |p̂x,1 − 1

Zn−t+1
| > ϑ(ε), return I and QUIT.

(d) Else I ← I ∪ xt
3. Output I .

However, we also know that ‖x(a)‖1 + ‖x(b)‖1 + ‖x(c)‖1 = 1. Hence,

|‖αau(a)‖1 + ‖αbu(b)‖1 + ‖αcu(c)‖1 − w1| ≤ ε ≤ 3
√
n(εα + ϑ8.1).

Thus, ŵ1, ŵ2 are within ε of w1, w2. Hence, we can recover vectors x by concatenating
αa
w1
u(a), αbw1

u(b), αcw1
u(c) (similarly y). Since we have ϑ8.1 < φ1(1 − φ)/wmin, it is easy to verify

that by sorting the entries and taking the ratio of the top two entries, φ̂1 estimates φ1 up to error
2ϑ8.1φ1(1−φ1)

wmin
(similarly φ2). Finally, since we recovered x up to error ε′′ = 2ϑ8.1

wmin
, we recovered the

top m elements of π1 where m ≤ logφ1
(2ϑ8.1(1− φ1)/wmin).

9 Degenerate Case

While we know that we succeed when Ma,Mb,Mc have non-negligible minimum singular value
for one of the the O(log n) random partitions, we will now understand when this does not happen.

Recollect that L = L√ε = {ei : Pi ≥
√
ε}. For every ` ∈ Z, let B` ={

ei ∈ L : π−11 (i)− π−12 (i) = `
}

. Further let `∗ be the majority bucket for the elements in L. We
call a mixture modelw1M (φ1, π1)⊕w2M (φ2, π2) as degenerate if the parameters of the two Mal-
lows models are equal, and except for at most 2 elements, all the elements in L fall into the majority
bucket. In other words, |`∗| ≥ |L| − 2.

We first show that if the tensor method fails, then the parameters of the two models φ1 and φ2 are
essentially the same. Further, we show how the algorithm finds this parameter as well.
Lemma 9.1 (Equal parameters). In the notation of the Algorithm 1, for any ε′ > 0, suppose
σ2(M ′a) < ε2 ≤ ϑ9.1(n, ε′, wmin, φ1, φ2) (or M ′b,M

′
c), then with high probability (1 − 1/n3), we

have that |φ1 − φ2| ≤ ε′ and further Algorithm 9 (ESTIMATE-PHI) finds |φ̂ − φ1| ≤ ε′/2. The
number of samples needed N > poly(n, 1

ε′ ).

This lemma is proven algorithmically. We first show that Algorithm 9 finds a good estimate φ̂ of φ1.
However, by the same argument φ̂ will also be a good estimate of φ2! Since φ̂ will be ε′/2-close
to both φ1 and φ2, this will imply that |φ1 − φ2| ≤ ε′ ! We prove this formally in the next section.
But first, we first characterize when the tensor T (abc) does not have a unique decomposition — this
characterization of uniqueness of rank-2 tensors will be crucial in establishing that φ1 ≈ φ2.

9.1 Characterizing the Rank and Uniqueness of tensor T (abc) based on Ma,Mb,Mc

To establish Lemma 9.1, we need the following simple lemma, which establishes that the condi-
tioning of the matrices output by the Algorithm TensorDecomp is related to the conditioning of the
parameter matrices Ma,Mb,Mc.
Lemma 9.2 (Rank-2 components). Suppose we have sets of vectors (gi, hi, g

′
i, h
′
i)i=1,2,3 with length

at most one (‖ · ‖2 ≤ 1) such that

T = g1 ⊗ g2 ⊗ g3 + h1 ⊗ h2 ⊗ h3 and ‖T − g′1 ⊗ g′2 ⊗ g′3 + h′1 ⊗ h′2 ⊗ h′3‖ ≤ εs
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such that matrices have minimum singular value σ2
(
g1;h1

)
, σ2
(
g2;h2

)
≥ λ and ‖g3‖, ‖h3‖ ≥

γmin, then we have that for matrices M ′1 =
(
g′1;h′1

)
,M ′2 =

(
g′2;h′2

)
σ2(M ′1) ≥ λ2γmin

4n
− εs and σ2(M ′1) ≥ λ2γmin

4n
− εs.

Proof. Let matrices M1 =
(
g1;h1

)
,M2 =

(
g2;h2

)
. For a unit vector w (of appropriate dimension)

let

Mw = T (·, ·, w) = 〈w, g3〉g1 ⊗ g2 + 〈w, h3〉h1 ⊗ h2

= M1DwM
T
2 where Dw =

(
〈w, g3〉 0

0 〈w, h3〉

)
.

Besides, sincew is a random gaussian unit vector, Pr|〈w, g3〉| ≥ ‖g3‖/4
√
nwith probability> 1/2.

Hence, using there exists a unit vector w such that min{|〈w, g3〉|, |〈w, h3〉|} ≥ γmin/(4
√
n). Hence,

σ2(Mw) ≥ λ2γmin

4
√
n
.

However, ‖Mw −M ′1D′w(M ′2)T ‖F ≤ εs where D′w =

(
〈w, g′3〉 0

0 〈w, h′3〉

)
.

Hence, σ2
(
M ′1D

′
w(M ′2)T

)
≥ σ2(Mw)− εs.

Combining this with the fact that σ2
(
M ′1D

′
w(M ′2)T

)
≤ σ2(M ′1)σ1(D′w)σ1(M ′2) gives us the

claimed bound.

This immediately implies the following lemma in the contrapositive.

Lemma 9.3 (Rank-1 components). Suppose σ2(M ′a) < ε and σ2(M ′b) < ε, then two of the matrices

Ma,Mb,Mc have σ2(·) <
√

8εn
γmin

, when the number of samples N > poly(n, 1/ε).

9.2 Equal Scaling Parameters

The following simple properties of our random partition will be crucial for our algorithm.

Lemma 9.4. The random partition of [m] into A,B,C satisfies with high probability (at least

1− exp
(
− 1
C9.4
·m
)

):

1. |A|, |B|, |C| ≥ m/6

2. There are many consecutive numbers in each of the three sets A,B,C i.e.

|{i ∈ A and i+ 1 ∈ A}| ≥ m/100.

