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ABSTRACT

Under some views, a crucial function for conversation policies is
to "constrain the messages that appear on the wire,’’ for there can
be a many-to-many mapping between an agent’s intention and the
message primitive used to express that intention. In this paper, we
argue that the way to constrain messages is to constrain intentions.
We propose a pragmatic approach to doing this through an
abstract task specification or model. Abstract task specifications
are based on a simple state-space representation for problem
formulation, and this representation can be used to delimit the
agents’ task intentions and discourse intentions. This analysis
supports a flexible and pragmatic way of handling "unexpected’’
messages by reference to the abstract task specification. We see
an abstract task specification as one component of a publicly
posted conversation policy. A simple search-assistant agent was
implemented within a BDI architecture to illustrate application of
these ideas.
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1. INTRODUCTION
Cooperation between agents denotes a kind of interaction required
when each of the agents has some, but not all, the information and
abilities required to accomplish a task. This requires specifying
the semantics and pragmatics of a conversation a sequence of
messages that enable two agents to bring a task to completion.
Most definitions of a conversation implicitly or explicitly appeal
to the notion of "task accomplishment" or "goal achievement,"
although what constitutes a task or goal is interpreted quite
broadly. Recently, there has been considerable interest in
specifying conversation policies  [8], which speak to a range of
matters in managing lengthy conversations, from turn-taking and
message time-out conventions to responding to dynamic
constraints imposed by the environment [19]. Our concern here is
what some researchers [9] claim is a crucial function of a broadly-
defined conversation policy, which is: constraining "the messages
that appear on the wire." It is argued that this need arises from the

many-to-many mapping between an intention an agent might have
and the specific agent communication language (ACL) primitive
used to convey that intention. Indeed, a difficult matter long
recognized within the discourse processing research community is
the inferential machinery and theoretical underpinnings needed to
associate a speaker’s intention with a speaker’s utterance. So it is
not surprising that these same problems eventually come into play
even in the realm of limited dialogues between software agents or
between software agents and humans.

The call for conversation policies stems from a belief that the
solution to these matters will not be found at the level of
individual message primitives or performatives within an agent
communcation language, such as KQML or FIPA’s ACL
[14,15,7]. However well-specified the semantics for a
performative might be, they are under constrained with respect to
the full illocutionary force of the communicative act. For
example, an inform  ought sometimes to be interpreted as a
"suggestion" but in another context, as a "command." This in turn
has given rise to a more protocol oriented view of ACL semantics,
i.e., the specification of semantics for conversational sub-units as
ways of structuring multi-message sequences between two agents
[7,13, 20, 26]. This approach builds on the notion of representing
dialogues and conversations among humans or software agents as
state transition diagrams, a perspective which dates back at least
to Winograd and Flores [27]. Under this view, dialogues are
automatons or state-transition networks, just like any other
program, except there is more than one actor or agent that is
executing the network. In general, the use of finite-state machines
to define protocols is a fair way of specifying the temporal and
contextual conditions that determine what message types may or
must follow another. The content of a particular message
primitive, under this view, is determined in part by the protocol
context in which it was delivered.

The continuing dilemma over identifying semantics for both
primitive message types and message protocols is motivated, of
course, by the need to have a clear, unambiguous message
exchange. If we can cram all the nuances and distinctions into
different primitive messages and protocols, then perhaps any run-
time recognition and handling of intentions can be avoided. But
we see several limitations to putting all hopes at these two levels
alone. First, the run-time recognition and handling of intention
seems essential for human-agent cooperation and communication.
For while we may design a software agent that follows some
particular communication protocol, we cannot assume that the
human knows that protocol or would be inclined to abide by it, at



 

