

A Case Study of API Redesign for Improved Usability

Jeffrey Stylos1, Benjamin Graf2, Daniela K. Busse3, Carsten Ziegler2, Ralf Ehret2, Jan Karstens2
1: Carnegie Mellon University 2: SAP AG 3: SAP Labs, Inc.

jsstylos@cs.cmu.edu, {benjamin.graf, daniela.busse, c.ziegler, ralf.ehret, jan.karstens}@sap.com

Abstract

As software grows more complex, software devel-

opers’ productivity is increasingly defined by their
ability to effectively reuse code. Even APIs (applica-
tion programming interfaces) and other code explicitly
intended for reuse are often difficult and time consum-
ing for developers to use. This paper describes the us-
er-centered design and evaluation process we evolved
in redesigning SAP’s BRFplus - a business rules en-
gine, whose API was created for platform develop-
ment, but which is now also increasingly being used by
application developers – even though it was not initial-
ly designed with their specific needs in mind. Our API
redesign attempts to take both the initial as well as the
new emergent user requirements into account. A usa-
bility evaluation of our proposed changes to the API
suggests that our user-centered design process was
successful in helping to create an API that significantly
improved users’ productivity and better matches the
different users’ needs.

1. Introduction

As a market leader in business software, SAP em-
ploys roughly eighteen thousand software developers.
One of the key elements of their productivity is being
able to quickly and effectively reuse code that col-
leagues have already written. APIs explicitly allow for
code to be reused by other developers; however pre-
vious work [8] and experience at SAP has shown that
using APIs that do not meet the developers’ specific
requirements can often be tedious, difficult, or even
impossible. As a result developers often spend a long
time trying to make existing APIs work for them, and
might end up writing code from scratch rather than
using a difficult-to-use API.

To better understand this problem and explore poss-
ible solutions, we examined a specific API — the SAP
“Business Rules Framework Plus” API (BRFplus)
implemented in the ABAP programming language. We
used this API as the focus of a case study in which we

developed and applied a process for studying and im-
proving the usability of APIs. We chose to study the
BRFplus API because of its importance to SAP
(BRFplus recently replaced all 26 previous rules en-
gines to provide one common and standardized busi-
ness rules framework to all of SAP), and because some
users had reported difficulty using it.

By encapsulating business rule functionality, the
BRFplus API allows additional functionality to be spe-
cified by business users, who know the details of what
the software should do, instead of software developers
(see inset on next page). This provides the potential for
a powerful customization of software at the hands of
the business user, enabled by BRFplus. By making
BRFplus easier to use, we hope to bring it to more
areas of SAP, providing more flexibility and value to
SAP’s customers.

We did a user-centric design of an API wrapper (us-
ing input from stakeholder interviews, user require-
ments gathering sessions, and a pseudo-code study)
and then performed a usability evaluation to assess its
value in terms of helping application-level developers
address their specific use cases more easily.

Our overall goals stretch beyond the BRFplus API.
We hope demonstrate within SAP the value in focusing
on API usability. SAP has developed and applied user
research for user interfaces and other areas, but — like
most companies — has not previously examined the
usability of APIs with a systematic user experience
effort. Doing this will help SAP create APIs that are
easier to use, improving the productivity of SAP’s de-
velopers and customers. In doing so, we hope to ad-
vance the state of art in API usability and contribute
our insights, results, and techniques back to the re-
search community.

2. Identifying User Requirements

The BRFplus API we examined allows for the crea-
tion and editing of business rules. The original API
was primarily intended for internal SAP developers for
creating platform level code – i.e. code that hundreds
of SAP applications and solutions would be building

2008 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1-4244-2528-0/08/$25.00 ©2008 IEEE 189

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

on. This requires the API to
give the developer a signifi-
cant amount of control and
transparency in using the API.
Initial interviews with stake-
holders and domain experts at
SAP brought to light, howev-
er, that also more and more
application developers were
using the API directly for
their coding tasks – and that
these users were increasingly
running into difficulties using
the API, as it was not de-
signed to meet their specific
(less granular and less flexi-
ble) needs. We received con-
sistent feedback from our ini-
tial stakeholder interviews
that, while they had designed
a powerful and flexible API
(as required by platform us-
ers), many current users
struggled to implement their
simpler use-cases..

In terms of the cognitive
dimensions [5], which provide
a framework for describing
usability issues and have been
adapted to describe API usability [2], the interviews
led us to suspect that there was a mismatch of abstrac-
tion level. The API was seen as providing low-level
functionality (and was thus very flexible) while the
specific class of application developer users had high-
er-level goals, prioritizing simplicity of use over con-
trol and transparency – their use cases were not as
complex as to require significant amounts of granulari-
ty or flexibility, and the time spent in understanding
and debugging the API’s use was very limited com-
pared to platform developers.