Proof. The claimed bounds follow by a simple application of Chernoff Bounds, since each element
is chosen in A with probability 1/3 independently at random. The second part follows by consider-
ing the m/2 disjoint consecutive pairs of elements, and observing that each pair fall entirely into A
with probability 1/9.

Lemma 9.5. Consider a set of indices S ⊆ [n] and let pS be the true probability vector p of a single
Mallows modelM(π, φ) restricted to subset S. Suppose the empirical vector ‖p̂S−pS‖∞ < ε1, and
there exists consecutive elements of π in S i.e. ∃i such that π(i), π(i+ 1) ∈ S, with p(π(i+ 1)) ≥√
ε1. Then, if we arrange the entries of pS in decreasing order as r1, r2, . . . , r|S| we have that

φ̂ = max
i:ri+1≥

√
ε1

ri+1

ri
satisfies |φ̂− φ| < 2

√
ε1.
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Proof. By the properties of the Mallows model, the ratio of any two probabilities is a power of φ
i.e. p`2p`1 = φπ

−1(`2)−π−1(`1). If p(π(i+ 1)) ≥ √ε1, we have that

p̂(π(i+ 1))

p̂(π(i))
≤ φ · p(π(i)) + ε1

p(π(i))− ε1

≤ φ+
φ (p(π(i))− p̂(π(i)) + ε1)

p̂(φ(i))
≤ φ+ ε1

(1 + φ)

p̂(φ(i))
≤ φ+ 2

√
ε1

The same proof holds for the lower bound.

We now proceed to showing that the scaling parameters are equal algorithmically.

Proof of Lemma 9.1. We now proceed to prove that φ1 ≈ φ2. We note that ‖T (abc)‖F ≤ 1 since
the entries of T (abc) correspond to probabilities, and for any vector z, ‖z‖2 ≤ ‖z‖1. This implies
that all the vectors in the decomposition can be assumed to have `2 norm at most 1, without loss of
generality. We can first conclude that at least one of the three matrices Ma,Mb,Mc has σ2(·) <√

8nε2
γminwmin

. Otherwise, we get a contradiction by applying Lemma 9.2 (contrapositive) to M ′a,M
′
b

andM ′a,M
′
c. Now, we will show how the algorithm gives an accurate estimate φ̂ of φ1. However the

exact argument applied to φ2 will show that φ̂ is also a good estimate for φ2, implying that φ1 ≈ φ2.

We have two cases depending on whether one of σ2(M ′b) and σ2(M ′c) are non-negligible or not.

Case 1: σ2(M ′b) ≥ (ε
1/4
2

8n
γminwmin

)3/4) and σ2(M ′c) ≥ (ε
1/4
2

8n
γminwmin

)3/4):
Applying Lemma 9.2, we conclude that σ2(Mb) ≥ ε

1/2
2 (8n/γminwmin)1/2 and σ2(Mc) ≥

ε
1/2
2 ( 8n

γminwmin
)1/2. However one of the matrices Ma,Mb,Mc has small σ2 value. Hence

σ2(Ma) < ε
1/2
2

(
8n

γminwmin

)1/2

= ε′2 (say).

Let y(a) = αx(a) + y⊥ where y⊥ ⊥ x(a). Then ‖y⊥‖ ≤ ε′2 and α ≥ (‖y(a)‖−ε′2)
‖x(a)‖ ≥ γmin/2.

Further, p(a) = (w1 + w2α)x(a) + w2y
⊥. Hence,

x(a) = βp(a) − w2βy
⊥, where 0 ≤ β < 2

γmin
.

Since the sampling error is εs, we have

x(a) = βp̂(a) + β(p(a) − p̂(a))− w2βy
⊥

= βp̂(a) + z where ‖z‖∞ ≤ β(εs + ε′2) ≤ 4ε2
γmin

= ε3

Consider the first m = C9.4 log n elements F of π1.

∀i ∈ F, xi ≥
φC9.4 logn
1

1− φ1
≥ nC9.4 log(1/φ1)

1− φ1
≥
√
ε3 due to our choice of error parameters

Applying Lemma 9.4, Ω(log n) consecutive elements of π1 occur in Sa. Hence applying Lemma 9.5,

we see that the estimate φ̂ output by the algorithm satisfies |φ̂ − φ1| ≤ 2
√
ε3 =

16ε
1/4
2 n1/4

γ
3/4
min w

1/4
min

, as

required.

Case 2: σ2(M ′b) < (ε
1/4
2

8n
γminwmin

)3/4):
We also know that σ2(M ′a) < ε2. Applying Lemma 9.3, we see that two of the three matrices
Ma,Mb,Mc have σ2(·) being negligible i.e.

σ2(·) < ε
1/4
2

(
8n

γminwmin

)7/8

.
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Algorithm 6 HANDLE-DEGENERATE, Input: a set S of N samples from w1M (φ1, π1) ⊕
w2M (φ2, π2), φ̂.

1. πpfx← REMOVE-COMMON-PREFIX(S). Let πrem1 = π1 \ πpfx, πrem2 = π2 \ πpfx.

2. If |πpfx| = n, then output IDENTICAL MALLOWS MODELS and parameters φ̂ and πpfx.
3. LetM′ be the Mallows mixture obtained by adding three artificial elements e∗1, e∗2, e∗3 to the front.

4. Run steps (1-3) of Algorithm 1 onM′. If SUCCESS, output ŵ1, ŵ2, π1, π2, φ̂.

5. If FAIL, let P̂ (i), P̂ (i, j) be the estimates of P (i), P (i, j) when samples according toM′.

6. Divide elements in L√ε into R ≤ log(εZn(φ̂))

2 log(φ̂)
disjoint sets

Ir =

{
i : P̂ (i) ∈

[
φ̂r

Zn(φ̂)
− ε, φ̂r

Zn(φ̂)
+ ε

]}
.