least in cases where user messages cannot be directly constrained
(as in, say, via menu choices on a graphical interface). This makes
the problem of understanding and structuring even limited
conversations for cooperation more complex. Second, elevating
the level of analysis from the individual performative to protocols
(which we think is a crucial step) only moves the set of problems
back a level. As several people have noted [e.g. 9], there is no
consensus here either on what the primitive protocols are, let
alone their semantics. Although this matter is in principle
resolvable, protocols can only maintain what we call local
coherence some unity between very short sequences of
messages. In general, a protocol at best specifies all the possible
courses of dialogue (alternative sequences of messages) that we,
as designers, can predict as being possible and sufficient with
respect to a specific goal or a task. Having this protocol, at each
state, both agents know the possible next states and so any
message that is exchanged brings the conversation to an
"expected" state. For dialogue-extensive applications of the kind
considered here, it is impractical, if not impossible, to develop one
such protocol, as it is not possible to predict all the possible
courses of dialogue that could occur in the conversation. While
humans are unaware of existence of any protocols and therefore
cannot be expected to abide by them anyway, in mixed-initiative
dialogues among cooperating agents, we should also allow for
agents to be able to shift focus from one sub-task to another as
their situation demands, make queries on the side before
advancing further with the task, inform each other of unexpected
situations and so on. In other words, in mixed-initiative dialogues,
in a given state s, the set of next possible (permitted) states is
much larger than the set of next expected states. Hence in mixed-
initiative dialogues protocols can only serve us in specifying in
general 2-3 message sequences or sub-dialogues related to a sub-
task in solving the larger task. In this respect, protocols ensure
local coherence only.  

When a dialogue expands beyond 2-3 message sequences, there
must be some way to ensure global coherence to the entire
conversation, i.e., a coherence to the way in which very short
message sequences are, crudely put, patched together. And this
leads to what we see as the fourth matter. Focusing on protocols
alone will not fully address the primary function of a conversation
policy as motivated in [9]: to constrain the messages that are sent.
While protocol definitions do this locally, they do not do this
globally. After one protocol completes, what constrains the next
protocol? And in what sense does the concatenation of any
sequence of protocols constitute a globally-coherent conversation?

The appeal to global coherence as a feature of a conversation is
implied by Grice’s [10] maxim of relation, which states that
speakers aim to make their contributions relevant to the ongoing
conversation. In other words, each speaker’s contribution to the
conversation relates to the utterances that come before and follow
it, so that the whole conversation is about something [21]. Under
our view, that "something" is what we call an abstract task model.
While we fully believe that precise semantics are crucial for
individual performatives and protocols, the full illocutionary force
of a message sequence will be under constrained without some
appeal to an abstract task specification. Simply put, the only way
to constrain messages is to constrain and delimit intentions. For
us, an abstract task is something like "scheduling," "negotiation",
"database search", or "diagnosis." Similar notions of generic tasks
and task models had been developed to support domain-
independent methodologies and architectures for developing

knowledge-based problem-solving systems [3]. We think that it is
reasonable to assume that two agents come to a cooperative
venture knowing that their (abstract) task is one of search,
negotiation, diagnosis, or whatever. Regardless of what the actual
domain content and domain ontology is, two cooperating agents
must share an ontology for the abstract task they are jointly
solving, and this ontology is different from the ontology for the
actual domain.

We adopt a pragmatic approach to specifying an abstract task
specification that begins with a problem formulation using a
traditional state-space representation. This representation defines
and delimits a set of task intentions, which in turn defines and
delimits discourse intentions. Discourse intentions are advanced
by discourse protocols standards for message sequences. The
content of the individual peformatives that comprise the protocols
is also specified by the abstract task specification. The resulting
analysis supports a flexible and pragmatic handling of
"unexpected" messages. In this respect, while a message may be
unexpected in the context of some protocol, it cannot be
undefined in the context of the abstract task specification that is
jointly held by the two agents. And finally, the abstract task model
allows for a very precise definition of agent roles in terms of their
functionality in supplying or needing to know elements of the
state-space representation for the problem. Some of the nuances
associated with request messages as really being commands or
suggests can be derived in part from these agent roles as given in
the task specification.

As one component of a publicly posted conversation policy, an
abstract task model addresses two elements of a broadly-defined
conversation policy [9]: specific goal achievement policies and
conversation management policies. We illustrate the features of
this approach by showing its application to a simple and well-
understood agent-assistant task. An agent-assistant based on this
model was implemented in a beliefs-desires-intentions (BDI)
architecture and we have few words to say about this
implementation as well.

2. SUCCESSIVE REFINEMENT SEARCH
In this section, we briefly outline aspects of an application domain
that led us to the perspectives described above. The problem
called for a system agent, which we here call the DB agent (for
database assistant), that would assist a human (e.g., a driver in an
automobile) in a variety of tasks, which included location and
retrieval of information from various databases. Generally
speaking, the DB agent must identify one or more database
entities that satisfy a set of constraints specified by the user. The
database entities are defined by feature-value tuples. Using a
database of restaurants as an example, a particular database entry
corresponds to a collection of feature-value specifications like
:name Rangoon :location Palo Alto :ethnic-type Burmese :cost
moderate etc. We are interested only in cases for which the
database is so large and the information request is so ill-defined,
that a single, simple answer cannot be supplied. We also assume
that the user may not necessarily have a definitive set of
constraints in mind when starting the task. It may be more
accurate therefore, to characterize the process as one of
exploration. This was the motivation for viewing the DB agent
and the user (or possibly a user-agent that serves as the user’s
proxy and knows something about the user’s preferences and
goals) cooperating in a successive refinement search, where the
goal is to identify one or more database entries that satisfy a



