
JMLR: Workshop and Conference Proceedings vol (2012) 1–22

Distributed Learning, Communication Complexity and
Privacy

Maria-Florina Balcan∗ ninamf@cc.gatech.edu
Georgia Institute of Technology

Avrim Blum† avrim@cs.cmu.edu
Carnegie Mellon University

Shai Fine shai@il.ibm.com
IBM Research

Yishay Mansour‡ mansour@tau.ac.il

Tel Aviv University

Abstract

We consider the problem of PAC-learning from distributed data and analyze fundamental
communication complexity questions involved. We provide general upper and lower bounds
on the amount of communication needed to learn well, showing that in addition to VC-
dimension and covering number, quantities such as the teaching-dimension and mistake-
bound of a class play an important role. We also present tight results for a number of
common concept classes including conjunctions, parity functions, and decision lists. For
linear separators, we show that for non-concentrated distributions, we can use a version
of the Perceptron algorithm to learn with much less communication than the number of
updates given by the usual margin bound. We also show how boosting can be performed
in a generic manner in the distributed setting to achieve communication with only log-
arithmic dependence on 1/ε for any concept class, and demonstrate how recent work on
agnostic learning from class-conditional queries can be used to achieve low communication
in agnostic settings as well. We additionally present an analysis of privacy, considering
both differential privacy and a notion of distributional privacy that is especially appealing
in this context.
Keywords: Distributed Learning, Communication Complexity, Privacy

1. Introduction

Suppose you have two databases: one with the positive examples and another with the
negative examples. How much communication between them is needed to learn a good
hypothesis? In this paper we consider this question and its generalizations, as well as
‡ This work was supported by NSF grant CCF-0953192, by ONR grant N00014-09-1-0751, and by a

Microsoft Faculty Fellowship.
‡ This work was supported in part by the National Science Foundation under grants CCF-1116892 and

IIS-1065251, and by a grant from the United States-Israel Binational Science Foundation (BSF).
‡ Supported in part by The Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11),

by the Google Inter-university center for Electronic Markets and Auctions, by a grant from the Israel
Science Foundation, by a grant from United States-Israel Binational Science Foundation (BSF), and by
a grant from the Israeli Ministry of Science (MoS).

c© 2012 M.-F. Balcan, A. Blum, S. Fine & Y. Mansour.

Balcan Blum Fine Mansour

related issues such as privacy. Broadly, we consider a framework where information is
distributed between several locations, and our goal is to learn a low-error hypothesis with
respect to the overall distribution of data using as little communication, and as few rounds
of communication, as possible. Motivating examples include:

1. Suppose k research groups around the world have collected large scientific datasets,
such as genomic sequence data or sky survey data, and we wish to perform learning
over the union of all these different datasets without too much communication.

2. Suppose we are a sociologist and want to understand what distinguishes the clientele
of two retailers (Macy’s vs Walmart). Each retailer has a large database of its own
customers and we want to learn a classification rule that distinguishes them. This is
an instance of the case of each database corresponding to a different label. It also
brings up natural privacy issues.

3. Suppose k hospitals with different distributions of patients want to learn a classifier
to identify a common misdiagnosis. Here, in addition to the goal of achieving high
accuracy, low communication, and privacy for patients, the hospitals may want to
protect their own privacy in some formal way as well.

We note that we are interested in learning a single hypothesis h that performs well
overall, rather than separate hypotheses hi for each database. For instance, in the case
that one database has all the positive examples and another has all the negatives, the
latter problem becomes trivial. More generally, we are interested in understanding the
fundamental communication complexity questions involved in distributed learning, a topic
that is becoming increasingly relevant to modern learning problems. These issues, moreover,
appear to be quite interesting even for the case of k = 2 entities.

1.1. Our Contributions

We consider and analyze fundamental communication questions in PAC-learning from dis-
tributed data, providing general upper and lower bounds on the amount of communica-
tion needed to learn a given class, as well as broadly-applicable techniques for achieving
communication-efficient learning. We also analyze a number of important specific classes,
giving efficient learning algorithms with especially good communication performance, as
well as in some cases counterintuitive distinctions between proper and non-proper learning.

Our general upper and lower bounds show that in addition to VC-dimension and cov-
ering number, quantities such as the teaching-dimension and mistake-bound of a class play
an important role in determining communication requirements. We also show how boosting
can be performed in a communication-efficient manner, achieving communication depending
only logarithmically on 1/ε for any class, along with tradeoffs between total communica-
tion and number of communication rounds. Further we show that, ignoring computation,
agnostic learning can be performed to error O(opt(H)) + ε with logarithmic dependence on
1/ε, by adapting results of Balcan and Hanneke (2012).

In terms of specific classes, we present several tight bounds including a Θ(d log d) bound
on the communication in bits needed for learning the class of decision lists over {0, 1}d.
For learning linear separators, we show that for non-concentrated distributions, we can

2

Distributed PAC Learning

use a version of the Perceptron algorithm to learn using only O(
√

d log(d/ε)/ε2) rounds
of communication, each round sending only a single hypothesis vector, much less than
the O(d/ε2) total number of updates performed by the Perceptron algorithm. For parity
functions, we give a rather surprising result. For the case of two entities, while proper
learning has an Ω(d2) lower bound based on classic results in communication complexity, we
show that non-proper learning can be done efficiently using only O(d) bits of communication.
This is a by-product of a general result regarding concepts learnable in the reliable-useful
framework of Rivest and Sloan (1988). For a table of results, see Appendix A.

We additionally present an analysis of communication-efficient privacy-preserving learn-
ing algorithms, considering both differential privacy and a notion of distributional privacy
that is especially appealing in this context. We show that in many cases we can achieve
privacy without incurring any additional communication penalty.

More broadly, in this work we propose and study communication as a fundamental
resource for PAC-learning in addition to the usual measures of time and samples. We
remark that all our algorithms for specific classes address communication while maintaining
efficiency along the other two axes.

1.2. Related Work

Related work in computational learning theory has mainly focused on the topic of learning
and parallel computation. Bshouty (1997) shows that many simple classes that can be PAC
learned can not be efficiently learned in parallel with a polynomial number of processors.
Long and Servedio (2011) show a parallel algorithm for large margin classifiers running in
time O(1/γ) compared to more naive implementations costing of Ω(1/γ2), where γ is the
margin. They also show an impossibility result regarding boosting, namely that the ability
to call the weak learner oracle multiple times in parallel within a single boosting stage does
not reduce the overall number of successive stages of boosting that are required. Collins
et al. (2002) give an online algorithm that uses a parallel-update method for the logistic
loss, and Zinkevich et al. (2010) give a detailed analysis of a parallel stochastic gradient
descent in which each machine processes a random subset of the overall data, combining
hypotheses at the very end. All of the above results are mainly interested in reducing the
time required to perform learning when data can be randomly or algorithmically partitioned
among processors; in contrast, our focus is on a setting in which we begin with data arbitrar-
ily partitioned among the entities. Dekel et al. (2011) consider distributed online prediction
with arbitrary partitioning of data streams, achieving strong regret bounds; however, in
their setting the goal of entities is to perform well on their own sequence of data.