7. If |Ir| = 1 set πrem1 (i) to be the only element in Ir .
8. Let Ibad be the remaining elements in the sets I1 ∪ I2 . . . IR along with L√ε \

⋃
r Ir . If |Ibad| > 4

or |Ibad| < 2, output FAIL.
9. Let Sa, Sb is any partition of I1 ∪ I2 ∪ IR \ Ibad.

Find i1, j1 ∈ Ibad such that M =
(
P̂ij
)
i∈Sa∪{i1},Sb∪{j1}

has σ2(M) ≥
√
εn.

10. For i ∈ Ibad \ {i1, j1} and i ∈ Ir , set πrem1 (r) = πrem2 (r) = i.
Set πrem1 (1) = i1, π

rem
2 (1) = j1, and πrem1 (k) = j1, π

rem
2 (k) = i1 where k ≤ R is unfilled

position.

11. Output π1 = πpfx ◦ πrem1 , π2 = πpfx ◦ πpfx2 , φ̂.
Output ŵ1, ŵ2 = 1− ŵ1, by solving for ŵ1 from P̂ (i) = ŵ1π

−1
1 (i) + (1− ŵ1)π−1

2 (i).

Using the same argument as in the previous case, we see that the estimates given by two of the three
partitions Sa, Sb, Sc is 2

√
ε3 close to the φ1. Hence the median value φ̂ of these estimates is also as

close.

As stated before, applying the same argument for φ2 (and π2) , we see that φ̂ is 2
√
ε3 close to φ2 as

well. Hence, φ1 is 4
√
ε3 close to φ1.

9.3 Establishing Degeneracy

Next, we establish that if none of the O(log n) rounds were successful, then the two central permu-
tations (restricted to the top O(log1/φmin

n) positions) are essentially the same shifted by at most a
couple of elements.

Lemma 9.6. Consider the large elements L√ε. Suppose |B`∗| ≥ |L√ε| − 3, then the one of the
O(log n) rounds of the Tensor Algorithm succeeds with high probability.

Proof. We have two cases depending on whether `∗ ≤ log(ε)/ log(φ) or not.

Suppose |`∗| ≤ log(ε(1 − φ))/ log(φ). Let i, j, k be the indices of elements in L√ε that are not in
B`∗ . With constant probability the random partition Sa, Sb, Sc puts these three elements in different
partitions. In that case, by applying Lemma 9.11 we see that σ2(Ma), σ2(Mb), σ2(Mc) ≥ ε2(1 −
φ)2. Hence, Lemma 3.2 would have succeeded with high probability.

Suppose |`∗| > log(ε(1 − φ))/ log(φ). Assume without loss of generality that `∗ ≥ 0. Consider
the first three elements of π2. They can not belong to B`∗ since `∗ > 3. Hence, by pairing each of
these elements with some three elements of B`∗, and repeating the previous argument we get that
σ2(Ma), σ2(Mb), σ2(Mc) ≥ ε2(1 − φ)2 in one of the iterations w.h.p. Hence, Lemma 3.2 would
have succeeded with high probability.
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Hence we now have two kinds of degenerate cases to deal with. The next two lemmas show how
such cases are handled.
Lemma 9.7 (Staggered degenerate case). Suppose φ = φ1 = φ2, and at most two of the top
elements L√ε are not in bucket B`∗ i.e. B`∗ ≥ L√ε − 2 with `∗ 6= 0. Then, for any ε > 0, given
N > poly(n, φ, ε, wmin) samples, step (3-4) of Algorithm HANDLE-DEGENERATE finds finds ŵ1, ŵ2

of w1, w2 up to ε accuracy and the top m elements of π1, π2 respectively where m = logZn(ε)
2 log φ .

Proof. Since φ1 = φ2, we can use Lemma 6.3, we can sample from a Mallows mixture where we
add one new element e∗3 to the front of both permutations π1, π2. Doing this two more times we
can sample from a Mallows mixture where we add e∗1, e

∗
2, e
∗
3 to the front of both permutations. Let

these new concatenated permutations be π∗1 , π
∗
2 . Since the majority bucket corresponds to `∗ 6= 0,

we have at least three pairs of elements which satisfy Lemma 9.11, we see that w.h.p. in one of the
O(log n) iterations, the partitions Sa, Sb, Sc have σ2(·) ≥ (γminφ

6)2(1− φ)3.

Hence, by using the Tensor algorithm with guarantees from Lemma 3.2, and using Algorithm
RECOVER-REST, we get the full rankings as required (using Lemma 10.2).

Lemma 9.8 (Aligned Degenerate case). Suppose φ = φ1 = φ2, and at most two of the top elements
L√ε are not in bucketB0 i.e. |B0| ≥ |L√ε|−2. For any ε > 0, givenN = O( n2 logn

ε8w2
min(1−φ)4

) samples,
steps (5-10) of Algorithm 6 (HANDLE-DEGENERATE) finds estimates ŵ1, ŵ2 up to ε accuracy and
prefixes π′1, π

′
2 of π1, π2 respectively that contain at least the top m elements where m = logZn(ε)

2 log φ .

Proof. The first position differs because of step(1-2) of Algorithm 6. Without loss of generality
π1 = πpfx1 and π2 = πpfx2 . B0 ≥ m − 2, hence |B0| = m − 2. Let ei1 , ej1 be the other two
elements in L√ε.

For elements ei ∈ B0, π
−1
1 (i) = π−12 (i). The sampling error in the entries of P̂ is at most εs =

ε4wmin(1 − φ)2/n. Hence, they fall into the set Iπ−1
1 (i). Therefore, there can be at most four sets

with at most four elements between them that constitute Ibad.

ConsiderM = (P̂ij)i∈Sa∪{i1},j∈Sb∪{j1}. Also letMa = (x(a); y(a)) andMb = (x(a); y(a)) applied
toM′. By Lemma 9.11, we see that σ2(Ma), σ2(Mb) ≥ ε(1− φ). Further,

‖M −Ma

(
w1 0
0 w2

)
MT
b ‖F ≤ εsn.