 

particular set (or possibly different sets) of constraints. The
following example dialogue between the DB agent and the user
agent (UA), with some limited English gloss, illustrates various
features of the lengthy communication we aimed to handle:

DB-1: What type of domain do you wish to search? Lumber
stores? Pharmacies?

UA-2:  I want an inexpensive food in San Francisco.
DB-3: O.K..
DB-4: There are several hundred inexpensive restaurants in

San Francisco.
DB-5: What type of food do you want?
UA-6: What do you mean?
DB-7: I mean ethnic type such as Hungarian or French.
UA-8: Italian.
DB-9: O.K.
DB-10: Do you want take-out or sit-down?
UA-11: What about places on the Peninsula?
DB-12: OK, we’ll leave San Francisco for the moment.

DB-13: There are 135 Italian restaurants on the Peninsula.
DB-14: A particular place or city will rapidly narrow down this

set most rapidly.

UA-15: Redwood City or Menlo Park.

There are many user interface systems and applications that
support some or all elements of this interaction. Putting aside
matters of speech input and processing, we use a few features of
this task to motivate key aspects of an abstract task model
specification for a conversation policy, particularly when
communication is limited to simple message exchange (and not,
say, enabled via a visual interface, as in [22]). First, the two
agents here have distinctly different functionalities. The DB agent
is not merely relaying information about what it knows, but it is
performing system computations that advance the task in a
particular way. Only the system is able to perform these
computations and have direct access to the results of the
computations. The human agent can neither do these
computations nor have direct access to their results except via the
message exchange. Similarly, only the user (agent) has specific
information that could determine task process or declare task
completion. As such, while only the DB agent can actually
compute the next state that moves the user towards the goal state,
it is only the user who can decide if a goal state has been reached.
We grant the DB agent some autonomy, insofar as it has an
internal representation of the problem itself. It can take initiative
in querying the user for required information, in learning user
preferences over time, and in making suggestions about how to
accomplish the apparent goal most effectively (e.g., compute the
current search set’s most discriminating feature that would lead to
the largest reduction in the remaining entities). The important
point is that what information can and must be exchanged
between the agents what we below will call discourse
intentions is dictated by the asymmetry of these functional roles.
Additionally, the protocols followed for this message
exchange whether a performative ought to be interpreted as a
command or a suggestion are also constrained by these
functional roles. We elaborate more on these points below.

Second, standard query sub-dialogues occur in several places.
Exactly how many sub-dialogues might occur, and what their
content might be, goes unspecified within any message protocol,
and several such information exchanges might ensue before any

advancement in the task itself is made. Third, either agent can
take the initiative in advancing the task in a new direction.
Therefore, the DB agent must respond effectively to these
"unexpected  communication acts. For example, in message UA-
11, the user does not provide an answer to the question posed in
message DB-10, and instead shifts the direction of the search task.
Again, such a message is unexpected locally, but ought not to be
unexpected within the task specifications.

3. ABSTRACT TASK SPECIFICATION
Our concern here is the analysis of the task at some level of
abstraction and generality that support the specification of
pragmatic abstract task model that can be part of conversation
policy, just in the case where the human-to-agent and agent-to-
agent communication bandwidth is limited to message exchange.
Our pragmatic specification of task semantics flow directly from
the traditional view of a problem-solving as movement through a
state space, where each state has a direct or indirect
correspondence to a world state. Such a formulation requires (a) a
goal test that indicates whether a state (or path to a state)
constitutes a problem solution, (b) a specification of an initial
state, and (c) the specification of operators as functions performed
on one state to produce a successor state. Task actions or
operators are realized as inspectable preconditions that must
match features in state s  and inspectable post-conditions that
define the transformation of state s into some successor state.

