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Abstract. It is possible to define conversation policies, such as communication
or dialogue protocols, that are based strictly on what messages and,
respectively, what performatives may follow each other. While such an
approach has many practical applications, such protocols support only "local
coherence" in a conversation. Lengthy message exchanges require some
infrastructure to lend them "global coherence." Recognition of agent intentions
about the joint task is essential for this global coherence, but there are further
mechanisms needed to ensure that both local and global coherence are jointly
maintained. This paper presents a general yet practical approach to designing,
managing, and engineering agents that can do simple run-time intention
recognition without creating complex multi-state protocols. In this approach we
promote developing abstract task models  and designing conversation policies
in terms of such models. An implemented agent assistant based on these ideas is
briefly described.

1 Introduction

Recently, there has been considerable interest in specifying agent conversation

policies [4], which speak to a range of matters in managing lengthy message
exchange, from turn-taking and message time-out conventions to responding to
dynamic constraints imposed by the environment. Our concern here is with what

some researchers [3] claim is a crucial function of a broadly-defined conversation
policy, namely constraining "the messages that appear on the wire." It is argued that
this need arises from the many-to-many mapping between an agent's intention and the
specific agent communication language (ACL) primitive used to convey that

intention. The call for conversation policies stems from a belief that the solution to
these matters will not be found at the level of individual message primitives or
performatives within an agent communication language, such as KQML or FIPA's
ACL [5,7]. However well-specified the semantics for a performative might be, they



are under constrained with respect to the full illocutionary force of the
communicative act. For example, an “inform” ought sometimes to be interpreted as

a "suggestion" but in another context, as a "command." This in turn has given rise to a

more protocol oriented view of ACL semantics, i.e., the specification of semantics for
conversational sub-units  [5,6,11,13].

Elevating the level of analysis from the individual performative to protocols (which

we think is a crucial step) only moves the set of problems back a level. There is no
consensus here either on what the primitive protocols are, let alone their semantics
[3]. Although this matter is in principle resolvable, protocols can only maintain what
we call local coherence—some unity between very short sequences of messages. In

general, a protocol at best specifies all the possible courses of dialogue (alternative
sequences of messages) that we, as designers, can predict as being possible and
sufficient with respect to a specific goal or a task. When a dialogue expands beyond

2-3 message sequences, there must be some way to ensure global coherence, i.e., a
coherence to how short message sequences are, crudely put, patched together.

While we fully believe that precise semantics are crucial for individual
performatives and protocols, the full illocutionary force of a message sequence will be

under constrained without some appeal to what we call an abstract task model. As one
component of a publicly posted conversation policy, an abstract task model addresses
two elements of a broadly-defined conversation policy [9]: specific goal achievement
policies and conversation management policies. This paper is primarily an explication

of this position and its pragmatic import. We have realized the ideas presented here in
an implementation of a simple agent assistant using a BDI architecture [12].

2 Abstract Task Types and Intentions

For us, an abstract task type is something like "scheduling," "negotiation", "database
search", or "diagnosis." Similar notions of generic tasks have supported domain-
independent methodologies and architectures for developing knowledge-based
problem-solving systems [1]. It seems useful to explore the notion that two agents

begin a communication exchange with ‘knowing’ that their joint (abstract) task is one
of negotiation, diagnosis, database search, or whatever. To do this, the agents must
explicitly share an ontology for the abstract task they are jointly solving, and this
ontology is different from the ontology for the actual domain (e.g., medical diagnosis

vs. fault diagnosis). It is this  meta-level  ontology for the abstract task that defines
initial, intermediate, and solution states and also defines how movement through those
states can be accomplished. Without such a model, it seems that two agents cannot

recognize when to begin exchanging messages, what protocol to initiate next, whether
progress on the task is being made, or even when message exchange can stop.

We  adopt a pragmatic perspective of intention as a commitment to goal, with a
specification of when and how the goal is to be pursued and when the goal is

abandoned [6]. Intentions move an agent to act and in multi-agent systems, they can



be the impetus to engage in dialogue with a collaborating agent in order to act. Thus,

intentions drive the conversation and it is these intentions that make multi-message
sequences about some task globally coherent.