Hence, σ2(M) ≥ ε2(1− φ)2wmin. If i1, j1 do not belong to the two different partitions Sa, Sb, it is
easy to see that σ2(M) ≤ √εs > ε2wmin(1 − φ)2. Hence, we identify the two irregular elements
that are not in bucket B0, and use this to figure out the rest of the permutations.

Finally, the following lemma shows how the degenerate cases are handled.
Lemma 9.9. For 0 < ε, given φ1, φ2 with |φ1 − φ2| ≤ ε1 = ϑ9.9(n, φ, ε, wmin), such that at most
two elements of L√ε are not in the bucket B`∗ , then Algorithm HANDLE-DEGENERATE finds w.h.p.
estimates ŵ1, ŵ2 of w1, w2 up to ε accuracy, and recovers π1, π2.

Proof. We can just consider the case φ̂ = φ̂1 = φ2 using Lemma 2.6 as long as ε1 < φ
n2N(n,φ,ε)2 ,

where N is the number of samples used by Lemma 9.8 and Lemma 9.7 to recover the rest of the
permutations and parameters up to error ε. This is because the simulation oracle does not fail on any
of the samples w.h.p, by a simple union bound.

If the two permutations do not differ at all, then by Lemma 10.6, Algorithm 5 returns the whole
permutation π1 = π2. Further, any set of weights can be used since both are identical models
(φ1 = φ2 = φ).

Letm = L√ε. In the remaining mixtureM′, the first position of the two permutations differ: hence,
B`∗ < m. Further, we know that B`∗ ≥ m− 2.

We have two cases, depending on whether the majority bucket B`∗ corresponds to `∗ = 0 or `∗ 6=
0. In the first case, Lemma 9.7 shows that we find the permutations π1, π2 and parameters up to
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accuracy ε. If this FAILS, we are in the case `∗ = 0, and hence Lemma 9.8 shows that we find the
permutations π1, π2 and parameters up to accuracy ε.

9.4 Auxiliary Lemmas for Degenerate Case

Lemma 9.10. For any Mallows model with parameters φ1, φ2 has

γmin = min
τ∈{a,b,c}

min
{
‖x(τ)‖, ‖y(τ)‖

}
≥ min

{
φ2C logn
1 (1− φ1), φ2C logn

2 (1− φ2)
}

with probability 1−nC

Proof. Consider a partition A, and the top m ≥ 2C log n elements according to π. The probability
that none of the them belong to A is at most 1/nC . This easily gives the required conclusion.

Lemma 9.11. When φ1 = φ2 = φ, if two large elements ei, ej ∈ L√ε belonging to different buckets

B`1 and B`2 respectively with max {|`1|, |`2|} ≤ log(ε)
log(φ) . Suppose further that these elements are in

the partition Sa. Then the corresponding matrix Ma has σ2(Ma) ≥ ε2(1− φ) when φ1 = φ2 = φ.

Proof. Consider the submatrix

M =

(
xi yi
xj yj

)
= xi

(
1 φ`1

φπ
−1
1 (i)−π−1

1 (j) φπ
−1
1 (i)−π−1

1 (j) · φ`2

)
.

Using a simple determinant bound, it is easy to see that

σ1(M)σ2(M) ≥ max {xi, yi}max {xj , yj}·(φ|`1|−φ|`2|) ≥ max {xi, yi}·εφmin{|`1|,|`2|}(1−φ).

Since σ1(M) ≤ 4 maxxi, yi, we see that σ2(M) ≥ ε2(1−φ)
4 .

10 Recovering the complete rankings

Let f (1) (i→ j) be the probability that element ei goes to position j according to Mallows Model
M1 (and similarly f (2) (i→ j) for model M2). To find the complete rankings, we measure ap-
propriate statistics to set up a system of linear equations to calculate f (1) (i→ j) and f (2) (i→ j)
up to inverse polynomial accuracy. The largest of these values

{
f (1) (i→ j)

}
corresponds to the

position of ei in the central ranking of M (,1). To compute these values
{
f (r) (i→ j)

}
r=1,2

we
consider statistics of the form “what is the probability that ei goes to position j conditioned on ei∗
going to the first position?”. This statistic is related to f (1) (i→ j) , f (2) (i→ j) for element ei∗
that is much closer than ei to the front of one of the permutations.

Notation: Let fM (i→ j) be the probability that element ei goes to position j according to Mallows
ModelM, and let f (r) (i→ j) be the same probability for the Mallows modelMr (r ∈ {1, 2}). Let
f (1) (i→ j|ei∗ → 1) be the probability that ei goes to the jth position conditioned on the element
ei∗ going to the first position according toM1 (similarlyM (,2)). Finally for any Mallows model
M (φ, π), and any element ei∗ ∈ pi, let M−i∗ represent the Mallows model on n − 1 elements
M (φ, π − i∗).

In the notation defined above, we have that for any elements ei∗ , ei and position j, we have

Pr (ei → j|ei∗ → 1) = w′1f
(1) (i→ j|ei∗ → 1) + w′2f

(2) (i→ j|ei∗ → 1)

where w′1 =
w1xi∗

w1xi∗ + w2yi∗
, w′2 = 1− w′1

However, these statistics are not in terms of the unknown variables f (1) (i→ j) , f (2) (i→ j). The
following lemma shows that these statistics are almost linear equations in the unknowns
f (1) (i→ j) , f (2) (i→ j) for the i, j pairs that we care about. For threshold δ, let r1 be the smallest
number r such that δ > φr−11 /Zn(φ1). Similarly let r2 be the corresponding number for second
Mallows modelsM2.
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Algorithm 7 RECOVER-REST, Input: a set S of N samples from w1M (φ1, π1)⊕w2M (φ2, π2),
ŵ1, ŵ2, φ̂1, φ̂2, π̂1, π̂2, ε.

1. Let |π̂1| = r1, |π̂2| = r2 and let r1 ≥ r2 w.l.o.g. (the other case is the symmetric analog).

2. For any element ei, define f̂ (1) (i→ 1) = φ̂1
(π̂1−1(ei)−1)
Zn(φ̂1)

, and f̂ (2) (i→ 1) = φ̂2
(π̂2−1(ei)−1)
Zn(φ̂2)

.