From this perspective, an abstract task model for successive
refinement search may be formulated as follows. Each task state
consists minimally of specifications or patterns associated with (a)
a domain that corresponds to a currently loaded database, (b) a set
of currently-satisfied constraints specified as feature value tuples,
(c) a search set corresponding to the database entities that fit those
constraints. Each of these objects itself has properties, e.g., the
search set has a particular size and constituent members. The task
operators that transform one state into another are setting and
loading a domain database, contracting a search, and expanding a
search set. The contract operator applies a newly-formulated
constraint to the search set in state s to yield a new state with a
new search set. The expand operator produces a new search set
from a previous one, by relaxing a constraint in some particular
way. Each task state is also explicitly characterized by how it
relates to its predecessor. For example, we distinguish (for
purposes of discourse intentions) between contract operations
which produce search sets that are a proper subset of a previous
search set from contract operations which do not.

Generally speaking, these operators are the only actions within
this simple task domain. As such, they define the complete set of
task actions about which either agent can be committed to take
and hence, they correspond to the complete set of task intentions.
Contextual features of the current task state impose some partial
order on the next necessary or plausible intention to have, which
in turn implicate some particular task operator. But the crucial
point is that task intentions are defined by task operators that are
executed on task states. As soon as you have this formulation, you
have the task intentions.

The abstract task specification also serves to define discourse
intentions. The commitment to a task intention does not entail
being able to satisfy it via the execution of a appropriate task
operator. Some aspect of the associate task operator’s
preconditions may not be satisfied. Thus, any task operator’s



 

precondition is a possible object of discourse about which either
agent could form a discourse intention the commitment to
perform a communication act. Objects of discourse are topics that
may or must be talked about, depending on each agent’s role and
in which agent knows what. The task specification, by reference
to agent functionality, indicates which agent can bring about the
satisfaction of a particular precondition. The agent that does not
possess information it needs to execute its (intended) task operator
must communicate with the agent that does have that information,
as per the task model. Conversely, any agent with such
information can (or must) offer the information to the agent which
needs it. In our example search task, objects of discourse defined
by task preconditions include the domain, a feature for a
constraint, or a value for a feature that has already been specified
for a constraint. Queries about these objects of discourse, as well
as information exchanges about their required or desired values,
are allowed.

A second set of possible discourse intentions are defined by a task
operators post-conditions that define a new successor state. They
are necessary objects of discourse if the agent without direct
access to them nevertheless needs to know about them, in order to
fulfill its role. This is the case in our search task the user has no
access to the computation results (post-conditions of task
operations), so they must be shared by the DB agent. That is, the
DB agent must form discourse intentions to communicate these
post conditions. But there are different tasks that would have
different specifications indicating that certain post conditions of
task-operators are not to be shared. Many agent applications
involve what we might call "private" computations. For example,
an agent may solicit bids as part of some contract-assignment
task, and in doing so, is moving through its own internal task
space, possibly determining which agents have responded or what
bids are high or low. It needs certain information from bidding
agents to make those transitions in its task space, but many
aspects of those task state transitions are private and can be tagged
as such in the abstract task specification. Usually, it is assumed in
such applications that there is no need to represent that such
computations are private. But if that specification were part of the
abstract task model guiding the conversation, even bidding agents
who adhere to the task specification can explicitly "know" that
their discourse intentions must exclude queries about these private
results.

In sum, we believe that once you have a state-space formulation
for a problem and a specification of agent functionality, you can
derive in a pragmatic but principled way a delimited set of task
intentions as well as the necessary, possible, or forbidden
discourse intentions. We are now at the point of having
constrained messages from a top-down perspective. We turn next
to message protocols.

4. PROTOCOLS AS OPERATORS
At this point, we have outlined at a general level how an abstract
task model based on a state-space formulation of a problem and
the relative functionalities of each agent in realizing movement
through that space defines and delimits the necessary and
possible task intentions and discourse intentions an agent may
have. A task intention concerns advancement of a task-related
goal or sub-goal and an discourse intention concerns advancement
of information exchange, in support of a task intention. We
believe it is important to regard and model the task intentions and

intentions and discourse intentions as characterizing two distinct
state spaces.

Many transitions may take place in discourse space before a single
transition occurs in task space (most modeling of agent beliefs and
intentions take place, under this view, in discourse space).
Similarly, many transitions may occur in task space before it is
appropriate or necessary to formulate a discourse intention.
Because "discourse" itself is often modeled or viewed as a task
with goals, we think that these distinctions between advancing the
joint task and advancing joint knowledge about the task become
blurry. But keeping these matters straight can greatly aid in
understanding and specifying the local and extended
perlocutionary effects of a structured message sequence. In this
section, we elaborate on this view. The interplay of task space and
discourse space is summarized in Figure 1. Whenever an agent
cannot proceed in the task space, it adopts a discourse intention
which causes the transition of control to discourse space until
sufficient information has been gathered from the other agent to
proceed in the task space (e.g., schematically illustrated as
transitions ABC in Figure 1). Similarly, whenever an agent cannot
proceed further in the discourse space, a task intention is formed
to compute the necessary information for the exchange, causing a
temporary jump into task space, before returning to discourse
space (e.g., schematically illustrated as transition X in Figure 1).

