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Abstract

Co-training is a method for combining labeled and unlabelaa when
examples can be thought of as containing two distinct sefisabiires. It
has had a number of practical successes, yet previous tloabemalyses
have needed very strong assumptions on the data that akelyrib be
satisfied in practice.

In this paper, we propose a much weaker “expansion” assompti the
underlying data distribution, that we prove is sufficient fierative co-
training to succeed given appropriately strong PAC-leagralgorithms
on each feature set, and that to some extent is necessaryllasTiis
expansion assumption in fact motivates the iterative eabfithe origi-
nal co-training algorithm, unlike stronger assumptiong(sas indepen-
dence given the label) that allow a simpler one-shot canitngito suc-
ceed. We also heuristically analyze the effect on perforeani noise in
the data. Predicted behavior is qualitatively matched intsstic experi-
ments on expander graphs.

1 Introduction

In machine learning, it is often the case that unlabeled gasabstantially cheaper and
more plentiful than labeled data, and as a result a numbeetifods have been developed
for using unlabeled data to try to improve performance,, €1, 2, 6, 11, 16]. Co-training
[2] is a method that has had substantial success in sceriarighich examples can be
thought of as containing two distinct yet sufficient featse¢s. Specifically, a labeled ex-
ample takes the fornxz,, #2), ), wherez; € X; andz, € X, are the two parts of the
example, and is the label. One further assumes the existence of two fomsti , ¢, over
the respective feature sets such thdt:;) = ca2(z2) = £. Intuitively, this means that each
example contains two “views,” and each view contains sufficinformation to determine
the label of the example. This redundancy implies an unieglstructure of the unlabeled
data (since they need to be “consistent”), and this strachakes the unlabeled data infor-
mative. In particular, the idea d@krative co-training2] is that one can use a small labeled
sample to train initial classifiers; , h» over the respective views, and then iteratively boot-
strap by taking unlabeled examplés , x») for which one of theh; is confident but the
other is not — and using the confidgntto label such examples for the learning algorithm
on the other view, improving the other classifier. As an exianfipr webpage classifica-
tion given in [2], webpages contain text;() and have hyperlinks pointing to thenas.
From a small labeled sample, we might learn a classifiethat says that if a link with
the words “my advisor” points to a page, then that page is gobba positive example
of faculty-member-home-page; so, if we find an unlabelednpta with this property we
can useh, to label the page for the learning algorithm that uses thedexthe page itself.
This approach and its variants have been used for a variéganfing problems, including



named entity classification [3], text classification [1Q,rtural language processing [13],
large scale document classification [12], and visual dets¢8].

Co-training effectively requires two distinct propertigsthe underlying data distribution
in order to work. The first is that there should at least in gipie exist low error classifiers
1, co on each view. The second is that these two views should orthiee lsand not béoo
highly correlated — we need to have at least some examplesewhés confident but,

is not (or vice versa) for the co-training algorithm to adtypido anything. Unfortunately,
previous theoretical analyses have needed to make strengasions of this second type in
order to prove their guarantees. These include “conditimiependence given the label”
used by [2] and [4], or the assumption of “weak rule dependéused by [1]. The primary
contribution of this paper is a theoretical analysis thalbstantiallyrelaxes the strength
of this second assumption to just a form of “expansion” ofuheerlying distribution (a
natural analog of the graph-theoretic notions of expanammhconductance) that we show
in some sense is a necessary condition for co-training tcesatcas well. However, we will
need a fairly strong assumption on the learning algoriththat thes; they produce are
never “confident but wrong” (formally, the algorithms ardeato learn from positive data
only), though we give a heuristic analysis of the case whendbes not hold.

One key feature of assuming only expansion on the data is iz cifically motivates the
iterative nature of the co-training algorithm. Previousuasptions that had been analyzed
imply such a strong form of expansion that even a “one-shetsion of co-training will
succeed (see Section 2.2). In fact, the theoretical guzeargiven in [2] are exactly of
this type. However, distributions can easily satisfy ouaker condition without allowing
one-shot learning to work as well, and we describe sevetalralssituations of this form.
An additional property of our results is that they are altforiic in nature. That is, if we
have sufficiently strongfficientPAC-learning algorithms for the target function on each
feature set, we can use them to achietffecientPAC-style guarantees for co-training as
well. However, as mentioned above, we need a stronger asgumgn our base learning
algorithms than used by [2] (see section 2.1).