In very recent independent work, Daume III et al. (2012a) examine a setting much like
that considered here, in which parties each have an arbitrary partition of an overall dataset,
and the goal is to achieve low error over the entire distribution. They present comunication-
efficient learning algorithms for axis-parallel boxes as well as for learning linear separators
in R2. Daume III et al. (2012b), also independently of our work, extend this to the case
of linear separators in Rd, achieving bounds similar to those obtained via our distributed
boosting results. Additionally, they consider a range of distributed optimization problems,
give connections to streaming algorithms, and present a number of experimental results.
Their work overall is largely complementary to ours.

3

Balcan Blum Fine Mansour

2. Model and Objectives

Our model can be viewed as a distributed version of the PAC model. We have k entities
(also called “players”) denoted by K and an instance space X. For each entity i ∈ K there
is a distribution Di over X that entity i can sample from. These samples are labeled by an
unknown target function f . Our goal is to find a hypothesis h which approximates f well
on the joint mixture D(x) = 1

k

∑k
i=1 Di(x). In the realizable case, we are given a concept

class H such that f ∈ H; in the agnostic case, our goal is to perform nearly as well as the
best h′ ∈ H.

In order to achieve our goal of approximating f well with respect to D, entities can
communicate with each other, for example by sending examples or hypotheses. At the end
of the process, each entity should have a hypothesis of low error over D. In the center
version of the model there is also a center, with initially no data of its own, mediating all
the interactions. In this case the goal is for the center to obtain a low error hypothesis h.
In the no-center version, the players simply communicate directly. In most cases, the two
models are essentially equivalent; however (as seen in Section 5), the case of parity functions
forms a notable exception. We assume the Di are not known to the center or to any entity
j 6= i (in fact, Di is not known explicitly even by entity i, and can be approximated only
via sampling). Finally, let d denote the VC dimension of H, and ε denote our target error
rate in the realizable case, or our target gap with respect to opt(H) in the agnostic case.1

We will typically think of k as much smaller than d.
Remark: We are assuming all players have the same weight, but all results extend to

players with different given weights. We also remark that except for our generic results, all
our algorithms for specific classes will be computationally efficient (see Appendix A).

Communication Complexity

Our main focus is on learning methods that minimize the communication needed in order
to learn well. There are two critical parameters, the total communication (either in terms
of bits transmitted or examples or hypotheses transmitted) and latency (number of rounds
required). Also, in comparison to the baseline algorithm of having each database send all
(or a random sample of) its data to a center, we will be looking both at methods that
improve over the dependence on ε and that improve over the dependence on d in terms
of the amount of communication needed (and in some cases we will be able to improve
in both parameters). In both cases, we will be interested in the tradeoffs between total
communication and the number of communication rounds. The interested reader is referred
to Kushilevitz and Nisan (1997) for an excellent exposition of communication complexity.

When defining the exact communication model, it is important to distinguish whether
entities can learn information from not receiving any data. For the most part we assume
an asynchronous communication model, where the entities can not deduce any information
when they do not receive the data (and there is no assumption about the delay of a message).
In a few places we use a much stronger model of lock-synchronous communication, where the
communication is in time slots (so you can deduce that no one sent a message in a certain
time slot) and if multiple entities try to transmit at the same time only one succeeds. Note

1. We will suppress dependence on the confidence parameter δ except in cases where it behaves in a
nontrivial manner.

4

Distributed PAC Learning

that if we have an algorithm with T time steps and C communication bits in the lock-
synchronous model, using an exponential back-off mechanism (Herlihy and Shavit, 2008)
and a synchronizer (Peleg, 2000), we can convert it to an asynchronous communication with
O(T log k) rounds and O((T + C) log k) communication bits.

Privacy

In addition to minimizing communication, it is also natural in this setting to consider issues
of privacy, which we examine in Section 10. In particular, we will consider privacy of three
forms: differential privacy for the examples (the standard form of privacy considered in
the literature), differential privacy for the databases (viewing each entity as an individual
deserving of privacy, which requires k to be large for any interesting statements), and
distributional privacy for the databases (a weaker form of privacy that we can achieve even
for small values of k). See Dwork (2008) for an excellent survey of differential privacy.

3. Baseline approaches and lower bounds

We now describe two baseline methods for distributed learning as well as present general
lower bounds.
Supervised Learning: The simplest baseline approach is to just have each database send a
random sample of size O(1

k (d
ε log 1

ε)) to the center, which then performs the learning. This
implies we have a total communication cost of O(d

ε log 1
ε) in terms of number of examples

transmitted. Note that while the sample received by the center is not precisely drawn from D
(in particular, it contains the same number of points from each Di), the standard double-
sample VC-dimension argument still applies, and so with high probability all consistent
h ∈ H have low error. Similarly, for the agnostic case it suffices to use a total of O(d

ε2
log 1

ε)
examples. In both cases, there is just one round of communication.
EQ/online algorithms: A second baseline method is to run an Equivalence Query or online
Mistake-Bound algorithm at the center. This method is simpler to describe in the lock-
synchronization model. In each round the center broadcasts its current hypothesis. If any
of the entities has a counter-example, it sends the counter-example to the center. If not,
then we are done. The total amount of communication measured in terms of examples and
hypotheses transmitted is at most the mistake bound M of the algorithm for learning H; in
fact, by having each entity run a shadow copy of the algorithm, one needs only to transmit
the examples and not the hypotheses. Note that in comparison to the previous baseline,
there is now no dependence on ε in terms of communication needed; however, the number
of rounds may now be as large as the mistake bound M for the class H. Summarizing,

Theorem 1 Any class H can be learned to error ε in the realizable case using 1 round and
O(d

ε log 1
ε) total examples communicated, or M rounds and M total examples communicated,

where M is the optimal mistake bound for H. In the agnostic case, we can learn to error
opt(H) + ε using 1 round and O(d

ε2
log 1

ε) total examples communicated.

Another baseline approach is for each player to describe an approximation to the joint
distribution induced by Di and f to the center, in cases where that can be done efficiently.
See Appendix B.1 for an example.

5

Balcan Blum Fine Mansour

We now present a general lower bound on communication complexity for learning a class
H. Let Nε,D(H) denote the size of the minimum ε-cover of H with respect to D, and let
Nε(H) = supD Nε,D(H). Let dT (H) denote the teaching dimension of class H.2

Theorem 2 Any class H requires Ω(log N2ε(H)) bits of communication to learn to error ε.
This implies Ω(d) bits are required to learn to error ε ≤ 1/8. For proper learning, Ω(log |H|)
bits are required to learn to error ε < 1

2dT (H) . These hold even for k = 2.

Proof Consider a distribution D1 such that N = N2ε,D1(H) is maximized. Let D2 be
concentrated on a single (arbitrary) point x. In order for player 2 to produce a hypothesis
h of error at most ε over D, h must have error at most 2ε over D1. If player 2 receives fewer
than log2(N2ε(H))− 1 bits from player 1, then (considering also the two possible labels of
x) there are less than N2ε(H) possible hypotheses player 2 can output. Thus, there must be
some f ∈ H that has distance greater than 2ε from all such hypotheses with respect to D1,
and so player 2 cannot learn that function. The Ω(d) lower bound follows from applying
the above argument to the uniform distribution over d points shattered by H.