If ei does not appear in π̂1 set f̂ (1) (i→ 1) = 0. Similarly, if ei does not appear in π̂2 set
f̂ (2) (i→ 1) = 0. Define g(n, φ) = C. n

2φ2

(1−φ)2 logn, where C is an absolute constant.

3. For each ei ∈ π̂1(1 : r1/2)

(a) If f̂ (2) (i→ 1) < min{ŵ1,ŵ2}
16

f̂(1)(i→1)

n2g(n,φ̂1)

i. π̂1 ← LEARN-SINGLE-MALLOW(Sei 7→1). Here Sei 7→1 refers to the samples in S where
ei goes to position 1.

ii. π̂2 ← FIND-PI(S , π̂1 , ŵ1 , ŵ2 , φ̂1 , φ̂2). Output SUCCESS and return π̂1 and π̂2, ŵ1, ŵ2,
φ̂1 and φ̂2.

4. Do similar check for each ei ∈ π̂2(1 : r2/2).

5. Let ei∗ be the first element in π̂1 such that |f̂ (1) (i∗ → 1) − f̂ (2) (i∗ → 1) | > ε. Define ŵ′1 =
1

1+
ŵ2
ŵ1

f̂(2)(i∗→1)

f̂(1)(i∗→1)

and ŵ′2 = 1− ŵ′1.

6. For each ei /∈ π̂1 and j > r1

(a) Estimate f̂ (i→ j) = Pr[ei goes to position j] and f̂ (i→ j|ei∗ → 1) =
Pr[ei goes to position j|ei∗ 7→ 1].

(b) Solve the system

f̂ (i→ j) = ŵ1f̂
(1) (i→ j) + ŵ2f̂

(2) (i→ j) (5)

f̂ (i→ j|ei∗ → 1) = ŵ′1f̂
(1) (i→ j) + ŵ′2f̂

(2) (i→ j) (6)

7. Form the ranking π̂1 = π̂1 ◦ π′1 s.t. for each ei /∈ π̂1, pos(ei) = arg maxj>r1 f̂
(1) (i→ j).

8. π̂2 ←FIND-PI(S , π̂1 , ŵ1 , ŵ2 , φ̂1 , φ̂2 , ε). Output SUCCESS and return π̂1 and π̂2, ŵ1, ŵ2, φ̂1 and
φ̂2.

Algorithm 8 LEARN-SINGLE-MALLOW, Input: a set S of N samples fromM(φ, π).

1. For each element ei, estimate f̂ (1) (i→ j) = Pr[ei goes to position j].

2. Output a ranking π̂ such that for all ei, pos(ei) = arg maxj f̂
(1) (i→ j).

Lemma 10.1. For any j > r1, any elements ei∗ , ei with posπ1
(i∗) > r1, posπ1

(i) > posπ1
(i∗), we

have in the notation defined above that

f (1) (i→ j|ei∗ → 1) = f (1) (i→ j) + δ′ where |δ′| ≤ δn.
The corresponding statement also holds for Mallows modelM2.

Proof. When samples are generated according to Mallows model M1, we have for these sets of
i, i∗, j that the conditional probability f (1) (i→ j|ei∗ → 1) = fM(φ1,π1−i∗) (i→ j − 1), where
the term on the right is a Mallows model over n− 1 elements.

f (1) (i→ j) =

n∑
i′=1

Pr (ei′ → 1) f (1) (i→ j|ei∗ → 1) ≤
r1∑
i′=1

Pr (ei′ → 1) fM(φ1,π1−i′) (i→ j − 1) + δ

= fM(φ1,π1−i∗) (i→ j − 1)

r1∑
i′=1

Pr (ei′ → 1) .

The last equality is because the probability is independent of i′ (since posπ1
(ei) > posπ1

(ei∗)).
Hence, it follows easily that

f (1) (i→ j|ei∗ → 1) (1− δ) ≤ f (1) (i→ j) ≤ f (1) (i→ j|ei∗ → 1) + δ.
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Algorithm 9 ESTIMATE-PHI, Input: P̂ .

1. Sort P in decreasing order. Return mini{Pi+1

Pi
}.

Algorithm 10 FIND-PI, Input: a set S of N elements from ŵ1M
(
φ̂1, π1

)
⊕ ŵ2M̂

(
φ̂2, π2

)
, π̂1,

ŵ1, ŵ2, φ̂1, φ̂2.

1. Compute f̂ (1) (i→ j) = Pr (ei goes to position j|π̂1) (see Lemma 10.8).

2. For each element ei, estimate f̂ei,j = Pr (ei goes to position j).

3. Solve for f̂ (1) (i→ j) using the equation f̂ei,j = ŵ1f̂
(1) (i→ j) + ŵ2f̂

(2) (i→ j).

4. Output π̂2 such that for each ei, pos(ei) = arg maxj f̂
(2) (i→ j).

Hence, by picking an appropriate element ei∗ , we can set up a system of linear equations and solves
for the quantities

{
f (1) (i→ j) , f (2) (i→ j)

}
. Suppose there exists an element ei∗ that occurs in

the top few positions in both the permutations, then that element would suffice for our purpose. On
the other hand, if we condition on an element i∗ which occurs near the top in one permutation but
far away in the other permutation, gives us a single Mallows model. The sub-routine RECOVER-
REST of the main algorithm figures out which of the cases we are in, and succeeds in recovering the
entire permutations π1 and π2 in the case thatw1M (φ1, π1)⊕w2M (φ2, π2) is non-degenerate (the
degenerate cases have been handled separately in the previous section). In such a scenario, from the
guarantee of Lemma 3.2 we can assume that we have parameters {ŵ1, ŵ2, φ̂1, φ̂2} which are within
ε ≤ ε0 of the true parameters. For the rest of this section we will assume that RECOVER-REST

and every sub-routine it uses has access to samples from ŵ1M
(
φ̂1, π1

)
⊕ ŵ2M̂

(
φ̂2, π2

)
. This is

w.l.o.g. due to Lemma 2.6.