We begin by formally defining the expansion assumption wewsi, connecting it to stan-

dard graph-theoretic notions of expansion and conductaWeethen prove the statement
thate-expansion is sufficient for iterative co-training to suedegiven strong enough base
learning algorithms over each view, proving bounds on thalmer of iterations needed to
converge. In Section 4.1, we heuristically analyze theceftd imperfect feature sets on

co-training accuracy. Finally, in Section 4.2, we presempiegiments on synthetic expander
graph data that qualitatively bear out our analyses.

2 Notations, Definitions, and Assumptions

We assume that examples are drawn from some distribiitiower an instance spacé =

X1 x X», whereX; and X, correspond to two different “views” of an example. Let
denote the target function, and l&t~ and X~ denote the positive and negative regions of
X respectively (for simplicity we assume we are doing bindagsification). For most of
this paper we assume that each view in itself is sufficientéorect classification; that is,

¢ can be decomposed into functions ¢, over each view such thd? has no probability
mass on examples such thate; (z1) # ca(x2). Fori € {1,2}, IetX;r ={z; € X; :
ci(z;) = 1}, sowe can think o * as X[ x X, and letX; = X; — X}. Let Dt and
D~ denote the marginal distribution @f over Xt and.X ~ respectively.

In order to discuss iterative co-training, we need to be ablealk about a hypothesis
being confident or not confident on a given example. For caemer, we will identify
“confident” with “confident about being positive”. This meane can think of a hypothesis
h; as asubset of;, wherez; € h; means thak; is confident thak; is positive, and:; ¢ h;
means that; has no opinion.

As in [2], we will abstract away the initialization phase oftraining (how labeled data is
used to generate an initial hypothesis) and assume we ae wjiitial setss? C Xt and



59 C X7 such thatPr(,, ,.)ep (21 € S7 Orzy € S9) > piniy for somep;,; > 0. The
goal of co-training will be to bootstrap from these sets gainlabeled data.

Now, to prove guarantees for iterative co-training, we make assumptions: that the
learning algorithms used in each of the two views are ableaml from positive data only,
and that the distributio* is expanding as defined in Section 2.2 below.

2.1 Assumption about the base learning algorithms on the twaiews

We assume that the learning algorithms on each view are alf#a€-learn from positive
data only. Specifically, for any distributiaR; over X, and any giver,é > 0, given
access to examples from" the algorithm should be able to produce a hypothisiich
that (a)h; C X; (soh; only has one-sided error), and (b) with probabilitys$, the error of
h; underDj is at most. Algorithms of this type can be naturally thought of as petidig
either “positive with confidence” or “don’t know”, fitting ouramework. Examples of
concept classes learnable from positive data only incluagunctions, k-CNF, and axis-
parallel rectangles; see [7]. For instance, for the caseisfarallel rectangles, a simple
algorithm that achieves this guarantee is just to outpusthallest rectangle enclosing the
positive examples seen.

If we wanted to consider algorithms that could be confidettath directions (rather than
just confident about being positive) we could instead usendtmn of “reliable, useful”
learning due to Rivest and Sloan [14]. However, fewer clasgdunctions are learnable
in this manner. In addition, a nice feature of our assumptdhat we will only needD+

to expand and noD~. This is especially natural if the positive class has a lag@unt
of cohesion (e.qg, it consists of all documents about somie topbut the negatives do not
(e.g., all documents about all other topics). Note that veesdiectively assuming that our
algorithms are correct when they are confident; we relaxithmur heuristic analysis in
Section 4.

2.2 The expansion assumption for the underlying distributon

ForS; C X, andS; C X, let boldfaceS; (i = 1, 2) denote the event that an example
(1, ®2) hase; € S;. So, if we think ofS; and.S; as our confident sets in each view, then
Pr(S; A S2) denotes the probability mass on examples for which we ar&dmm about
both views, and®r(S; ¢ S) denotes the probability mass on examples for which we are

confident about just one. In this section, all probabiliiesswith respect té&)+. We say:
Definition 1 D is e-expandingif for any S; € X7, S, C X, we have
Pr(S; ¢ S2) > emin [Pr(Sl ASa), Pr(S_l/\S_z)] .