For the Ω(log |H|) lower bound, again let D2 be concentrated on a single (arbitrary)
point. If player 2 receives fewer than 1

2 log |H| bits then there must be some h∗ ∈ H it
cannot output. Consider f = h∗ and let D1 be uniform over dT (H) points uniquely defining
f within H. Since player 2 is a proper learner, it must therefore have error greater than 2ε
over D1, implying error greater than ε over D.

Note that there is a significant gap between the above upper and lower bounds. For
instance, if data lies in {0, 1}d, then in terms of d the upper bound in bits is O(d2) but the
lower bound is Ω(d) (or in examples, the upper bound is O(d) but the lower bound is Ω(1)).
In the following sections, we describe our algorithmic results for improving upon the above
baseline methods, as well as stronger communication lower bounds for certain classes. We
also show how boosting can be used to generically get only a logarithmic dependence of
communication on 1/ε for any class, using a logarithmic number of rounds.

4. Intersection-closed classes and version-space algorithms

One simple case where one can perform substantially better than the baseline methods
is that of intersection-closed (or union-closed) classes H, where the functions in H can
themselves be compactly described. For example, the class of conjunctions and the class of
intervals on the real line are both intersection-closed. For such classes we have the following.

Theorem 3 If H is intersection-closed, then H can be learned using one round and k
hypotheses of total communication.

Proof Each entity i draws a sample of size O(1
ε (d log(1

ε) + log(k/δ))) and computes the
smallest hypothesis hi ∈ H consistent with its sample, sending hi to the center. The center
then computes the smallest hypothesis h such that h ⊇ hi for all i. With probability at

2. dT (H) is defined as maxf∈H dT (f) where dT (f) is the smallest number of examples needed to uniquely
identify f within H (Goldman and Kearns, 1991).

6

Distributed PAC Learning

least 1− δ, h has error at most ε on each Di and therefore error at most ε on D overall.

Example (conjunctions over {0, 1}d): In this case, the above procedure corresponds to each
player sending the bitwise-and of all its positive examples to the center. The center then
computes the bitwise-and of the results. The total communication in bits is O(dk). Notice
this may be substantially smaller than the O(d2) bits used by the baseline methods.

Example (boxes in d-Dimensions): In this case, each player can send its smallest consistent
hypothesis using 2d values. The center examines the minimum and maximum in each
coordinate to compute the minimal h ⊇ hi for all i. Total communication is O(dk) values.

In Appendix B.2 we discuss related algorithms based on version spaces.

5. Reliable-useful learning, parity, and lower bounds

A classic lower bound in communication complexity states that if two entities each have a
set of linear equalities over n variables, then Ω(n2) bits of communication are needed to
determine a feasible solution, based on JáJá and Prasanna (1984). This in turn implies that
for proper learning of parity functions, Ω(n2) bits of communication are required even in the
case k = 2, matching the baseline upper bound given via Equivalence Query algorithms.

Interestingly, however, if one drops the requirement that learning be proper, then for
k = 2, parity functions can be learned using only O(n) bits of communication. Moreover,
the algorithm is efficient. This is in fact a special case of the following result for classes that
are learnable in the reliable-useful learning model of Rivest and Sloan (1988).

Definition 1 (Rivest and Sloan, 1988) An algorithm reliably and usefully learns a class
H if given poly(n, 1/ε, 1/δ) time and samples, it produces a hypothesis h that on any given
example outputs either a correct prediction or the statement “I don’t know”; moreover, with
probability at least 1−δ the probability mass of examples for which it answers “I don’t know”
is at most ε.

Theorem 4 Suppose H is properly PAC-learnable and is learnable (not necessarily prop-
erly) in the reliable-useful model. Then for k = 2, H can be learned in one round with
2 hypotheses of total communication (or 2b bits of communication if each h ∈ H can be
described in b = O(log |H|) bits).

Proof The algorithm is as follows. First, each player i properly PAC-learns f under Di to
error ε, creating hypothesis hi ∈ H. It also learns f reliably-usefully to create hypothesis gi

having don’t-know probability mass at most ε under Di. Next, each player i sends hi to the
other player (but not gi, because gi may take too many bits to communicate since it is not
guaranteed to belong to H). Finally, each player i produces the overall hypothesis “If my
own gi makes a prediction, then use it; else use the hypothesis h3−i that I received from the
other player”. Note that each player i’s final hypothesis has error at most ε under both Di

(because of gi) and D3−i (because h3−i has error at most ε under D3−i and gi never makes
a mistake) and therefore has error at most ε under D.

Example (parity functions): Parity functions are properly PAC learnable (by an arbitrary
consistent solution to the linear equations defined by the sample). They are also learnable

7

Balcan Blum Fine Mansour

in the reliable-useful model by a (non-proper) algorithm that behaves as follows: if the given
test example x lies in the span of the training data, then write x as a sum of training exam-
ples and predict the corresponding sum of labels. Else output “I don’t know”. Therefore,
for k = 2, parity functions are learnable with only O(n) bits of communication.

Interestingly, the above result does not apply to the case in which there is a center that
must also learn a good hypothesis. The reason is that the output of the reliable-useful
learning procedure might have large bit-complexity, for example, in the case of parity it has
a complexity of Ω(n2). A similar problem arises when there are more than two entities.3

However, we can extend the result to the case of a center if the overall distribution D
over unlabeled data is known to the players. In particular, after running the above protocol
to error ε/d, each player can then draw O(d/ε) fresh unlabeled points from D, label them
using its learned hypothesis, and then perform proper learning over this data to produce a
new hypothesis h′ ∈ H to send to the center.

6. Decision Lists

We now consider the class H of decision lists over d attributes. The best mistake-bound
known for this class is O(d2), and its VC-dimension is O(d). Therefore, the baseline algo-
rithms give a total communication complexity, in bits, of Õ(d2/ε) for batch learning and
O(d3) for the mistake-bound algorithm.4 Here, we present an improved algorithm, requir-
ing a total communication complexity of only O(dk log d) bits. This is a substantial savings
over both baseline algorithms, especially when k is small. Note that for constant k and for
ε = o(1/d), this bound matches the proper-learning Ω(d log d) lower bound of Theorem 2.

Theorem 5 The class of decision lists can be efficiently learned with a total of at most
O(dk log d) bits of communication and a number of rounds bounded by the number of alter-
nations in the target decision list f .

Proof The algorithm operates as follows.

1. First, each player i draws a sample Si of size O(1
ε (d log(1

ε) + log(k/δ))), which is
sufficient so that consistency with Si is sufficient for achieving low error over Di.

2. Next, each player i computes the set Ti of all triplets (j, bj , cj) such that the rule “if
xj = bj then cj” is consistent with all examples in Si. (For convenience, use j = 0 to
denote the rule “else cj”.) Each player i then sends its set Ti to the center.

3. The center now computes the intersection of all sets Ti received and broadcasts the
result T = ∩iTi to all players, i.e., the collection of triplets consistent with every Si.

4. Each player i removes from Si all examples satisfied by T .

3. It is interesting to note that if we allow communication in the classification phase (and not only during
learning) then the center can simply send each test example to all entities, and any entity that classifies
it has to be correct.

4. One simple observation is the communication complexity of the mistake-bound algorithm can be reduced
to O(d2 log d) by having each player, in the event of a mistake, send only the identity of the offending
rule rather than the entire example; this requires only O(log d) bits per mistake. However we will be
able to beat this bound substantially.