Figure 1: Schematic Relation between Task and Discourse
State Spaces

Protocols are the realizations of operators in each of these two
spaces. A protocol defines a structured exchange of information
between two agents. Task protocols correspond to task operator
for computing a successor state.  (In our application they also
represent communication between an agent that collects
information from the user (agent) and an agent that performs
computations). A task protocol is defined as a set of input
parameters, that include a given state, and a set of output
parameters, which fully define the successor state. We hasten to
add that in most cases, this can be modeled as a simple function
call, but we adopt the protocol terminology for consistency in our
view of information exchange to promote state transitions.

Discourse protocols advance discourse intentions and move the
agents through discourse space, which includes shared
knowledge. They specify temporal and contextual conditions on
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what message performatives, defined in some ACL, may follow
each other. The semantics underlying the message primitives used
in our framework, like others, borrow heavily from speech act
theory [23], and the semantics are based on a number of pragmatic
principles discussed in Haddadi [12,13]. The syntax of our
messages is not our focus here; examples can be found in [6].
Briefly, a message consists of a specific message or performative
type, a specific object of discourse, and a partially specified
content. It has the following general format, which has much in
common with most ACL message primitives: (performative
$agent-name1 $agent-name2 $object-of-discourse $content). The
$agent-name1 parameter refers to the speaker, sender or generally
the actor of the performative, while $agent-name2 refers to the
hearer, receiver or generally the agent that would be effected by
the performative. The object of discourse and content flow to the
individual performative via the discourse intention from the task
intention that caused  this protocol to execute.

In the DB agent, we make use of three classes of
performatives request, query, and inform which we further
specialize by specifying an inner performative that supplies
information related to the result of the task action that must be
performed, the task itself, or the action that the speaker
intends/expects the hearer to perform. The third column in Table 1
designates the performative that would "complete" the protocol
initiated by the performative in the first column. Simply put,
Table 1 defines basic state-transition definitions for sub-dialogues
of very short length.

Table 1

Class Specialization Expected reply
Request provide inform - provide

Request suggest inform-accept
                                           inform reject

Query provide inform-provide
Query confirm inform-confirm

                                                          inform-deny

Inform                provide acknowledge

Following Haddadi [13], we view request has having an
associated level of commitment. Briefly, a request performative is
tightly coupled with advancing the task via specification of
information that will enable a task action to occur and hence the
objects of discourse for this performative are those defined by task
operator preconditions. The expression of commitment via a
particular request protocol flows directly from roles that agents
can have in terms of functionality as defined in the abstract task
specification.   Under the abstract task model for our simple
search task, the DB agent expresses a precommitment to
advancing that task in a particular manner and communicates with
the user the necessary information it needs from the user to do so.
By supplying the expected inform, the user is committed to the
computation. The asymmetry in the functional roles assumed by
the agents in the task model dictates which discourse protocols
they follow in expressing these intentions. The DB agent’s
precommitment to advancing the task in a particular way (e.g., a
particular constraint to pursue) comes in the form of a request-
suggest, which is accepted or rejected by the user agent. When the
user supplies information that would enable a task action to be

taken, the user is simultaneously committing to a particular
computation (a task intention realized in a particular manner) and
delivering the necessary information to do it. When coming from
the user agent, such a request is associated with a request-provide
protocol. Crudely put, this is a command. Our aim is to allow the
nuances of command vs. suggest, despite having been expressed
by the same performative, to flow from the explicit representation
of agent roles at the abstract task specification level.

Queries and informs do not advance the task directly but exchange
information about the dynamic and static aspects of the task we
outlined below. Hence, the objects of discourse for inform and
query are dynamic task features, as delimited by the task operator
preconditions and post condition. They are further constrained
according to the "must know" or "may not know" aspects of the
task we discussed earlier.

We have omitted much of the abstract task model’s specification
and its ontology, choosing instead to motivate its need and role in
designing agents. For more details on this model, see [6].