We say thatDt is e-expanding with respect to hypothesis clasé/; x H if the above
holds for allS; € Hy N X, Sy € Hy N X+ (here we denote byf; N X" the set
{hn X} heH}fori=1,2).

To get a feel for this definition, notice thatexpansion is in some sense necessary for
iterative co-training to succeed, because'ifand.S, are our confident sets and do not
expand, then we might never see examples for which one hgpistbould help the othér.

In Section 3 we show that Definition 1 is in fact sufficient. Bedow much weaker this
definition is than previously-considered requirementss thelpful to consider a slightly
stronger kind of expansion that we call “left-right expamsi.

Definition 2 We sayD% is e-right-expanding if for anys; C X, S, C X,
if Pr(S1) <1/2andPr(Sz|S1) > 1 —ecthenPr(Sz) > (1 4 ¢) Pr(Sy).

"However,c-expansion requiresverypair to expand and so it is not strictly necessary. If there
were occasional paifsSy , S2) that did not expand, but such pairs were rare and unlikelyeter
countered as confident sets in the co-training process, @htrsiill be OK.



We sayD™ is e-left-expanding if the above holds with indices 1 and 2 resdr Finally,
DT is e-left-right-expanding if it has both properties.

It is not immediately obvious but left-right expansion icféamplies Definition 1 (see Ap-
pendix A), though the converse is not necessarily true. Wedluce this notion, however,
for two reasons. First, it is useful for intuition: H; is our confident set id(;’ and this
set is small Pr(S;) < 1/2), and we train a classifier that learns from positive datahen t
conditional distribution tha$; induces overXs_; until it has error< ¢ on that distribution,
then the definition implies the confident set®g._; will have noticeably larger probability
thans;; so it is clear why this is useful for co-training, at leasttlre initial stages. Sec-
ondly, this notion helps clarify how our assumptions are Imlass restrictive than those
considered previously. Specifically,

Independence given the label:independence given the label implies that for &y C
X andS, C XS we havePr(S|S;) = Pr(S2). So, ifPr(Ss[S;) > 1 —¢, then
Pr(S;) > 1 — e as well, even ifPr(S,) is tiny. This means that not only doé$s
expand by 41 + ¢) factor as in Def. 2, but in fact ixpands to nearly all ok’ .

Weak dependence: Weak dependence [1] is a relaxation of conditional indepand that
requires only that for alb; C X", S» C X3 we havePr(S»|S1) > o Pr(Ss)
for somea > 0. This seems much less restrictive. However, notice that if
Pr(S2|S1) > 1 — ¢, thenPr(S2|S;1) < ¢, which implies by definition of weak

dependence th&tr(S2) < ¢/« and thereforér(S;) > 1 — ¢/«. So, again (for

sufficiently smalle), even if.S; is very small, it expands to nearly all 6f;". This

means that, as with conditional independence, if one halgaritam overX, that
PAC-learns from positive data only, and one trains it over ¢bnditional distri-
bution given byS;, then by driving down its error on this conditional distritmn

one can perform co-training in just one iteration.

2.2.1 Connections to standard graph-theoretic notions ofgansion

Our definition of c-expansion (Definition 1) is a natural analog of the standgaph-
theoretic notion okdge-expansionr conductance A Markov-chain is said to have high
conductance if under the stationary distribution, for aay &f statesS of probability at
most1/2, the probability mass on transitions exititgis at least times the probability
of S. E.g., see [9]. A graph has high edge-expansion if the rangatk on the graph has
high conductance. Since the stationary distribution of thalk can be viewed as having
equal probability on every edge, this is equivalent to sgythmt for any partition of the
graph into two piece$S, V' — S), the number of edges crossing the partition should be at
least ar fraction of the number of edges in the smaller half. To cohtigs to Definition
1, thinkof S asS; A Ss.

Itis well-known that, for example, a random degree-3 bipagraph with high probability
is expanding, and this in fact motivates our synthetic dapeements of Section 4.2.