8

Distributed PAC Learning

5. Finally, we repeat steps 2,3,4 but in Step 2 each player only sending to the center any
new rules that have become consistent since the previous rounds (the center will add
them into Ti—note that there is never a need to delete any rule from Ti); similarly
in Step 3 the center only sends new rules that have entered the intersection T . The
process ends once an “else cj” rule has entered T . The final hypothesis is the decision
list consisting of the rules broadcast by the center, in the order they were broadcast.

To analyze the above procedure, note first that since each player announces any given triplet
at most once, and any triplet can be described using O(log d) bits, the total communication
in bits per player is at most O(d log d), for a total of O(dk log d) overall. Next, note that
the topmost rule in f will be consistent with each Si, and indeed so will all rules appear-
ing before the first alternation in f . Therefore, these will be present in each Ti and thus
contained in T . Thus, each player will remove all examples exiting through any such rule.
By induction, after k rounds of the protocol, all players will have removed all examples
in their datasets that exit in one of the top k alternations of f , and therefore in the next
round all rules in the k + 1st alternation of f that have not been broadcast already will be
output by the center. This implies the number of rounds will be bounded by the number of
alternations of f . Finally, note that the hypothesis produced will by design be consistent
with each Si since a new rule is added to T only when it is consistent with every Si.

7. Linear Separators

We now consider the case of learning homogeneous linear separators in Rd. For this problem,
we will for convenience discuss communication in terms of the number of vectors transmit-
ted, rather than bits. However, for data of margin γ, all vectors transmitted can be given
using O(d log 1/γ) bits each.

One simple case is when D is a radially symmetric distribution such as the symmetric
Gaussian distribution centered at the origin, or the uniform distribution on the sphere. In
that case, it is known that Ex∼D[`(x)x/||x||], is a vector exactly in the direction of the
target vector, where `(x) is the label of x. Moreover, an average over O(d/ε2) samples is
sufficient to produce an estimate of error at most ε with high probability (Servedio, 2002).
Thus, so long as each player draws a sufficiently large sample Si, we can learn to any desired
error ε with a total communication of only k examples: each database simply computes an
average over its own data and sends it to the center, which combines the results.

The above result, however, requires very precise conditions on the overall distribution. In
the following we consider several more general scenarios: learning a large-margin separator
when data is “well-spread”, learning over non-concentrated distributions, and learning linear
separators without any additional assumptions.

7.1. Learning large-margin separators when data is well-spread

We say that data is α-well-spread if for all datapoints xi and xj we have |xi·xj |
||xi||||xj || < α. In

the following we show that if data is indeed α-well-spread for a small value of α, then the
Perceptron algorithm can be used to learn with substantially less communication than that
given by just using its mistake-bound directly as in Theorem 1.

9

Balcan Blum Fine Mansour

Theorem 6 Suppose that data is α-well-spread and furthermore that all points have margin
at least γ with the target w∗. Then we can find a consistent hypothesis with a version of the
Perceptron algorithm using at most O(k(1 + α/γ2)) rounds of communication, each round
communicating a single hypothesis.

Proof We will run the algorithm in meta-rounds. Each meta-round will involve a round
robin communication between the players 1, . . . , k. Starting from initial hypothesis w0 = 0,
each player i will in turn run the Perceptron algorithm on its data until it finds a consistent
hypothesis wt,i that moreover satisfies |wt · xi| > 1 for all of its examples xi. It then sends
the hypothesis wt,i produced to player i+1 along with the number of updates it performed,
who continues this algorithm on its own data, starting from the most recent hypothesis wt,i.
When player k sends wt,k to player 1, we start meta-round t+1. At the start of meta-round
t + 1, player 1 counts the number of updates made in the previous meta-round, and if it is
less than 1/α we stop and output the current hypothesis.

It is known that this “Margin Perceptron” algorithm makes at most 3/γ2 updates in
total.5 Note that if in a meta-round all the players make less than 1/α updates in total,
then we know the hypothesis will still be consistent with all players’ data. That is because
each update can decrease the inner product of the hypothesis with some xi of another player
by at most α. So, if less than 1/α updates occur, it implies that every player’s examples are
still classified correctly. This implies that the total number of communication meta-rounds
until a consistent hypothesis is produced will be at most 1 + 3α/γ2. In particular, this
follows because the total number of updates is at most 3/γ2, and each round, except the
last, makes at least 1/α updates.

7.2. Learning linear separators over non-concentrated distributions

We now use the analysis of Section 7.1 to achieve good communication bounds for learning
linear separators over non-concentrated distributions. Specifically, we say a distribution over
the d-dimensional unit sphere is non-concentrated if for some constant c, the probability
density on any point x is at most c times greater than that of the uniform distribution
over the sphere. The key idea is that in a non-concentrated distribution, nearly all pairs of
points will be close to orthogonal, and most points will have reasonable margin with respect
to the target. (See Appendix C.1.)

Theorem 7 For any non-concentrated distribution D over Rd we can learn to error O(ε)
using only O(k2

√
d log(dk/ε)/ε2) rounds of communication, each round communicating a

single hypothesis vector.

Note that in Section 8 we show how boosting can be implemented communication-
efficiently so that any class learnable to constant error rate from a sample of size O(d) can
be learned to error ε with total communication of only O(d log 1/ε) examples (plus a small
number of additional bits). However, as usual with boosting, this requires a distribution-
independent weak learner. The “1/ε2” term in the bound of Theorem 7 comes from the

5. Because after update τ we get ||wτ+1||2 ≤ ||wτ ||2 + 2`(xi)(wτ · xi) + 1 ≤ ||wτ ||2 + 3.

10

Distributed PAC Learning

margin that is satisfied by a 1− ε fraction of points under a non-concentrated distribution,
and so the results of Section 8 do not eliminate it.

7.3. Learning linear separators without any additional assumptions

If we are willing to have a bound that depends on the dimension d, then we can run a
mistake-bound algorithm for learning linear separators, using Theorem 1. Specifically, we
can use a mistake-bound algorithm based on reducing the volume of the version space of
consistent hypotheses (which is a polyhedra). The initial volume is 1 and the final volume
is γd, where γ is the margin of the sample. In every round, each player checks if it has an
example that reduces the volume by half (volume of hypotheses consistent with all examples
broadcast so far). If it does, it sends it (we are using here the lock-synchronization model).
If no player has such an example, then we are done. The hypothesis we have is for each x
to predict with the majority of the consistent hypotheses. This gives a total of O(d log 1/γ)
examples communicated. In terms of bits, each example has d dimensions, and we can
encode each dimension with O(log 1/γ) bits, thus the total number of bits communicated is
O(d2 log2 1/γ). Alternatively, we can replace the log 1/γ term with a log 1/ε term by using
a PAC-learning algorithm to learn to constant error rate, and then applying the boosting
results of Theorem 10 in Section 8 below.

It is natural to ask whether running the Perceptron algorithm in a round-robin fashion
could be used to improve the generic O(1/γ2) communication bound given by the baseline
results of Theorem 1, for general distributions of margin γ. However, in Appendix C.2 we
present an example where the Perceptron algorithm indeed requires Ω(1/γ2) rounds.

Theorem 8 There are inputs for k = 2 with margin γ such that the Perceptron algorithm
takes Ω(1/γ2) rounds.