An abstract task model supports coherence beyond a single protocol by defining
intentions as goals to achieve, a general strategy for goal-ordering, and methods for

achieving those goals. By defining intentions, an abstract task model also serves to
specify and constrain the content of individual messages by defining (i) what the
messages can be about, or what we call message objects or "objects of discourse," (ii)

what legal intentions (computational actions) an agent can have towards those objects,
and (iii) how to progress on the task and when the task is completed. We address what
we call local coherence as many others have, namely by specifying protocols for
conversational sub-units. Unlike most protocols, our protocols are restricted to

message-type pairs whose definition includes an option for a "violation" or
"unexpected message."  While a message type may be "unexpected" in the context of
some protocol, its underlying intention cannot be unexpected in the context of the
abstract task model that is jointly held by the two agents. Thus, an agent must be

designed with (i) the notion that protocols can be violated, (ii) a mechanism for
recognizing the intended new context, and (iii) the ability to evaluate the implication
of the new context for the resumption of the current protocol (and its associated

intention). That these notions are crucial to multi-agent cooperation has been argued
from a theoretical perspective (e.g., [2]), but solutions implied by that work require
systems with sophisticated reasoning engines. Our implementation illustrates that
these can be handled flexibly and pragmatically with limited "reasoning" enabled by

an abstract task model methodology.

3 Motivating Application: Successive Refinement Search

Our motivating application called for an agent that would assist a human (e.g., a

driver in an automobile) in a variety of tasks, which include location and retrieval of
information from various databases.  The database entities are defined by feature-value
tuples. This application is sufficiently challenging under the assumptions that: (a) the
database is so large that the human agent cannot specify a single, simple database

query for which there is one single answer; (b)  the  human agent may not necessarily
have a definitive set of constraints in mind when starting the search task, or may
change constraints during the message exchange, (c) there may be multiple search
goals,  and (d) the interface cannot be visual or require direct manipulation. Although

we present our distinctions terms of human-agent communication, the  general issues
of intention recognition, resolving unexpected messages, and shifting initiative are
generally relevant to agent-agent communication as well. In the following example

dialogue (with English gloss), DBA designates the database agent and U designates
the user.

U-2: I want  inexpensive food in San Francisco.



DBA-3: O.K.. There are several hundred inexpensive restaurants in San Francisco.
DBA-4: What type of food do you want?
U-5: What do you mean?
DB-6: I mean ethnic type such as Hungarian or French.
U-7: Italian.
DBA-8: O.K. Do you want a take out or sit-down place?
U-9: What about on the Peninsula?
DBA-10: O.K.-- we'll leave San Francisco for a moment.
DBA-11: There are 35 Italian restaurants on the Peninsula.

Our concern here is the analysis of the task at a level of abstraction and generality
that supports the specification of a jointly held abstract task model. We include the
above dialogue for illustrative purposes only: the task model is not derived from

dialogue analysis (which might serve as a starting point) but from task analysis. Our
pragmatic specification of task semantics flow directly from the traditional view of a
problem-solving as movement through a state space, where each state has a direct or

indirect correspondence to a problem state. Such a formulation requires (a) a goal test
that indicates whether a state (or path to a state) constitutes a problem solution, (b) a
specification of an initial state, and (c) the specification of operators as functions
performed on one state to produce a successor state. Task actions or operators are

realized as inspectable preconditions that must match features in state s and
inspectable post-conditions that define the transformation of state s into some
successor state.

From this perspective, an abstract task model for successive refinement search may

be formulated as follows. The message objects  (which define different task state) are
(i) a domain: a particular domain database in which entities are defined by features
and values; (ii) a constraint: any feature that has a particular value assigned to it; (iii)

a search space: a set of database entities that satisfy a set of constraints; (iv) search-

space members: particular entities within a particular search space.  What can be said
about these objects is restricted to the computational actions that can be taken with
them, and these are the intentions an agent can have about them.  In our analysis these

actions are limited to: (i) loading a database to be searched, which defines the initial
search space, (ii) contracting, or reducing the search space by specifying additional
constraints that members must satisfy, (iii) expanding that search space by relaxing
one or more constraints, and (iv) describing information about a particular member of

the search space, about a particular constraint, or about the search space as a set.
These traditional database operations may be augmented with other capabilities that
are unique to each agent (e.g., an agent might also compute the most-discriminating

feature for a given search space). Generally speaking, these operators are the only that
are legal actions for an agent. As such, they define the complete set of task actions
about which either agent can be committed to take and hence, they correspond to the
complete set of task intentions. The satisfaction of these intentions causes a

movement to another state in the space, though some computation that changes the
problem.  Contextual features of the current task state impose some partial order on



the next necessary or plausible intention to have, which in turn implicate some

particular task operator. But the crucial point is that task intentions are defined by task
operators that are executed on objects that comprise task states.