2.2.2 Examples
We now give two simple examples that satisfgxpansion but not weak dependence.

Example 1: SupposeY = R? x R¢ and the target function on each view is an axis-parallel
rectangle. Suppose a random positive example fiomooks like a paifz, z») such that

x1 andx, are each uniformly distributed in their rectangles but mghly-dependenvay:
specifically,z, is identicalto 2, except that a random coordinate has been “re-randomized”
within the rectangle. This distribution does not satisfyaWwelependence (for any sets
andT that are disjoint along all axes we haRe(T|S) = 0) but it is not hard to verify that
Dt is e-expanding foe = Q(1/d).

Example 2: Imagine that we have a learning problem such that the dat ifalls inton
different clusters: the positive class is the union of sorithese clusters and the negative
class is the union of the others. Imagine that this likewssele if we look atX, and for
simplicity suppose that every cluster has the same prababibss. Independence given



the label would say that given that is in some positive cluster; in X, x5 is equally
likely to be in any of the positive cluste€s; in X». But, suppose we have something much
weaker: eaclC; in X is associated with only 8;'s in X (i.e., given thate; is in Cj,

x2 Will only be in one of thes€’;’s). This distribution clearly will not even have the weak
dependence property. However, say we have a learning #igothat assumes everything
in the same cluster has the same label (so the hypothesis Bpeansists of all rules that
do not split clusters). Then if the graph of which clusters associated with which is an
expander graph, then the distributions will be expandintpwespect ta. In particular,
given a labeled example, the learning algorithm will generalize tds entire clusteiC;,
then this will be propagated over to nodes in the associdtestiersC; in X, and so on.

3 The Main Result

We now present our main result. We assume fhétis e-expanding (e > 0) with respect
to hypothesis clas&; x H-, that we are given initial confident set§ C X, S5 C X

such thatPr(S§ Vv S9) > pinit, that the target function can be written @s, c2) with

e1 € Hy, es € Ho, and that on each of the two views we have algorittdnsand. A, for

learning from positive data only.

The iterative co-training that we consider proceedsoimds Let Si cXy anng C X,
be the confident sets in each view at the start of round/e constructsi™ by feeding
into A, examples according t@, conditioned orS} Vv S%. That is, we take unlabeled

examples fron such that at least one of the current predictors is confidetfeed them
into.4- as if they were positive. We rud, with error and confidence parameters given in

the theorem below. We simultaneously do the same W'hth:reatingsj“.

After a pre-determined number of roundis(specified in Theorem 1), the algorithm termi-
nates and outputs the predictor that labels examfalesrs) as positive ifr; € S{VH or
x9 € Sév“ and negative otherwise.

We begin by stating two lemmas that will be useful in our asmly For both of these
lemmas, letS;, Ty C X7, S, Ty C X, whereS;,T; € H;. All probabilities are with
respect taD .

Lemma 1 SupposePr (S1 A S2) < Pr(S;ASs), Pr(T;|S;1VSs) > 1—¢/8 and
Pr (T2 | SV Sz) > 1-— 6/8 ThenPr (Tl A Tz) > (1 + 6/2) Pr (Sl A Sz)

Proof: FromPr(T; | S1V S2) > 1—¢/8andPr (T2 |S; VS2) > 1—¢/8we getthat
Pr(T1 ATs) > (1 —€¢/4)Pr(S; V Ss). SincePr (S; AS2) < Pr(S; AS,) it follows
from the expansion property that

Pr (Sl vV Sz) = Pr (Sl D Sz) + Pr (Sl A Sz) Z (1 + 6) Pr (Sl A Sz)

Therefore, Pr(T1 AT2) > (1 — €¢/4)(1 4+ €¢)Pr(S1 AS2) which implies that

Pr(Tl/\Tz)Z(1+6/2)Pr(51/\52) [ |

Lemma 2 SupposePr (S; ASs) > Pr(S; AS;) and lety = 1 — Pr(S; ASs). If
PI'(Tl | Sq \/Sz) > 1- ’YS—E and Pr (T2 | Sq \/Sz) > 1- ’YS—E, thenPr (Tl /\Tz) >

Proof: FromPr (T, |S;VSy) > 1— % andPr(T: |S; VSy) > 1 — & we get that
Pr(T; ATs) > (1 — L) Pr(S;VS,). SincePr(S; AS») > Pr(S; AS,) it follows
from the expansion property thBt (S; @ S2) > ¢ Pr (S; A S2). Therefore

¥ =Pr(S1®S2)+Pr(S;AS2) > (1+¢)Pr(S; ASsz) > (1+¢€)(1—Pr(S;VS,)

and soPr (S1 V S3) > 1 — 3. This impliesPr (T1 AT2) > (1 — ZF)(1 -
(1—=7)(1+ %). So,we havePr (T1 A T2) > (14 £)Pr(S; ASy).