8. Boosting for Logarithmic Dependence on 1/ε

We now consider the general question of dependence of communication on 1/ε, showing how
boosting can be used to achieve O(log 1/ε) total communication in O(log 1/ε) rounds for
any concept class, and more generally a tradeoff between communication and rounds.

Boosting algorithms provide a mechanism to produce an ε-error hypothesis given access
only to a weak learning oracle, which on any distribution finds a hypothesis of error at most
some value β < 1/2 (i.e., a bias γ = 1/2 − β > 0). Most boosting algorithms are weight-
based, meaning they assign weights to each example x based solely on the performance of
the hypotheses generated so far on x, with probabilities proportional to weights.6 We show
here that any weight-based boosting algorithm can be applied to achieve strong learning
of any class with low overall communication. The key idea is that in each round, players
need only send enough data to the center for it to produce a weak hypothesis. Once the
weak hypothesis is constructed and broadcast to all the players, the players can use it to
separately re-weight their own distributions and send data for the next round. No matter

6. E.g., Schapire (1990); Freund (1990); Freund and Schapire (1997). (For Adaboost, we are considering
the version that uses a fixed upper bound β on the error of the weak hypotheses.) Normalization may
of course be based on overall performance.

11

Balcan Blum Fine Mansour

how large or small the weights become, each round only needs a small amount of data to
be transmitted. Formally, we show the following (proof in Appendix D):

Lemma 9 Given any weight-based boosting algorithm that achieves error ε by making
r(ε, β) calls to a β-weak learning oracle for H, we can construct a distributed learning
algorithm achieving error ε that uses O(r(ε, β)) rounds, each involving O((d/β) log(1/β))
examples and an additional O(k log(d/β)) bits of communication per round.

By adjusting the parameter β, we can trade off between the number of rounds and
communication complexity. In particular, using Adaboost (Freund and Schapire, 1997) in
Lemma 9 yields the following result (plugging in β = 1/4 or β = ε1/c respectively):

Theorem 10 Any class H can be learned to error ε in O(log 1
ε) rounds and O(d) examples

plus O(k log d) bits of communication per round. For any c ≥ 1, H can be learned to error
ε in O(c) rounds and O(d

ε1/c log 1
ε) examples plus O(k log d

ε) bits communicated per round.

Thus, any class of VC-dimension d can be learned using O(log 1
ε) rounds and a total of

O(d log 1
ε) examples, plus a small number of extra bits of communication.

9. Agnostic Learning

Balcan and Hanneke (2012) show that any class H can be agnostically learned to error
O(opt(H)) + ε using only Õ(d log 1/ε) label requests, in an active learning model where
class-conditional queries are allowed. We can use the core of their result to agnostically
learn any finite class H to error O(opt(H)) + ε in our setting, with a total communication
that depends only (poly)logarithmically on 1/ε. The key idea is that we can simulate their
robust generalized halving algorithm using communication proportional only to the number
of class-conditional queries their algorithm makes. The proof appears in Appendix E.

Theorem 11 Any finite class H can be learned to error O(opt(H))+ε with a total communi-
cation of O(k log(|H|) log log(|H|) log(1/ε)) examples and O(k log(|H|) log log(|H|) log2(1/ε))
additional bits. The latter may be eliminated if shared randomness is available.

10. Privacy

In the context of distributed learning, it is also natural to consider the question of pri-
vacy. We begin by considering the well-studied notion of differential privacy with respect
to the examples, showing how this can be achieved in many cases without any increase in
communication costs. We then consider the case that one would like to provide additional
privacy guarantees for the players themselves. One option is to view each player as a single
(large) example, but this requires many players to achieve any nontrivial accuracy guaran-
tees. Thus, we also consider a natural notion of distributional privacy, in which players do
not view their distribution Di as sensitive, but rather only the sample Si drawn from it. We
analyze how large a sample is sufficient so that players can achieve accurate learning while
not revealing more information about their sample than is inherent in the distribution it
was drawn from. Due to space limitations, we present these results in Appendix F.

12

Distributed PAC Learning

References

Maria-Florina Balcan and Steve Hanneke. Robust interactive learning. In Proc. 25th Annual
Conference on Learning Theory (COLT), 2012.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
SuLQ framework. In Proc. 24th ACM Symposium on Principles of Database Systems
(PODS), pages 128–138, 2005.

Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-
interactive database privacy. In Proc. 40th Annual ACM Symp. Theory of Computing,
pages 609–618, 2008.

Nader H. Bshouty. Exact learning of formulas in parallel. Machine Learning, 26(1):25–41,
1997.

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, adaboost and
bregman distances. Machine Learning, 48(1-3):253–285, 2002.

Hal Daume III, Jeff Phillips, Avishek Saha, and Suresh Venkatasubramanian. Protocols
for learning classifiers on distributed data. In International Conference on Artificial
Intelligence and Statistics (AIStats), 2012a.

Hal Daume III, Jeff Phillips, Avishek Saha, and Suresh Venkatasubramanian. Efficient
protocols for distributed classification and optimization. CoRR, abs/1204.3523, 2012b.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction. In Proceedings of the 28th International Conference on Machine Learning,
2011.

Cynthia Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.

Cynthia Dwork. Differential privacy: A survey of results. In TAMC, pages 1–19, 2008.

Cynthia Dwork. The differential privacy frontier (extended abstract). In TCC, pages 496–
502, 2009.

Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned
databases. In Proceedings of CRYPTO, Lecture Notes in Computer Science, pages 528–
544. Springer, 2004.

Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy.
In FOCS, pages 51–60, 2010.

Yoav Freund. Boosting a weak learning algorithm by majority. In COLT, pages 202–216,
1990.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

13

Balcan Blum Fine Mansour

Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. In Proceedings
of COLT ’91, pages 303–314. Morgan Kaufmann, 1991.

Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kauf-
mann, 2008.

Joseph JáJá and Viktor K. Prasanna. Information transfer in distributed computing with
applications to vlsi. J. ACM, 31(1):150–162, 1984.

Shiva Kasiviswanathan, Homin Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What Can We Learn Privately? In Proc. 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 531–540, 2008.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM, 45(6):983–1006, 1998.

Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

Phil Long and Rocco Servedio. Algorithms and hardness results for parallel large margin
learning. In NIPS, 2011.

David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000. ISBN 0-89871-464-8.

Ronald L. Rivest and Robert Sloan. Learning complicated concepts reliably and usefully.
In Proceedings AAAI-88, pages 635–639, August 1988.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990.

Rocco Servedio. Perceptron, Winnow, and PAC learning. SIAM Journal on Computing, 31
(5), 2002.

Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Parallelized stochas-
tic gradient descent. In NIPS, pages 2595–2603, 2010.

14

Distributed PAC Learning

Appendix A. Table of results

Class / Category Communication Efficient?
Conjunctions over {0, 1}n O(nk) bits yes
Parity functions over {0, 1}n, k = 2 O(n) bits yes
Decision lists over {0, 1}n O(nk log n) bits yes
Linear separators in Rd O(d log(1/ε)) examples∗ yes

under radially-symmetric D O(k) examples yes
under α-well-spread D O(k(1 + α/γ2)) hypotheses yes
under non-concentrated D O(k2

√
d log(dk/ε)/ε2) hyps yes

General Intersection-Closed k hypotheses see Note 1 below
Boosting O(d log 1/ε) examples∗ see Note 2 below
Agnostic learning Õ(k log(|H|) log(1/ε)) exs∗ see Note 3 below

∗: plus low-order additional bits of communication.
Note 1: Efficient if can compute the smallest consistent hypothesis in H efficiently, and
for any given h1, . . . , hk, can efficiently compute the minimum h ⊇ hi for all i.
Note 2: Efficient if can efficiently weak-learn with O(d) examples.
Note 3: Efficient if can efficiently run robust halving algorithm for H.