In the above message exchange, U-9 does not provide an answer to the question
posed in message DBA-8, and instead shifts the direction of the task. Handling this

case could be done with protocols with additional transition arcs. But taken to the
extreme, this solution must anticipate every such possible adjacency and represent
those possible adjacencies with conditional arcs. Defining semantics for a completed

protocol becomes difficult, since many alternative paths might be traversed before the
protocol exit state is reached. As we present below, we use two-state protocols and
shift part of the burden away from anticipation (by the designer) and onto recognition
(by the agent).  Intentions that an agent can have about the task (and presumably

express during the message exchange) are limited by the objects of discourse, what

can be done with them, and therefore what can be said about them.  This is crucial to
having a pragmatic but somewhat flexible approach to posting and recognizing
intentions, for these objects of discourse serve to circumscribe the set of task

intentions.
The abstract task specification may also define discourse intentions —the

commitment to perform a communication acts. These arise in service of task

intentions. The simplest example is when one agent is known to have information
necessary that another agent recognizes is necessary to advance the task (i.e., to
satisfy  a task intention). Thus, task operator preconditions delimit one set of objects
for discourse intentions.  A second set of discourse intentions is defined by a task

operator’s post-conditions, which define a new successor state. An agent must form
discourse intentions to communicate these post-conditions, if another agent without
direct access to these post-conditions must know about them to fulfill its role in the
joint tasks. Conversely, there are tasks in which the post-conditions of a task action

ought not to be shared.   Such specifications (which participating agent must, or must
not, know what) are rightly part of an abstract task model as well. In essence, the
abstract task model defines a protocol at the level of intentions that must, may, or may

not be held by each agent. This too can be part of a shared conversation policy.

4 Message Types, Objects, and Content

The semantics underlying the language primitives are based on a number of pragmatic
principles discussed in [6].  Our primary concern is not with the syntactic form of the

message but with specifying its content. We use the schematic format  (performative
$agent-name1 $agent-name2 $object-of-discourse $content), although any ACL
message syntax with additional necessary parameters might be employed.

The outermost performative, or message type, represents the general class of a
message. In ATS, we make use of the classes request, query,  and inform (see Table
1). The $agent-name1 parameter refers to the speaker, sender or generally the actor of



the performative, while $agent-name2 refers to the hearer, receiver or generally the
agent that would be effected by the performative. We discuss $object-of-discourse,
which is constrained for each performative class, below.  The $content of a message

can be another ("inner") performative, which further specializes the class by
supplying information related to the result of the task action that has been performed,
the task itself or the action the speaker intends/expects the hearer to perform.

The second column of Table 1—the immediately expected reply—designates the
performative that would "complete" the dialogue initiated by the performative in
column 1. Put another way, the information in Table 1 defines a basic state-transition
definition for sub-dialogues.

Table 1:  Performatives and their combination

Outer Performative  Inner Performative Immediately  Expected Reply

Request Provide (Acknowledge) + Inform
Suggest (Acknowledge)+Inform+ Accept/Reject

Query Provide Inform
Confirm Inform + Confirm/Deny
Suggest Inform + Accept/Reject

Inform Provide, Confirm
Deny, Accept, Reject

Request. Following [6], we view a request as having an associated level of

commitment. A request performative is tightly coupled with advancing the task. The
objects of discourse associated with request are (i) a system action that enables a
search task to begin or terminate, such as loading a particular database for searching
and (ii) a constraint, which specifies a feature-value vector according to which

database entities can be identified. Most request performatives concern constraints.
When a request is made by the database agent, the agent is making a pre-commitment
to how the progress on the search task might be accomplished and it prompts the user

agent for information in order to do this. Requests from the database agent thus take
suggest as an inner performative. A suggestion refers to a possible task strategy and it
must be accepted or rejected by the other agent. By supplying the information asked
for, the user is committing to this computation. When a request is made by the user

agent, the user is simultaneously committing to a computation on the search space and
delivering the information necessary to execute it. User requests thus take provide as
an inner performative. The objects-of-discourse that may accompany suggest and
provide are (i) the domain (e.g., restaurants, hospitals); (ii) the value of one or more

specified features that comprise a constraint; and (iii) the search space (i.e., the set of

database entities described by the current set of constraints). Table 2 provides some
examples of agent and database agent requests (with English gloss).