The rankings π̂1 and π̂2 are obtained from INFER-TOP-K. Define γ = (1−φmax)
2

4nφmax
. By our choice

of ε0, rankings |π̂1| = r1 ≥ log1/φ1

(
n10Zn(φ1)
w2

minγ
2

)
and |π̂2| = r2 ≥ log1/φ2

(
n10Zn(φ2)
w2

minγ
2

)
. We

note that the values f (1) (i→ j) , f (2) (i→ j) in the following Lemma are defined with respect to
ŵ1M

(
φ̂1, π1

)
⊕ ŵ2M̂

(
φ̂2, π2

)
.

Lemma 10.2. Given access to an oracle for M̂ and rankings π̂1 and π̂2 which agree with π1

and π2 in the first r1 and r2 elements respectively, where r1 ≥ log1/φ1

(
n10Zn(φ1)
w2

minγ
2

)
and r2 ≥

log1/φ2

(
n10Zn(φ2)
w2

minγ
2

)
, then procedure RECOVER-REST with ε = 1

10γ, outputs the rankings π1 and
π2 with high probability.

Proof. First suppose that the condition in Step 2 of Recover-Rest is true for some ei∗ . This would
imply that f (2) (i∗ → 1) < ŵ1

ŵ2

f(1)(i∗→1)

n2g(n,φ̂1)
. Hence, conditioned on ei∗ going to the first position, the

new weight w′1 would be 1

1+
ŵ2
ŵ1

f(2)(i∗→1)

f(1)(i∗→1)

≥ 1− 1

ng(n,φ̂1)
. Since, g(n, φ̂1) is an upper bound on the

sample complexity of learning a single Mallows model with parameter φ̂1, with high probability we
will only see samples from π1 and from the guarantees of Lemma 10.7 and Lemma 10.8, we will
recover both the permutations. A similar analysis is also true for step 4 of RECOVER-REST. If none
of the above conditions happen, then step 5 will succeed because of the guarantee from Lemma 3.2.

Next we will argue about the correctness of the linear equations in step 6. We have set a threshold
δ = wminγ

2

n4 , from Lemma 10.1, we know that the linear equations are correct up to error δ. Once
we have obtained good estimates for f (1) (i→ j) for all ei and j > r, Lemma 10.3 implies that
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step 7 of RECOVER-REST will give us the correct ranking π1. This combined with Lemma 10.8 will
recover both the rankings with high probability.

We now present the Lemmas needed in the proof of the previous Lemma 10.2.

Lemma 10.3. Consider a length n Mallows model with parameter φ. Consider an element ei and
let pos(ei) = j. Let f (i→ k) = Pr[ei 7→ k]. Then we have

1. f (i→ k) is maximum at k = j.

2. For all k > j, f (i→ k − 1) ≥ f (i→ k) (1 + gain(φ)).

3. For all k < j, f (i→ k) ≥ f (i→ k − 1) (1 + gain(φ)).

Here gain(φ) = (1−φ)
4φ min( 1

n , 1− φ
2).

Proof. The case j = 1 is easy. Let j > 1 and consider the case k > j. Let Sk = {π : posπ(ei) =
k}. Similarly let Sk−1 = {π : posπ(ei) = k − 1}. For a set U of rankings, let p(U) = Pr[π ∈ U ].
Notice that f (i→ k − 1) = p(Sk−1) and f (i→ k) = p(Sk). Let X = {ej : posπ∗(ej) >
posπ∗(ei)} and Y = {ej : posπ∗(ej) < posπ∗(ei)}. We will divide Sk into 4 subsets depending on
the elements τ1 and τ2 which appear in positions (k − 1) and (k − 2) respectively. In each case we
will also present a bijection to the rankings in Sk−1.

• Sk,1 = {π ∈ Sk : τ1, τ2 ∈ X}. For each such ranking in Sk we form a ranking in Sk−1 by
swapping ei and τ1. Call the corresponding subset of Sk−1 as Sk−1,1.

• Sk,2 = {π ∈ Sk : τ1 ∈ X, τ2 ∈ Y }. For each such ranking in Sk we form a ranking in
Sk−1 by swapping ei and τ1. Call the corresponding subset of Sk−1 as Sk−1,2.

• Sk,3 = {π ∈ Sk : τ1 ∈ Y, τ2 ∈ X}. For each such ranking in Sk we form a ranking in
Sk−1 by swapping ei and τ1. Call the corresponding subset of Sk−1 as Sk−1,3.

• Sk,4 = {π ∈ Sk : τ1, τ2 ∈ Y }. Consider a particular ranking π in Sk,4. Notice that since
ei is not in it’s intended position there must exist at least one element x ∈ X such that
posπ(x) < posπ(ei) in Sk. Let x∗ be such an element with the largest value of posπ(x).
Let y ∈ Y be the element in the position posπ(x∗) + 1. For each such ranking in Sk we
form a ranking in Sk−1 by swapping ei and τ1 and x∗ and y. Call the corresponding subset
of Sk−1 as Sk−1,4.

It is easy to see that the above construction gives a bijection from Sk to Sk−1. We also have the
following

• p(Sk−1,1) = 1
φp(Sk,1). This is because the swap is decreasing the number of inversions by

exactly 1.

• p(Sk−1,2) = 1
φp(Sk,2). This is because the swap is decreasing the number of inversions

by exactly 1. p(Sk−1,3) = φp(Sk,3). This is because the swap is increasing the number of
inversions by exactly 1. p(Sk−1,4) = p(Sk,4). This is because the two swaps maintain the
number of inversions.