Appendix B. Additional simple cases

B.1. Distribution-based algorithms

An alternative basic approach, in settings where it can be done succinctly, is for each
entity i to send to the center a representation of its (approximate) distribution over labeled
data. Then, given the descriptions, the center can deduce an approximation of the overall
distribution over labeled data and search for a near optimal hypothesis. This example is
especially relevant for the agnostic 1-dimensional case, e.g., a union of d intervals over X =
[0, 1]. Each entity first simply sorts the points, and determines d/ε border points defining
regions of probability mass (approximately) ε/d. For each segment between two border
points, the entity reports the fraction of positive versus negative examples. It additionally
sends the border points themselves. This communication requires O(d/ε) border points and
an additional O(log d/ε) bits to report the fractions within each such interval, per entity.
Given this information, the center can approximate the best union of d intervals with error
O(ε). Note that the supervised learning baseline algorithm would have a bound of Õ(d/ε2)
in terms of the number of points communicated.

Theorem 12 There is an algorithm for agnostically learning a union of d intervals that
uses one round and O(kd/ε) values (each either a datapoint or a log d/ε bit integer), such
that the final hypothesis produced has error opt(H) + ε.

B.2. Version space algorithms

Another simple case where one can perform well is when the version space can be compactly
described. The version space of H given a sample Si is the set of all h ∈ H which are
consistent with Si. Denote this set by V erSp(H, Si).

15

Balcan Blum Fine Mansour

Generic Version Space Algorithm: Each entity sends V erSp(H, Si) to the center. The
center computes V = ∩iV erSp(H, Si). Note that V = V erSp(H,∪iSi). The center can
send either V or some h ∈ V .
Example (linear separators in [0, 1]2): Assume that the points have margin γ. We can cover
a convex set in [0, 1]2 using 1/γ2 rectangles, whose union completely covers the convex set,
and is completely covered by the convex set extended by γ. Each entity does this for its
positive and negative regions, sending this (approximate) version space to the center. This
gives a one-round algorithm with communication cost of O(1/γ2) points.

Appendix C. Linear Separators

C.1. Non-concentrated distributions

Proof (Theorem 7) Note that for any non-concentrated distribution D, the probability that
two random examples x, x′ from D satisfy |x · x′| > t/

√
d is e−O(t2). This implies that in a

polynomial-size sample (polynomial in d and 1/ε), with high probability, any two examples
xi, xj in the sample satisfy |xi · xj | ≤

√
c′ log(d/ε)/n for some constant c′. Additionally, for

any such distribution D there exists another constant c′′ such that for any ε > 0, there is
at most ε probability mass of D that lies within margin γε = c′′ε/

√
d of the target.

These together imply that using the proof idea of Theorem 6, we can learn to error
O(ε) using only O(k2

√
d log(dk/ε)/ε2) communication rounds. Specifically, each player

acts as follows. If the hypothesis w given to it has error at most ε on its own data, then it
makes no updates and just passes w along. Otherwise, it makes updates using the margin-
perceptron algorithm by choosing random examples x from its own distribution Di satisfying
`(x)(w · x) < 1 until the fraction of examples x under Di for which `(x)(w · x) < 1 is at
most ε, sending the final hypothesis produced to the next player. Since before each update,
the probability mass under Di of {x : `(x)(w · x) < 1} is at least ε, the probability mass of
this region under D is at least ε/(2k). This in turn means there is at least a 1/2 probability
that the example used for updating has margin at least 1

2γε/(2k) = Ω(ε/(k
√

d)) with respect
to the target. Thus, the total number of updates made over the entire algorithm will be
only O(dk2/ε2). Since the process will halt if all players make fewer than 1/α updates in
a meta-round, for α =

√
c′ log(2dk/ε)/n, this implies the total number of communication

meta-rounds is O(k2
√

d log(d/ε)/ε2).

C.2. Margin lower bound

Proof (Theorem 8) Suppose we have two players, each with their own set of examples,
such that the combined dataset has a linear separator of margin γ. Suppose furthermore
we run the perceptron algorithm where each player performs updates on their own dataset
until consistent (or at least until low-error) and then passes the hypothesis on to the other
player, with the process continuing until one player receives a hypothesis that is already
low-error on its own data. How many rounds can this take in the worst case?

Below is an example showing a problematic case where this can indeed result in Ω(1/γ2)
rounds.

16

Distributed PAC Learning

In this example, there are 3 dimensions and the target vector is (0, 1, 0). Player 1 has
the positive examples, with 49% of its data points at location (1, γ, 3γ) and 49% of its data
points are at location (1, γ,−γ). The remainder of player 1’s points are at location (1, γ, γ).
Player 2 has the negative examples. Half of its data points are at location (1,−γ,−3γ) and
half of its data points are at location (1,−γ, γ).

The following demonstrates a bad sequence of events that can occur, with the two players
essentially fighting over the first coordinate:

player updates using producing hypothesis
player 1 (1, γ, γ), + (1, γ, γ)
player 2 (1,−γ,−3γ), − (0, 2γ, 4γ)
player 2 (1,−γ, γ), − (−1, 3γ, 3γ)
player 1 (1, γ, 3γ), + (0, 4γ, 6γ)
player 1 (1, γ,−γ), + (1, 5γ, 5γ)
player 2 (1,−γ,−3γ), − (0, 6γ, 8γ)
player 2 (1,−γ, γ), − (−1, 7γ, 7γ)
player 1 (1, γ, 3γ), + (0, 8γ, 10γ)
player 1 (1, γ,−γ), + (1, 9γ, 9γ)

...

Notice that when the hypothesis looks like (−1, kγ, kγ), then the dot-product with the ex-
ample (1, γ, 3γ) from player 1 is −1 + 4kγ2. So long as this is negative, player 1 will make
two updates producing hypothesis (1, (k + 2)γ, (k + 2)γ). Then, so long as 4(k + 2)γ2 < 1,
player 2 will make two updates producing hypothesis (−1, (k + 4)γ, (k + 4)γ). Thus, this
procedure will continue for Ω(1/γ2) rounds.

Appendix D. Boosting

We present here the proof of Lemma 9, showing how boosting can be implemented in a
communication-efficent manner. For convenience we restate the lemma below.

Lemma 9 Given any weight-based boosting algorithm that achieves error ε by making r(ε, β)
calls to a β-weak learning oracle for H, we can construct a distributed learning algorithm
achieving error ε that uses O(r(ε, β)) rounds, each involving O((d/β) log(1/β)) examples
and an additional O(k log(d/β)) bits of communication per round.

Proof The key property of weight-based boosting algorithms that we will use is that
they maintain a current distribution such that the probability mass on any example x is
solely a function of the performance of the weak-hypotheses seen so far on x, except for
a normalization term that can be communicated efficiently. This will allow us to perform
boosting in a distributed fashion. Specifically, we run the boosting algorithm in rounds, as
follows.