The difference in user roles can also be expressed
by previously identified developer personas [3] that
describe different styles of programming with different
strategies and goals. We used these personas to help
understand different developer strategies in our re-
search. The system level developers at SAP, who help
write the platform that others rely on, tend to exhibit
traits of the systematic programming persona, cautious-
ly understanding the implications of each line of code.
The application level developers tend to act more
pragmatically, wanting to understand and tweak the
code but also be productive. Consultants, under the
most time pressure, often exhibit traits of the opportu-
nistic programmers.

In order to validate these
initial hypotheses based on
our stakeholder interviews, we
ran six 60-80 minute individ-
ual requirements gathering
sessions with existing
BRFplus users. In these ses-
sions, we asked the develop-
ers to first explain the overall
purpose of their code that
used business rules, and then
to explain which parts of the
BRFplus API they used, and
how. We also discussed how
they might have wanted to use
BRFplus but were not able to.

In our interviews the API
users we talked to did indeed
have relatively simple use
cases, compared with the flex-
ibility of BRFplus.

For example, one develop-
er used BRFplus for Manufac-
turing Execution. The auto-
matic generation of produc-
tion orders as well as the
guidance of material lots
through a shop floor was to be
governed by rules. For in-

stance, a rule might specify that scheduling of certain
work packages on the shop floor (e.g. those concerning
Product X, or from Supplier Y) should follow a specif-
ic scheduling strategy – with those strategies them-
selves being sets of rules, or a formula). However, ra-
ther than describing the full rules set using BRFplus
(which would be possible using a nested construct of
tables and formula rules – one of the more complex
features in BRFplus), the developer instead used
BRFplus only to return a "strategy-code" that referred
to a rule that he hard-coded outside of BRFplus. This
made the business rules easy for business users to ex-
ecute, with a loss of generality that was seen as accept-
able for this use case. But it also limited the ability of
the business user to specify rule changes at run-time,
having to rely on the hard-coded values predefined by
the developer.

This is an example of what we saw with a number
of uses of the BRFplus API: While the overall scena-
rios often included computing values from formulas
and triggering actions based on rule results, the users
we interviewed moved this functionality outside of the
rule system for simplicity, having a developer specify
the formula or action rather than an having an end-user
specify it in the rule itself.

Business Rules
Business rules [7] allow end users (non-

programmers) to specify software behaviors that
would normally be specified at software devel-
opment time by a developer. This allows software
to be customized by users after the software is
deployed. For example, business rules might be
used to specify how much tax is computed on
different items, since this varies by location. An
end user might do this by using a graphical user
interface (GUI) to specify that for “food items”
the total tax is 5% of the base price, and “other
items” are taxed at 7%, potentially providing
more detailed specifications for food and other.
This differs from “traditional” programming,
where a software developer would write a func-
tion with an “if” or “case” statement to compute
the tax, and the code would have to be recom-
piled when the logic changed.

Business rules can similarly be used to com-
pute how large each employee’s end-of-year bo-
nus should be, or how to specify rules used dur-
ing the approval process of expense reports. After
being specified by a user, these rules can be au-
tomatically executed, like software. In this sense
a business rules API and accompanying GUI
provide an environment for end user program-
ming [3].

190

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

3. Redesign Strategies

In previous API usability research [1][8][6], the re-
sults of API usability studies have been used to im-
prove the API before its final release. The API we ex-
amined had already been (internally) released and
used, and so the team had to continue to support it. We
could not simply create a new version and ignore the
old API, however we had several different options
about what to do. For example we could adapt the
BRFplus API in backwards-compatible ways (which
would limit the changes we could make) or we could
create a completely new API (at the cost of having to
support both of them). Because of the specific abstrac-
tion level problem we had identified, we chose to de-
sign a “wrapper API,” a higher-level API implemented
on top of the original API. This would also enable pro-
grammers to choose which level of granularity they
wanted to interact with the API on, the wrapper, or
what was underneath. Other scenarios might well call
for other types of solutions, such as adding additional
classes at the same level or even lower levels of ab-
straction.

4. Pseudocode to Reveal Expectations

Before designing a wrapper API we first wanted to
learn how users thought, what (if any) mental models
they had and what terminology they used. To do this
we designed a study in which existing and prospective
users would write pseudocode against an imaginary
business rule API using a simple text editor. We
adapted and extended this technique from our previous
work examining API design choices [8][4].

We contacted several users of the BRFplus as well
as other developers who were knowledgeable about
business rules, and conducted another round of six
different one hour sessions. Because the volunteer par-
ticipants willing to participant were mostly remote
colleagues in different locations, we conducted all of
our sessions remotely via telephone and Windows
NetMeeting to see their screen. This setup allowed us
to discuss privately by muting the speakerphone.

We emailed participants study instructions imme-
diately before the study that briefly described our
project and gave them a scenario to write pseudocode
for. Participants were told they could write ABAP or
Java-like pseudocode. During the study we asked par-
ticipants to think aloud.