 Table 2: Example request and query messages



Req-U: Let's look for a restaurant in Mid-Peninsula.
 (request U DBA :action (initiate :task search :domain restaurants))
 (request U DBA :constraint (provide DBA U :value (fv-pairs :feature location :value
Mid-peninsula)))
Req-DBA: How about French?
 (request DBA U :constraint (suggest DBA U :value (fv-pairs :feature rest-type :value
French)))
Que-U: What do you mean by restaurant type?
 (query U DBA :knowl-base (provide DBA U :domain (describe-feature :domain
$domain-id  feature-list :feature rest-type :attribute range))

 Que-U: What are the opening hours for this restaurant?
 (query U DBA :database (provide DBA U :member (describe-member :member
$member :feature hours)))

Query. A query is not about advancing a task but about exchanging information. Its
objects of discourse are  (i) agent  capabilities,  (ii) the domain knowledge base, which

includes domain-specific information, such as the range of values on a particular
feature, (iii) the database, which includes queries about the availability of information
about particular entities in the database, and (iv) task-information, information

relevant to the current state of the task. Queries may take either provide, suggest , or
confirm as an inner performative. A confirm expresses the truth or falseness with
respect to a property of some object-of-discourse and it must be confirmed or denied.
When a query is sent by the user agent, the database agent must respond with an

inform followed by an appropriate inner performative. The objects-of-discourse that
may accompany the inner performatives associated with queries can be (i) the domain

(e.g., restaurants, hospitals); (ii) the current search space; and (iii) a particular member
in the current search space or database.

Inform. Inform messages take on the outer and inner objects-of-discourse, and a
content specification, that occur in the request or query dialogue that they complete.

The crucial aspect of this analysis is not its realization in these particular message

objects. Rather, it is that message objects and content are defined by some
commitment to an abstract task model, which can be part of a conversation policy.

5 Protocols as Operators

A task intention concerns advancement of a task-related goal or sub-goal and a

discourse intention concerns advancement of information exchange, in support of a
task intention. We believe it is important to model the task intentions and discourse
intentions as characterizing two distinct state spaces. Whenever an agent cannot

proceed in the task space, it adopts a discourse intention (e.g., sends a query message
to gather information). This transfers control to discourse space until sufficient



information has been gathered from the other agent to proceed in the task space.
Similarly, whenever an agent cannot proceed further in the discourse space (e.g.,
answer a received query), a task intention is formed to compute the necessary

information (causing a state transition in task space) in order to satisfy a discourse
intention and allow a transition to a new state of shared information.

In our view, protocols are the realizations of operators in each of these two spaces .

A protocol defines a structured exchange of information between two agents. Task
protocols correspond to task operators for computing task successor states. A task
protocol is defined as a set of input parameters,  that include a given state, and a set of
output parameters, which fully define the successor state. Discourse protocols are

similarly defined, while additionally representing the temporal and contextual
conditions on what message performatives may follow each other, as per Table 1.

This discourse vs. task space distinction has, we believe, both theoretical and
practical import agent design. It supports a clean separation of semantics associated

with agent knowledge (modeled in discourse space as satisfied discourse intentions)
from semantics associated with progress on the task (modeled as progress in task
space through satisfied task intentions).

6 Implementation of a Database Assistant

We have built the agent-assistant for successive refinement search based on abstract
task model and the distinctions outlined above using PRS-CL [10], a BDI style
architecture. We have put forward our groundwork for these distinctions, at the

expense of having the opportunity to provide many implementation details.  Here, we
emphasize how the abstract task specification supports a pragmatic and flexible
handling of "unexpected" messages—those not sanctioned as immediately expected

responses for a running discourse protocol.
Generally put, a BDI architecture consists of a dynamic (working) memory that

holds current goals and beliefs (symbolic patterns), a plan library for holding
representations of methods and actions to achieve goals, and intention structures that

correspond to plans that are in some state of execution or activity.  Due to space
constraints, we assume the reader is familiar with the execution cycle of these
architectures [12].