Initialization: Each player i will have a weight wi,t for round t. We begin with wi,0 = 1
for all i. Let Wt =

∑k
i=1 wi,t so initially W0 = k. These weights will all be known to

the center. Each player i will also have a large weighted sample Si, drawn from Di,

17

Balcan Blum Fine Mansour

known only to itself. Si will be weighted according to the specific boosting algorithm
(and for all standard boosting algorithms, the points in Si begin with equal weights).
We now repeat the following steps for t = 1, 2, 3,

1. Pre-sampling The center determines the number of samples ni,t to request from each
player i by sampling O(d

β log 1
β) times from the multinomial distribution wi,t−1/Wt−1.

It then sends each player i the number ni,t, which requires only O(log d
β) bits.

2. Sampling Each player i samples ni,t examples from its local sample Si in proportion
to its own internal example weights, and sends them to the center.

3. Weak-learning The center takes the union of the received examples and uses these
O(d

β log 1
β) samples to produce a weak hypothesis ht of error at most β/2 over the

current weighted distribution, which it then sends to the players.7

4. Updating Each player i, given ht, computes the new weight of each example in Si using
the underlying boosting algorithm and sends their sum wi,t to the center. This sum
can be sent to sufficient accuracy using O(log 1

β) bits.

In each round, steps (1) and (2) ensure that the center receives O((d/β) log(1/β)) examples
distributed according to a distribution D′ matching that given by the boosting algorithm,
except for small rounding error due to the number of bits sent in step (4). Specifically,
the variation distance between D′ and the distribution given by the boosting algorithm
is at most β/2. Therefore, in step (3), it computes a hypothesis ht with error at most
β/2 + β/2 = β with respect to the current distribution given by the boosting algorithm.
In step (4), the examples in all sets Si then have their weights updated as determined by
the boosting algorithm, and the values wi,t transmitted ensure that the normalizations are
correct. Therefore, we are simulating the underlying boosting algorithm having access to
a β-weak learner, and so the number of rounds is r(ε, β). The overall communication per
round is O((d/β) log(1/β)) examples plus O(k log(d/β)) bits for communicating the num-
bers ni,t and wi,t, as desired.

Appendix E. Agnostic Learning

We now prove Theorem 11. For convenience we restate the theorem below.

Theorem 11 Any finite class H can be learned to error O(opt(H))+ε with a total communi-
cation of O(k log(|H|) log log(|H|) log(1/ε)) examples and O(k log(|H|) log log(|H|) log2(1/ε))
additional bits. The latter may be eliminated if shared randomness is available.

Proof We prove this result by simulating the robust generalized halving algorithm of
Balcan and Hanneke (2012), for the case of finite hypothesis spaces, in a communication-
efficient manner.8 In particular, the algorithm operates as follows. For this procedure,

7. In fact, because we have a broadcast model, technically the players each can observe all examples sent
in step (2) and so can simulate the center in this step.

8. The algorithm of Balcan and Hanneke (2012) for the case of infinite hypothesis spaces begins by using
a large unlabeled sample to determine a small ε-cover of H. This appears to be difficult to simulate
communication-efficiently.

18

Distributed PAC Learning

N = O(log log |H|) and s = O(1/(opt(H) + ε)) is such that the probability that the best
hypothesis in H will have some error on a set of s examples is a small constant..

1. We begin by drawing N sets S1, . . . , SN of size s from D. This can be implemented
communication-efficiently as follows. For j = 1, . . . , N , player 1 makes s draws from
{1, . . . , k} to determine the number nij of points in Sj that should come from each
Di. Player 1 then sends each player i the list (ni1, ni2, . . . , niN), who draws (but
keeps internally and does not send) nij examples of Sj for each 1 ≤ j ≤ N . To-
tal communication: O(kN log(s)) bits. Note that if shared randomness is available,
then the computation of nij can be simulated by each player and so in that case no
communication is needed in this step.

2. Next we determine which sets Sj contain an example on which the majority-vote
hypothesis over H, maj(H), makes a mistake, and identify one such example (x̃j , ỹj)
for each such set. We can implement this communication-efficiently by having each
player i evaluate maj(H) on its own portion of each set Sj and broadcast a mistake
for each set on which at least one mistake is made. Total communication: O(kN)
examples.

3. If no more than N/3 sets Sj contained a mistake for maj(H) then halt. Else, remove
from H each h that made mistakes on more than N/9 of the identified examples
(x̃j , ỹj), and go to (1). This step can be implemented separately by each player
without any communication.

Balcan and Hanneke (2012) show that with high probability the above process halts within
O(log |H|) rounds, does not remove the optimal h ∈ H, and furthermore that when it
halts, maj(H) has error O(opt(H)) + ε. The total amount of communication is therefore
O(k log(|H|) log log(|H|)) examples and O(k log(|H|) log log(|H|) log(1/ε)) additional bits.
The above has been assuming that the value of opt(H) is known; if not then one can per-
form binary search, multiplying the above quantities by an additional O(log(1/ε)) term.
Thus, we achieve the desired error rate within the desired communication bounds.

Appendix F. Privacy

As mentioned in Section 10, We consider here three types of privacy: differential privacy
on behalf of the individual examples, differential privacy on behalf of the entities, and a
notion of distributional privacy. For each, we examine how it can be achieved and effects
on communication.

F.1. Differential privacy with respect to individual examples

In this setting we imagine that each entity i (e.g., a hospital) is responsible for the privacy
of each example x ∈ Si (e.g., its patients). In particular, suppose σ denotes a sequence of
interactions between entity i and the other entities or center, and α > 0 is a given privacy
parameter. Differential privacy asks that for any Si and any modification S′

i of Si in which
any one example has been arbitrarily changed, for all σ we have e−α ≤ PrSi(σ)/ PrS′i

(σ) ≤

19

Balcan Blum Fine Mansour

eα, where probabilities are over internal randomization of entity i. (See Dwork (2006, 2008,
2009) for a discussion of motivations and properties of differential privacy and a survey of
results).

In our case, one natural approach for achieving privacy is to require that all interaction
with each entity i be in the form of statistical queries (Kearns, 1998). It is known that
statistical queries can be implemented in a privacy-preserving manner (Dwork and Nissim,
2004; Blum et al., 2005; Kasiviswanathan et al., 2008), and in particular that a sample of
size O(max[M

ατ , M
τ2] log(M/δ)) is sufficient to preserve privacy while answering M statistical

queries to tolerance τ with probability 1− δ. For completness, we present the proof below.

Theorem 13 (Dwork and Nissim, 2004; Blum et al., 2005; Kasiviswanathan et al., 2008)
If H is learnable using M statistical queries of tolerance τ , then H is learnable preserving dif-
ferential privacy with privacy parameter α from a sample S of size O(max[M

ατ , M
τ2] log(M/δ)).