Also note that there is a bijection between Sk,2 and Sk,3 such that every ranking in Sk,3 has one
more inversion than the corresponding ranking in Sk,2. Hence we have p(Sk,3) = φp(Sk,2).
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Now we have

f (i→ k − 1) =
∑
i

p(Sk−1,i) (7)

=
1

φ
p(Sk,1) +

1

φ
p(Sk,2) + φp(Sk,3) + p(Sk,4) (8)

= f (i→ k) + p(Sk,1)(
1

φ
− 1) + p(Sk,2)(

1

φ
− 1)− p(Sk,3)(1− φ) (9)

(10)

If p(Sk,1) ≥ 1
4p(Sk) or p(Sk,2) ≥ 1

4p(Sk), then gain(φ) ≥ (1−φ)
4φ (1 − φ2). If not, then we have

p(Sk,4) ≥ 1/4. Divide Sk,4 as ∪jSk,4,j where Sk,4,j = {π ∈ Sk,4 : posπ(x∗) = j}. It is easy to
see that p(Sk,4,j) = φ(Sk,4,j−1). Hence we have p(Sk,2) > p(Sk,3) > 1

np(Sk,4) ≥ 1
4n . In this case

we will have gain(φ) ≥ (1−φ)
4nφ (1− φ2).

The case k < j is symmetric.

Lemma 10.4. Consider a length n Mallows model with parameter φ. Let the target ranking be
π∗ = (e1, e2, . . . , en). Let f (1) (i→ j) be the probability that the element at position i goes to
position j. We have for all i, j

f (1) (i→ j) = f (1) (j → i)

Proof. We will prove the statement by induction on n. For n = 1, 2, the statement is true for all φ.
Now assume it is true for all n ≤ l − 1. Consider a length l Mallows model. We have

f (1) (i→ j) =
∑
k≤i

f (1) (i− 1→ j − 1|ek → 1)Pr(ek 7→ 1) +
∑
j≥k>i

f (1) (i→ j − 1|ek → 1)Pr(ek 7→ 1)

+
∑
k>j

f (1) (i→ j|ek → 1)Pr(ek 7→ 1)

=
∑
k≤i

f (1) (j − 1→ i− 1|ek → 1)Pr(ek 7→ 1) +
∑
j≥k>i

f (1) (j − 1→ i|ek → 1)Pr(ek 7→ 1)

+
∑
k>j

f (1) (j → i|ek → 1)Pr(ek 7→ 1)

=f (1) (j → i)

Lemma 10.5. Consider a length n Mallows model with parameter φ. Let the target ranking be
π∗ = (e1, e2, . . . , en). Consider a position i which has element ei.

1. f (j → i) is maximum at j = i.

2. For all k > i, f (k − 1→ i) ≥ f (k → i) (1 + gain(φ)).

3. For all k < i, f (k → i) ≥ f (k − 1→ i) (1 + gain(φ)).

Here gain(φ) = (1−φ)
4φ min( 1

n , 1− φ
2).

Proof. Follows from Lemmas 10.3 and 10.4.

Lemma 10.6. Given access to m = O( 1
gain(φ)2 log(nδ )) samples w1M (φ1, π1) ⊕ w2M (φ2, π2),

with φ1 = φ2, procedure REMOVE-COMMON-PREFIX with ε = 1
10gain(φ), succeeds with proba-

bility 1− δ.

Proof. If the two permutations have the same first element e1, then we have x1 = 1/Zn(φ). Since
m is large enough, all our estimates will be correct up to multiplicative error of

√
1 + gain(φ).

By induction, assume that the two permutations have the same prefix till t − 1. By the property of

25



the Mallows model, we know that the remaining permutations are also a mixture of two Mallows
models with the same weight. Hence, at step t, if we estimate each probability within multiplicative
factor of

√
1 + gain(φ), we will succeed with high probability.

Lemma 10.7. Given access to m = O( 1
gain(φ)2 log(nδ )) samples from a Mallows modelM(φ, π),

procedure LEARN-SINGLE-MALLOW with ε = 1
10gain(φ), succeeds with probability 1− δ.

Proof. In order to learn, it is enough to estimate f (i→ j) = Pr[ei goes to position j] for every
element ei and position j. Having done that we can simply assign pos(ei) = arg maxj f (i→ j).
From Lemma 10.3 we know that this probability is maximum at the true location of ei and hence is at
least 1/n. Hence, it is enough to estimate all f (i→ j) which are larger than 1/n up to multiplicative
error of

√
1 + gain(φ). By standard Chernoff bounds, it is enough to sample O( 1

gain(φ)2 log(nδ ))

from the oracle forM(φ, π).

Lemma 10.8. Given the parameters of a mixture model w1M (φ1, π1) ⊕ w2M (φ2, π2) and one
of the permutations π1, procedure Find-Pi with ε = wminγ

10 , succeeds with probability 1 − δ. Here
γ = min(gain(φ1), gain(φ2)).

Proof. For any element ei and position j, we have that

f (i→ j) = w1f
(1) (i→ j) + w2f

(2) (i→ j) . (11)

Here f (1) (i→ j) is the probability that element ei goes to position j in M(φ1, π1). Similarly,
f (2) (i→ j) is the probability that element ei goes to position j in M(φ2, π2). We can compute
f (1) (i→ j) = f

(1)
(n,j,i) using dynamic programming via the following relation

f
(1)
(n,1,i) = φi−11 /Zn(φ1)

f
(1)
(n,l,i) = 1

Zn(φ1)

i−1∑
j=1

φj−11

 f
(1)
(n−1,l−1,i−1) +

 n∑
j=i+1

φj−11

 f
(1)
(n−1,l−1,1)


Here f (1)(n,l,i) is the probability that the element at the ith position goes to position l in a length
n Mallows model. Notice that this probability is independent of the underlying permutation
π. Having computed f (1) (i→ j) using the above formula, we can solve Equation 11 to get
f (2) (i→ j) to accuracy

√
1 + wminγ and figure out π2. The total number of samples required

will be O( 1
γ2w2

min
log(nδ )).

11 Wrapping up the Proof

Proof of Theorem 3.1. Let εs be the entry-wise error in P from the estimates. From Lemma 13.3,
εs < 3 log n/

√
N . We aim to estimate each of the parameters φ1, φ2w1, w2 up to error at most ε.

Let for convenience, γ = (1−φmax)
2

4nφmax
.