5. IMPLEMENTATION
We have built the agent-assistant for successive refinement search
using this abstract task model using the PRS-CL [18] architecture.
The abstract task model itself as part of a conversation
policy would say nothing about implementation, but rather
would define the set of possible intentions and the conditions
under which they would arise. That said, there are few things to be
learned from understanding how the theoretical model as
described above was realized in a working system. Here, we
emphasize here how the abstract task specification supports a
pragmatic and flexible handling of "unexpected" messages those
not sanctioned as immediately expected responses for a running
discourse protocol. The abstract task model also specifies the
content of the performatives that are exchanged within discourse
protocols. We also comment on the matter of managing the task
vs. discourse space movement within this particular BDI
framework.

Generally put, a BDI architecture consists of a dynamic (working)
memory that holds current goals and beliefs (symbolic patterns), a
plan or act (we use the term plan and act interchangeably) library
for holding representations of methods and actions to achieve
goals, and intention structures that correspond to plans that are in
some state of execution or activity. On any given cycle, the
patterns in dynamic memory trigger invocation conditions of the
plans. An instance of any such activated plan corresponds to an
intention and each such activated intention serves as the "root" of
a new intention structure. There may be many such intention roots
corresponding to different instances of the same or different
invoked plans. By some resolution scheme (provided by the
architecture or imposed by the designer), one act instance is
selected and its associated plan begins to execute. It is possible
that the execution of one plan invokes instances of other plans in
the plan library, and these are managed as sub-goals or sub-plans
of the calling intention. Execution of the plan or its completion
typically cause changes to dynamic memory, so that other plans
may be invoked, leading to new instances of acts (new intentions
We note there that a plan may be suspended and never necessarily
resumed. The dynamic memory also receives external events and
a message from another agent would be such an event.



 

Within this architecture, we have functionally partitioned dynamic
memory into a task-space and discourse space. The task space is
modeled as a stack: the current task state is the top of this stack.
The discourse space is updated with new information that
corresponds to the agent’s shared task with the other agent, as well
as information about currently-active discourse protocols
(discussed shortly).

Both task intentions and discourse intentions are represented as
plans in the plan library. We distinguish between DB-intentions
and user (or other agent) intentions. DB-intentions are the
intentions the DB agent sets, and user-intentions are the intentions
the DB agent recognizes via the arrival of a message with a
particular content. We will first step through the setting of a DB
intention, and then speak to the matter of recognizing user
intentions.

Conceptually, a plan has an invocation condition, resumption
conditions, and satisfaction conditions. Invocation conditions are
those conditions that trigger the plan and form an instance of an
intention, i.e., constitute a goal that has been adopted. If an
intention’s satisfaction condition is not met, the plan’s body
specifies a method for trying to satisfy the satisfaction condition.
For example, in our implementation there is a DB task intention
(plan) corresponding to contract-the-search-space. An instance of
that plan becomes created and active when the current task-space
state has certain properties. The satisfaction conditions correspond
to the preconditions for actually contracting the search-set (e.g.,
having a new constraint completely specified). The satisfaction
conditions for a task intention correspond to what we have earlier
called  task-operator preconditions. The body of this task intention
 the plan  invokes discourse intentions as the means by which

these satisfaction conditions are satisfied. There may be several
possible discourse intentions associated with the achievement of
any particular satisfaction condition of a task intention. For
example, the DB agent may obtain information from the user
agent by asking for it or by suggesting a possibility. The selection
is driven by task and discourse context patterns.

The invoked discourse intention’s own method is a discourse
protocol. Discourse protocols are also modeled as plans, but these
are plans for conversation sub-units. Through its input parameters
(its activation conditions), a discourse protocol receives all the
specific variable bindings it need to formulate the content of the
performative it will use in its starting message; this information
has migrated down to it from the originating task intention
through the discourse intention. The plan bodies for all discourse
protocol are the same: the protocol formulates the message, sends
the message out, posts its expected reply to dynamic memory with
an appropriate protocol ID tag, and then suspends.

When a message arrives, a message handler also modeled as a
plan  looks to see which protocol is waiting for it (there might
be many suspended threads of conversation). The most recently
suspended protocol expecting that message type receives it. This
resumes execution of the discourse protocol, whose successful
completion causes updates to discourse space. Resumption of the
discourse intention ensues, and its completion causes transfer of
information from the new discourse space-state into the current
task-space state. The task intention then resumes to see if all its
satisfaction conditions are satisfied. If not, its plan body may set
another discourse intention.