Proof For a single statistical query, privacy with parameter α′ can be achieved by adding
Laplace noise of width O(1

α′|S|) to the empirical answer of the query on S. That is because
changing a single entry in S can change the empirical answer by at most 1/|S|, so by adding
such noise we have that for any v, PrS(v)/ PrS′(v) ≤ eα′ . Note that with probability at
least 1 − δ′, the amount of noise added to any given answer is at most O(1

α′|S| log(1/δ′)).
Thus, if the overall algorithm requires M queries to be answered to tolerance τ , then set-
ting α′ = α/M, δ′ = δ/(2M), τ = O(1

α′|S| log(1/δ′)), privacy can be achieved so long as

we have |S| = O(max[M
ατ , M

τ2] log(M/δ)), where the second term of the max is the sample
size needed to achieve tolerance τ for M queries even without privacy considerations. As
described in Dwork et al. (2010), one can achieve a somewhat weaker privacy guarantee
using α′ = O(α/

√
M).

However, this generic approach may involve significant communication overhead over the
best non-private method. Instead, in many cases we can achieve privacy without any com-
munication overhead at all by performing statistical queries internally to the entities. For
example, in the case of intersection-closed classes, we have the following privacy-preserving
version of Theorem 3.

Theorem 14 If H can be properly learned via statistical queries to D+ only, then H can
be learned using one round and k hypotheses of total communication while preserving dif-
ferential privacy.

Proof Each entity i learns a hypothesis hi ∈ H using privacy-preserving statistical queries
to its own D+

i , and sends hi to the center. Note that hi ⊆ f because the statistical query
algorithm must succeed for any possible D−. Therefore, the center can simply compute the
minimal h ∈ H such that h ⊇ hi for all i, which will have error at most ε over each Di and
therefore error at most ε over D.

For instance, the class of conjunctions can be learned via statistical queries to D+ only by
producing the conjunction of all variables xj such that PrD+

i
[xj = 0] ≤ ε

2n ± τ , for τ = ε
2n .

Thus, Theorem 14 implies that conjunctions can be learned in a privacy-preserving manner
without any communication overhead.

20

Distributed PAC Learning

Indeed, in all the algorithms for specific classes given in this paper, except for parity
functions, the interaction between entities and their data can be simulated with statistical
queries. For example, the decision list algorithm of Theorem 5 can be implemented by
having each entity identify rules to send to the center via statistical queries to Di. Thus, in
these or any other cases where the information required by the protocol can be extracted
by each entity using statistical queries to its own data, there is no communication overhead
due to preserving privacy.

F.2. Differential privacy with respect to the entities

One could also ask for a stronger privacy guarantee, that each entity be able to plausibly
claim to be holding any other dataset it wishes; that is, to require e−α ≤ PrSi(σ)/ PrS′(σ) ≤
eα for all Si and all (even unrelated) S′. This in fact corresponds precisely to the local
privacy notion of Kasiviswanathan et al. (2008), where in essence the only privacy-preserving
mechanisms possible are via randomized-response.9 They show that any statistical query
algorithm can be implemented in such a setting; however, because each entity is now viewed
as essentially a single datapoint, to achieve any nontrivial accuracy, k must be quite large.

F.3. Distributional privacy

If the number of entities is small, but we still want privacy with respect to the entities
themselves, then one type of privacy we can achieve is a notion of distributional privacy.
Here we guarantee that that each player i reveals (essentially) no more information about
its own sample Si than is inherent in Di itself. That is, we think of Si as “sensitive” but
Di as “non-sensitive”. Specifically, let us say a probabilistic mechanism A for answering a
request q satisfies (α, δ) distributional privacy if

Pr
S,S′∼Di

[
∀v, e−α ≤ Pr

A
(A(S, q) = v)/ Pr

A
(A(S′, q) = v) ≤ eα

]
≥ 1− δ.

In other words, with high probability, two random samples S, S′ from Di have nearly the
same probability of producing any given answer to request q. Blum et al. (2008) introduce
a similar privacy notion,10 which they show is strictly stronger than differential privacy,
but do not provide efficient algorithms. Here, we show how distributional privacy can be
implemented efficiently.

Notice that in this context, an ideal privacy preserving mechanism would be for player i
to somehow use its sample to reconstruct Di perfectly and then draw a “fake” sample from
Di to use in its communication protocol. However, since reconstructing Di perfectly is not
in general possible, we instead will work via statistical queries.

Theorem 15 If H is learnable using M statistical queries of tolerance τ , then H is learnable
preserving distributional privacy from a sample of size O(M2 log3(M/δ)

α2τ2).

9. For example, if an entity is asked a question such as “do you have an example with xi = 1”, then it flips
a coin and with probability 1/2 + α′ gives the correct answer and with probability 1/2 − α′ gives the
incorrect answer, for some appropriate α′.

10. In the notion of Blum et al. (2008), Di is uniform over some domain and sampling is done without
replacement.

21

Balcan Blum Fine Mansour

Proof We will show that we can achieve distributional privacy using statistical queries by
adding additional Laplace noise beyond that required solely for differential privacy of the
form in Section F.1.

Specifically, for any statistical query q, Hoeffding bounds imply that with probability at
least 1−δ′, two random samples of size N will produce answers within β = O(

√
log(1/δ′)/N)

of each other (because each will be within β/2 of the expectation with probability at least
1−δ′/2). This quantity β can now be viewed as the “global sensitivity” of query q for distri-
butional privacy. In particular, it suffices to add Laplace noise of width O(β/α′) in order to
achieve privacy parameter α′ for this query q because we have that with probability at least
1 − δ′, for two random samples S, S′ of size N , for any v, Pr(A(S, q) = v)/Pr(A(S′, q) =
v) ≤ eβ/(β/α′) = eα′ . Note that this has the property that with probability at least 1 − δ′,
the amount of noise added to any given answer is at most O((β/α′) log(1/δ′)).

If we have a total of M queries, then it suffices for preserving privacy over the entire
sequence to set α′ = α/M and δ′ = δ/M . In order to have each query answered with high
probability to within ±τ , it suffices to have β + (β/α′) log(1/δ′) ≤ cτ for some constant
c, where the additional (low-order) β term is just the statistical estimation error without
added noise. Solving for N , we find that a sample of size N = O(M2 log3(M/δ)

α2τ2) is sufficient
to maintain distributional privacy while answering each query to tolerance τ , as desired.

As in the results of Section F.1, Theorem 15 implies that if each player can run its portion
of a desired communication protocol while only interacting with its own data via statistical
queries, then so long as |Si| is sufficiently large, we can implement distributional privacy
without any communication penalty by performing internal statistical queries privately as
above. For example, combining Theorem 15 with the proof of Theorem 14 we have:

Theorem 16 If H can be properly learned via statistical queries to D+ only, then H can
be learned using one round and k hypotheses of total communication while preserving dis-
tributional privacy.

22

	Introduction
	Our Contributions
	Related Work

	Model and Objectives
	Baseline approaches and lower bounds
	Intersection-closed classes and version-space algorithms
	Reliable-useful learning, parity, and lower bounds
	Decision Lists
	Linear Separators
	Learning large-margin separators when data is well-spread
	Learning linear separators over non-concentrated distributions
	Learning linear separators without any additional assumptions

	Boosting for Logarithmic Dependence on 1/
	Agnostic Learning
	Privacy
	Table of results
	Additional simple cases
	Distribution-based algorithms
	Version space algorithms

	Linear Separators
	Non-concentrated distributions
	Margin lower bound

	Boosting
	Agnostic Learning
	Privacy
	Differential privacy with respect to individual examples
	Differential privacy with respect to the entities
	Distributional privacy