)
) >
1



Theorem 1 Let¢;;, andd;;, be the (final) desired accuracy and confidence parameters.
Then we can achieve error ratg;,, with probabilityl — ¢, by running co-training for

N = O( log — e,«m + % . m) rounds, each time running; and.4, with accuracy and

confidence parameters setié,’% and 52’" & respectively.

Proof Sketch: Assume that, foi > 1, 5S¢ C Xt andSi C X are the confident sets in
each view after step— 1 of co-training. Defing; = Pr (S% A S%), ¢; = Pr (S} ASY),
and~; = 1 — p;, with all probabilities with respect t&*. We are interested in bounding
Pr (S% v S%), but since technically it is easier to bouRd(S} A S%), we will instead show
thatpn > 1 — €y, With probabilityl — §,,,, which obviously implies thaPr(S v S¥)

is at least as good.

By the guarantees ad; and.A,,

we havePr (S{*! | S v S)) > 1 — L2 and Pr(S4H! [S{ v S)) > 1 — L5 In
particular, this implies that with probability — 5%", we havep; = Pr(SiASL) >

(1—¢/4) - Pr(S{ V85 > (1 —€/4)pini.

Consider nowi > 1. |If p; < g¢;, since with probabilityl — 5’"7" we have

Pr (ST | S v Sy >1— £andPr(Syt! | SivSh) > 1— &, using lemma 1 we obtain
that with probabilityl — 2=, we havePr (Si+! A S51) > (1 + ¢/2) Pr (S} A S5). Sim-
ilarly, by applying lemma 2, we obtain thatgf > ¢; and~; > <y, then with probability
1 — 2 we havePr (STF1 A S5F1) > (1 4 2€) Pr (S A S5). Assume now that it is the
case t JY]at the learning algorithrds and.4, were successful on all th€ rounds; note that
this happens with probability at lealst- ;.

The above observations imply that so longpas< 1/2 (sov; > 1/2) we havep;y1 >
(14¢/16)'(1—¢/4)pinic. This means that aftev; = O(-— - 1) iterations of co-training
we get to a situation whergy, > 1/2. At this point, notice that ever$/c rounds,y

drops by at Ieast a factor of 2; that is,Aif < 2k then73+Z < ﬁ So, after a total

of O(Llog 21— e,«m + ¢ - 5-—) rounds, we have a predictor of the desired accuracy with the

desired confidence. 1

4 Heuristic Analysis of Error propagation and Experiments

So far, we have assumed the existence of perfect classifieemach view: there are no
examples(zy, z2) with z; € Xf’ andz, € X, or vice-versa. In addition, we have
assumed that given correctly-labeled positive exampleéams, our learning algorithms
are able to generalize in a way that makes only 1-sided dreoythey are never “confident
but wrong”). In this section we give a heuristic analysisteff tase when these assumptions
are relaxed, along with several synthetic experiments pamdter graphs.

4.1 Heuristic Analysis of Error propagation

Given confident set§j C X; and 5; C X, at theith iteration, let us define thepu-
rity (precision) aspur; = Prp(c(z) = 1|S} v S%) and theircoverage(recall) to be
cov; = Prp(S} V Shle(z) = 1). Let us also define their “opposite coverage” to be

oppi = Prp(StVSi|e(z) = 0). Previously, we assumeghp; = 0 and thereforeur; = 1.
However, if we imagine that there is grfraction of examples on which the two views dis-
agree, and that positive and negative regions expand umlifat the same rate, then even
if initially oppy = 0, itis natural to assume the following form of increasedn andopp:

coviyr = min(cov;(1 4+ €(1 — cov;)) + 1 - (oppiy1 — oppi) , 1), Q)
oppiv1 = min(opp;(1+ €(1 —opp;)) + 1 - (covig1 — cov;), 1). (2)
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Figure 1: Co-training with noise rates 0.1, 0.01, and 0.001 respectively (n = 5000). Solid
line indicates overall accuracy; green (dashed, increasing) curve is accuracy on positives

(cov;); red (dashed, decreasing) curve is accuracy on negatives (1 — opp;).