What happens if the incoming message is not what any currently-
suspended discourse protocol expects, i.e., it is an undefined
transition for message exchange? The message handler, having
established it goes to no waiting protocol, releases it into dynamic
memory. There, it triggers the recognition of a user intention from
within the plan library. In our framework, to recognize an
intention from the other agent is to recognize that a new plan,
valid within the confines of the task specification, is being
followed. For example, all queries from the user are dealt with in
this manner and recognized as user discourse intentions. This is in
contrast to another common approach, namely to specify for each
and every performative whether or not a query message is valid
next-transition. This makes the local and extended effects of a
protocol on both discourse space and task space much clearer.
That is, the arrival of a message that is unexpected in the local
context of an executing discourse protocol is resolved at the
global level of possible discourse intentions or task intentions.

Dialogue systems require some dialogue management algorithm.
In our implementation, the functionality of this realized via an
activation priority scheme that applies to invoked plan instances.
First, the message handling plan is given highest priority:
incoming messages are resolved against a waiting discourse or
released to trigger the recognition of a user task intention or user
discourse intention. Second, user-intentions (again, realized as
instances of plans from the plan library) take precedence over any
intention set by the DB agent.. And activated discourse intentions
are given priority over activated task intentions. We hasten to note
that this is sort of strategy constitutes a crucial aspect of the
shared conversation policy that the two agents follow and can be
make explicit in the task model specification, possibly as a
function of their respective roles.

Our implementation handles the conversation flow illustrated by
our earlier dialogue, as well as others in which there are several
changes of direction, multiple sub dialogues embedded within
sub-dialogues that in turn lead to direction change, and so forth.
This application domain is admittedly simple: there are 24
intentions in the plan library corresponding to task intention,
discourse intentions, and discourse protocols; task protocols are
modeled as function calls taken as the last step of a satisfied task
intention. It would be more consistent, albeit less convenient, to
move them to the plan library.

6. RELATED WORK
Several researchers have specified semantics at protocol-level,
realized pre-, post-, and completion conditions for the primitive
performatives [4, 14, 26] There is a correspondence to these ideas
to the semantics we have for our abstract task intentions and
protocols, except that our task intentions concern how to advance
the task, given the agent s beliefs about the current task state, and
discourse protocols are then called in service of the intention.
Thus, we separate our communication semantics from our task
semantics. It is only the abstract task intentions that provide any
coherence across the 2- or 3-message pairings that are defined by
our protocols. Furthermore, our discourse protocols are ultimately
executing in service of advancing a task intention, and control is
returned to the level of task intention processing, regardless of
whether the protocol completes in a pre-defined manner or is
suspended (along with its associated intention) due to a locally-
unexpected message. Most proposals for semantics at the protocol
level are defining what we would call updates to discourse space
variables in our framework. The extended perlocutionary effects



 

of a successfully executed  discourse protocol, in our framework,
are specified as changes first to the discourse space and then,
through the discourse intention, as changes to the task space.

Another  difference between the conversation policies as specified
in [2] and ours stems from our handling of locally unexpected
messages. Note again that our protocols are essentially message-
adjacency pairs and contain very few conditional transitions.
Suppose our DB agent’s message is (functionally) "Do you want
expensive or inexpensive French food?" and the user responds
"Are there Thai restaurants near-by?" That response might be
designated with a "counter-request" message primitive. But there
is no getting around the fact that some inferencing has to be done,
by the sending agent or the receiving agent. Either sending agent
must somehow determine that it wishes to send a message that
ought to be marked as counter-proposal (e.g., using a counter-
proposal message primitive), or the receiving agent must correctly
interpret a vanilla "inform" message as designating a counter-
proposal. Our treatment of such a message unpacks into two
speech acts: inform-reject and request-provide. We are suggesting
that the abstract task model approach, by defining objects of
discourse, task and discourse intentions, provides the specification
needed to support such inferences about what a particular message
means in relation to the current state of the task.

Pitt and Mamdani [20] present protocol-level semantics that
includes what they call an "add function" an agent’s procedure
for computing the change in its information state from the content
of an incoming message using a particular performative uttered in
the context of a particular protocol. We would include the
extended effects of such an update to include changes into task
space.  They also envision a realization of their framework in a
BDI architecture, much like we have implemented for the agent
described here.  Specifically, they call for the representation of
conversations (what we call protocols) as plans, and the notion
that beliefs and desires (goals) would initiate a conversation by
starting an instance of the appropriate protocol. We have
pragmatically realized many aspects of their protocol-based
semantics via our abstract  task specification, which designates the
relationship between task intentions, discourse intentions, and
ultimately, well-structured communication acts.