Within this architecture, we functionally partition dynamic memory into a task

space and discourse space.  Task and discourse intentions, as well as task and
discourse protocols for message exchange, are implemented as different plan types the
plan library, and their invocation and resumption is influenced by a priority scheme

defined for those types.  Conceptually, a plan has an invocation condition, resumption
conditions, and satisfaction conditions. Invocation conditions are those conditions that
trigger the plan and form an instance of an intention, i.e., constitute a goal that has
been adopted.  Plans that represent task intentions either trigger discourse intentions

(if they cannot be immediately satisfied) or pass control to task protocols (if their



satisfaction conditions are satisfied and information can be sent to the foreign agent

for some computation). Similarly, discourse intentions may give rise to task intentions
or pass control to discourse protocols to initiate message exchange with the user. The
plan bodies for all discourse protocols are the same: the protocol formulates the
message, sends the message out, posts its expected reply to dynamic memory with an

appropriate protocol ID tag, and then suspends.
When a message arrives, a message handler plan determines which protocol is

waiting for it (there might be many suspended threads of conversation). The most

recently suspended protocol expecting that message type receives it. This resumes
execution of the discourse protocol, whose successful completion causes updates to
discourse space. Resumption of the discourse intention ensues, and its completion
causes transfer of information from the new discourse space-state into the current

task-space state. The task intention then resumes to check whether all its satisfaction
conditions are met. If not, its plan body may set another discourse intention.

 If an incoming message is not recognized as an expected message by a waiting
protocol,  the message handler releases it to dynamic memory. That is, the arrival of a

message that is unexpected in the local context of an executing discourse protocol is
resolved at the global level of possible discourse intentions or task intentions: a plan
from the plan library is triggered.

Our database agent handles the conversation flow illustrated by the sample
dialogue, as well as others in which there are several changes of direction, multiple
sub dialogues embedded within sub-dialogues that in turn shift the task direction, and
so forth. This application domain is admittedly simple: there are 24 intentions in the

plan library corresponding to task and discourse intentions, and discourse protocols.

7 Related Work and Discussion

Several researchers have specified semantics at protocol-level, realized as pre-,

post- and completion conditions [2, 7, 13]. There is a correspondence to these ideas to
the semantics we have for our abstract task intentions and protocols, except that our
task intentions concern how to advance the task, given the agent’s beliefs about the
current task state, and discourse protocols are then called in service of the intention.

Thus, we separate our communication semantics from our task semantics. We have
argued for a clean separation between discourse and task spaces, believing that it
clarifies what the "local" and "extended" effects of a successfully-completed message
exchange are [9]. For us, local effects of completing a message exchange via a

protocol are effects on the discourse space. Many proposals for ACL semantics based
on joint intention or mutual belief theory specify axioms for what intentions or beliefs
are jointly held, given a particular message exchange [13, 14]. By our model and in

our implementation, these are post conditions associated with satisfied discourse
intentions (plans), that were accomplished via completed discourse protocols (also
plans). The extended perlocutionary effects of a successfully executed discourse



protocol, in our framework, are specified as changes first to the discourse space and
then possibly, through an associated task intention, as changes to the task space.

Pitt and Mamdani [9] present protocol-level semantics that includes what they call

an "add function"—an agent's procedure for computing the change in its information
state from the content of an incoming message using a particular performative uttered
in the context of a particular protocol. We have pragmatically realized many aspects

of their protocol-based semantics in our current implementation via the abstract  task
specification, which designates the relationship between task intentions, discourse
intentions, and ultimately, well-structured communication acts.

We are considering a suitable representation for presenting an abstract task

specification as a downloadable conversation policy. We particularly need to examine
the matter of agent roles and functionality within the abstract task specification.
Further, in our implementation, there were numerous control difficulties that resulted
from representing both intentions and protocols as plans, allowing reactive

recognition of new intentions where appropriate, and balancing sequential and
reactive elements of the system.  We are considering architectures like SOAR [8], in
which an  "impasse" in one problem space spawns a new problem space with

associated operators. This architecture would support a clean separation of task and
discourse semantics (as different problem solving spaces), but at the expense of a
plan-based approach to intention representation. In sum, we advocate a pragmatic
approach to determining intentions based on task specifications that agents may

jointly share. In doing so, this approach serves as a way of constraining what
messages agents send to each other at the task level and reduces the burden of
imposing all such constraints at just the individual performative or at just the protocol
level. This is one step towards coherent message exchange, based on "intentional

states" that can be directly traced to a representation of the global task that may be
part of a public conversation policy specification.
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