That is, this corresponds to both the positive and negatires f the confident region
expanding in the way given in the proof of Theorem 1, withsafraction of the new
edges going to examples of the other label. By examining ft]) (), we can make a
few simple observations. First, initially when coveragéois, everyO(1/¢) steps we get
roughlycov « 2 - cov andopp < 2 - opp + 1 - cov. SO, We expect coverage to increase
exponentially and purity to drop linearly. However, once@mge gets large and begins to
saturate, if purity is still high at this time it will begin dpping rapidly as the exponential
increase impp; causespp; to catch up witheov;. In particular, a calculation (omitted)
shows that ifD is 50/50 positive and negative, then overall accuracy as@e up to the
point whencov; + opp; = 1, and then drops from then on. This qualitative behavior is
borne out in our experiments below.

4.2 Experiments

We performed experiments on synthetic data along the lihEgample 2, with noise added
as in Section 4.1. Specifically, we creat®raby-2n bipartite graph. Nodes 1 to on each
side represent positive clusters, and nodes 1 to 2n on each side represent negative
clusters. We connect each node on the left to three nodeseorigtt: each neighbor is
chosen with probability — » to be a random node of the same class, and with probability
to be a random node of the opposite class. We begin with aalioinfident ses; C X
and then propagate confidence through rounds of co-traimnogitoring the percentage
of the positive class covered, the percent of the negatasscistakenly covered, and
the overall accuracy. Plots of three experiments are shovigiare 1, for different noise
rates (0.1, 0.01, and 0.001). As can be seen, these quaiyathatch what we expect:
coverage increases exponentially, but accuracy on negétiv- opp;) drops exponentially
too, though somewhat delayed. At some point there is a cvessdherecov; = 1 — opp;,
which as predicted roughly corresponds to the point at wiokérall accuracy starts to
drop.

5 Conclusions

Co-training is a method for using unlabeled data when exaspan be partitioned into
two views such that (a) each view in itself is at least roughlificient to achieve good
classification, and yet (b) the views are not too highly datesl. Previous theoretical work
has required instantiating condition (b) in a very strongsge as independence given the
label, or a form of weak dependence. In this work, we argué tthe “right” condition

is something much weaker: an expansion property on the lymogmdistribution (over
positive examples) that we show is sufficient and to somenéxieecessary as well.

The expansion property is especially interesting becaudieeictly motivates the iterative
nature of many of the practical co-training based algorghand our work is the first
rigorous analysis of iterative co-training in a settingttdamonstrates its advantages over
one-shot versions.
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A Relating the definitions
We show here how Definition 2 implies Definition 1.

Theorem 2 If DY satisfiesc-left-right expansion (Definition 2), then it also satisfiésexpansion
(Definition 1) fore’ = ¢/(1 + ¢).

Proof: We will prove the contrapositive. Suppose there eistC X', S C X7 such that
Pr(S; @ S;) < ¢ min [Pr(S; ASy),Pr(S; AS;)]. Assume without loss of generality that
Pr(S: A S2) < Pr(S: ASz). SincePr(S: A Sz) +Pr(Si ASz) +Pr(S1 & S2) = 1it fol-
lows thatPr(S; ASz) < L — Fr81852) AssumePr(S;) < Pr(S2). Thisimplies thaPr(S,) < 1
SincePr(S1)+Pr(Ss) = 2Pr(S; AS2)+Pr(S18S2) and sdr(S;) < Pr(S;AS,) + E51852)
Now notice that

Pr(81 /\SQ) Pr(81 /\SQ) 1
Pr(S2]S)) = > >1—c
M8elS) = e 2 PrE A 4 PiEi B8, xS ¢

But
PF(SQ) S Pr(81 AN SQ) —|— Pr(81 @ SQ) < (1 —|— 6/) Pr(81 AN SQ) S (1 —|— 6) Pr(Sl)

and saPr(S:2) < (1+¢)Pr(Sy). Similarly if Pr(S2) < Pr(S:) we get a failure of expansion in the
other direction. This completes the proof. 1