Implicitly or explicitly, performatives or message types are
regarded as transition arcs or operators in some kind of discourse
space. For example, many proposals for ACL semantics based on
joint intention or mutual belief theory specify axioms for what
intentions or beliefs are jointly held, given a particular message
exchange [5, 24, 26]. That message sequence or protocol is then
serving as a transition arc between two distinct states of shared
knowledge. Arcs also represent the receipt and sending of
messages in [1]. Here, the grain size of our transition arcs in
discourse space is set at the level of the protocol, not the
performative.  It is only the successful completion of a
protocol a structured message exchange that can have
extended perlocutionary effects into task space.

Our abstract task model as part of a conversation policy shares
much in common, at least in spirit, with the shared-plan notion
that characterizes certain approaches to discourse processing [e.g.,
11]. Here, we are proposing that an abstract task specification,
explicitly defined and provided as part of a publicly posted
conversation policy, serves the same purpose in delimiting the set
of possible intentions. It is unclear to us how many actual agent
applications will require complex semantics about joint intentions,

and mutual beliefs. But it seems that they will minimally require a
specification of what the joint task is, what is done to accomplish
it, who knows what, who needs to know what, relative
functionalities, and so forth. We have tried here to indicate how
these can be formulated in a principled and pragmatic way via an
abstract task specification.

7. CONCLUSIONS AND DIRECTIONS
This paper presents the notion of an abstract task specification as
one aspect of a publicly posted conversation policy. We start top-
down with the task specification in guiding us to the pragmatic
meaning of message protocols. We define an abstract task as
having a distinct characterization of knowledge types and
operations describes the problem solving behavior of an agent in a
variety of domains. More simply, a task is a problem type, such as
diagnosis, design,  or successive refinement search.. The ontology
of knowledge types and operators for the abstract task is used to
formulate a state-space representation of the problem. That
representation defines the set of task intentions, which are
satisfied via the application of task operators. Preconditions and
post-conditions of task operators circumscribe the set of possible
discourse intentions. Message exchange according to discourse
protocols ensues to satisfy discourse intentions, which in turn
enable task intentions to be advanced. Exactly which
preconditions and post-conditions of task operators must or must
not be objects of discourse between two agents depends on the
functional roles the agents share in achieving the task.  We have
argued for a clean separation between discourse and task spaces,
believing that it clarifies,  using Moore’s [17] distinction, what the
"local" and "extended" effects of a message exchange are. For us,
local effects of sending a message or completing a message
exchange via a successful protocol are effects on the discourse
space. The extended effects are those changes in shared
knowledge in discourse space  that impact the general task the
agents are trying to accomplish in the task space.

We are presently considering a suitable representation language
for presenting an abstract task specification as a downloadable
conversation policy. But the crucial issue is to evaluate just how
far an abstract task specification goes in allowing agents,
implemented in different ways within different frameworks, to
nonetheless communicate effectively on a joint task. Simply put,
could two agent designers, given just an abstract task
specification, create agents that can communicate effectively and
achieve a task? We particularly need to examine the matter of
agent roles and functionality within the abstract task specification.
Our initial test domain has made several elements easy for us and
further work needs to be done to generalize our approach to
abstract tasks specifications in which agents roles are more
balanced in terms of leadership. In particular, the asymmetry of
the agent roles here eliminates the need for agreement on what to
do next, what some researchers have investigated as negotiation
[24]. In our view, we would like to consider negotiation as a task
with its own operator set and state space, again subservient to the
main task (diagnosis, design, search) that the agents are
cooperating to accomplish. If one is committed to this view, it is
unclear that a BDI architecture is best suited for managing
problem-solving in distinct spaces, with distinct plan libraries.
Instead, we are considering architectures like SOAR [16], in
which an  "impasse" in one problem space (the task space)
spawns a new problem space (the discourse space).



 

In sum, we advocate a pragmatic approach to determining
intentions based on task specifications that agents may jointly
share. In doing so, this approach serves as a way of constraining
what messages agents send to each other at the task level and
reduces the burden of imposing all such constraints at just the
individual performative or at just the protocol level. This is, of
course, just one step towards coherent message exchange, based
on "intentional states" that can be directly and easily traced to the
global task.
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