Let ε = min {ε, ε0}. Let ε3 = ϑ9.9(n, φmin, ε). Let us also set ε2 = ϑ9.1(n, ε3, φmin, wmin). Let ε′2
be a parameter chosen large enough such that ε′2 ≥ ε2

γmin
+ ϑ8.1, and ε ≤ ϑ3.2(n, ε′2, εs, wmin, φmin).

In the non-degenerate case, suppose there is a partition such that σ2(Ma), σ2(Mb), σ2(Mc) ≥ ε′2,
Lemma 8.1 guarantees that σ2(M ′a), σ2(M ′b), σ2(M ′c) ≥ ε2. In this case, Lemma 3.2 ensures that
one of the O(log n) rounds of the algorithm succeeds and we get the parameters w1, w2, φ1, φ2
within an error ε using Lemma 3.2. Further, Lemma 3.2 will also find the top r, s elements of π1
and π2 respectively where r = log1/φ1

(
n10

γ2wmin

)
and s = log1/φ2

(
n10

γ2wmin

)
. We will then appeal to

Lemma 10.2 (along with Lemma 2.6) to recover the entire rankings π1, π2.

Lemma 2.6 implies that the total variation distance between distributions of w1M (φ1, π1) ⊕
w2M (φ2, π2) and ŵ1M

(
φ̂1, π1

)
⊕ ŵ2M̂

(
φ̂2, π2

)
is at most εn2

φmin
. Since ε ≤ ε0, this vari-

ation distance is at most φmin

10n3S(wmin/2,
√
φmax)

. Here S(wmin/2,
√
φmax) is an upper bound on the
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number of samples needed by RECOVER-REST to work given true parameters (and not estima-
tions). This allows to analyze the performance of RECOVER-REST assuming that we get per-
fect estimates of the parameters (w1, w2, φ1, φ2) since samples used by RECOVER-REST which
are drawn from w1M (φ1, π1) ⊕ w2M (φ2, π2) will be indistinguishable from samples from
ŵ1M

(
φ̂1, π1

)
⊕ ŵ2M̂

(
φ̂2, π2

)
except with probability 1

10n3 . This followed by the guarantee
of Lemma 10.2 will recover the complete rankings π1 and π2.

In the degenerate case, due to our choice of ε2, Lemma 9.1 shows that φ̂ is ε3 close to both φ1 and φ2.
Using Lemma 9.9 we then conclude that step 4 of Algorithm 1 recovers π1, π2 and the parameters
w1, w2 within error ε.

12 Conclusions and Future Directions

In this paper we gave the first polynomial time algorithm for learning the parameters of a mixture
of two Mallows models. Our algorithm works for an arbitrary mixture and does not need separation
among the underlying base rankings. We would like to point out that we can obtain substantial
speed-up in the first stage (tensor decompositions) of our algorithm by reducing to an instance with
just k ∼ log1/φ n elements.

Several interesting directions come out of this work. A natural next step is to generalize our results
to learn a mixture of k Mallows models for k > 2. We believe that most of these techniques can
be extended to design algorithms that take poly(n, 1/ε)k time. It would also be interesting to get
algorithms for learning a mixture of k Mallows models which run in time poly(k, n), perhaps in
an appropriate smoothed analysis setting [23] or under other non-degeneracy assumptions. Perhaps,
more importantly, our result indicates that tensor based methods which have been very popular for
problems such as mixture of Gaussians, might be a powerful tool for solving learning problems over
rankings as well. We would like to understand the effectiveness of such tools by applying them to
other popular ranking models as well.

13 Some Useful Lemmas for Error Analysis

Lemma 13.1. Let u, u′, v, v′ denote vectors and fix parameters δ, γ > 0. Suppose ‖u ⊗ v − u′ ⊗
v′‖F < δ, and γ ≤ ‖u‖, ‖v‖, ‖u′‖, ‖v′‖ ≤ 1,
with δ < γ2

2 . Given a decomposition u = α1u
′ + u⊥ and v = α2v

′ + v⊥, where u⊥ and v⊥ are
orthogonal to u′, v′ respectively, then we have

‖u⊥‖ <
√
δ and ‖v⊥‖ <

√
δ.

Proof. We are given that u = α1u
′ + u⊥ and v = α2v

′ + v⊥. Now, since the tensored vectors are
close

‖u⊗ v − u′ ⊗ v′‖2F < δ2

‖(1− α1α2)u′ ⊗ v′ + α2u
⊥ ⊗ v′ + α1u

′ ⊗ v⊥ + u⊥ ⊗ v⊥‖2F < δ2

γ4(1− α1α2)2 + ‖u⊥‖2α2
2γ

2
min + ‖v⊥‖2α2

1γ
2 + ‖u⊥‖2‖v⊥‖2 < δ2 (12)

This implies that |1− α1α2| < δ/γ2.

Now, let us assume β1 = ‖u⊥‖ >
√
δ. This at once implies that β2 = ‖v⊥‖ <

√
δ. Hence one of

the two (say β2) is smaller than
√
δ.

Also

γ2 ≤ ‖v‖2 = α2
2‖v′‖2 + β2

2

γ2 − δ ≤ α2
2

Hence, α2 ≥
γ

2

Now, using (12), we see that β1 <
√
δ.

27



Lemma 13.2. Let φ ∈ (0, 1) be a parameter and denote c2(φ) = Zn(φ)
Zn−1(φ)

1+φ
φ and c3(φ) =

Z2
n(φ)

Zn−1(φ)Zn−2(φ)
1+2φ+2φ2+φ3

φ3 . Then we have that 1 ≤ c2(φ) ≤ 3/φ and 1 ≤ c3(φ) ≤ 50/φ3.

Proof. Since 0 < φ < 1, we have thatZn−1(φ) ≤ 1
1−φ . Observe that 1 ≤ Zn(φ)

Zn−1(φ)
≤ 1+ 1

Zn−1(φ)
≤

2. The bounds now follow immediately.

Lemma 13.3. In the notation of section 2, given N independent samples, the empirical average P̂

satisfied ‖P − P̂‖∞ <
√
C logn

N with probability 1− n−C/8.

Proof. This follows from a standard application of Bernstein inequality followed by a union bound
over the O(n3) events.
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