We asked participants to write code for the task of
defining the rental car price for customers based on
their age and the rental duration. We chose our exam-
ple to be representative of the application-level use

cases we saw in our interviews that would be easily
understandable.

The pseudocode that the six participants came up
with showed many similarities to each other. Some of
the results were:

•Participants wrote code at a high level of abstrac-
tion, reinforcing what we had learned in earlier inter-
views. Participants wrote in a dozen lines what would
take a hundred or so with the BRFplus.

•Participants tended to separate the structure of
rules from the data in their code. For example, users
would first specify that a number, “price”, should be
associated with an age and a duration, and then set the
specific values. In the current BRFplus model, there is
no separation between rule structure and data.

•Most participants used tables to model the struc-
ture of their rules. This can possibly be put down to the
fact that the most efficient data structure for handling
sets in ABAP are internal tables.

•Participants omitted details such as locking data
structures for thread safety, versioning and activation,
and explicitly saving rules. These details were required
to support more complicated scenarios, but could be
handled automatically in the simpler cases.

5. Usability Evaluation

After we had designed and implemented a prototype
version of the wrapper API we designed a think-aloud
study to evaluate the wrapper design. Our goals were
to find areas of improvement and to see if participants
would be able to use the API at all without much do-
cumentation. We chose to provide almost no documen-
tation because we wanted to avoid hiding unusable
aspects of our design behind good documentation.

We based our API evaluation study design on the
previous work on evaluating early API designs [1][8].
In the study, participants wrote code that used the
wrapper API to implement a series of up to three tasks,
as time allowed. Task one involved creating new rules
for how many vacation days different employees in
different countries should get (e.g. German, full time
employees get 30 days vacation a year). Task two in-
volved storing these rules and then loading them to
calculate the vacation days a new employee should get.
Task three involved creating an additional rule involv-
ing ranges (e.g. German, full time employees who have
worked less than one year get 20 days vacation). These
tasks were a simplified version of a real use-case.

We then performed a third round of 60-90 minute
sessions, this time to study the usability of the simpli-
fied wrapper API we proposed. Three of these sessions
took place in a usability lab with a one-way mirror
separating observer and participant rooms. The other

191

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

sessions took place remotely, using a phone and Net-
meeting for screen sharing. We maintained a connec-
tion between the participant’s computer and the ob-
server’s computer and used screen-capturing software
to record the session on the observer’s computer.

To better understand participants’ behavior, we
asked them to think out loud as they worked. A conse-
quence of this is that the time they spent to complete a
task could have been affected by speaking out loud.
This was especially likely since most of our partici-
pants were non-native English speakers and we asked
that they speak their thoughts in English (the only
common language among the project members).

We gave participants brief written study instructions
and documentation giving a one-to-two sentence de-
scription of each class in the wrapper API.

The high level results of the study were that five out
of the six participants were able to finish the first task
in 90 minutes, four out of six were able to finish the
first two tasks, and three were able to finish all three
tasks within 90 minutes. Because of the limited docu-
mentation and time, we felt that having most partici-
pants finish at least one task was a positive reflection
of usability of the API. We also observed some com-
mon difficulties using our API; fixing these might al-
low more participants to finish all of the tasks.

We had initially considered performing a compara-
tive study between the wrapper API and the original
API. However, the BRFplus felt that the results of the
wrapper API evaluation were so strong that using it
was clearly faster and it was not worth having partici-
pants perform the same tasks with the original API,
which the BRFplus team did not feel would be practic-
al in 90 minutes. To get an upper bound on the usabili-
ty of the original API, we had a developer of the
BRFplus team with intimate knowledge of the API
perform the same study tasks using the BRFplus in-
stead of the wrapper API. The BRFplus developer was
able to solve all of the tasks, but required 120 minutes,
because of the additional details required to keep track
of in the BRFplus as opposed to the wrapper API.

6. Design Iteration

Overall participants were able to use the wrapper
API easily. However our study revealed several, rela-
tively minor, usability problems with the wrapper API
design. Based on these observations, we created a re-
vised wrapper API. If time had permitted, we would
have then run more study participants with the revised
API to ensure that these changes solved the problems
we observed and did not introduce other problems.

We had assumed that participants would be familiar
with the “range” object in ABAP programming lan-

guage. These are used to create rules with ranges, for
example that employees who have worked between 1
and 2 years should get a certain number of days vaca-
tion. However, we found that while most participants
had heard of it, few knew how to use this construct.
Based on this, our revised API included a convenience
function for adding rules ranges.

In our initial design we used two separate objects
for creating rules and for using the rules to compute a
value based on some input. We chose this because
rules can contain ranges, while the concrete values
used for rule instance processing cannot. However,
participants had some difficulty understanding the dis-
tinction between these classes, so our revised wrapper
uses the same class for both of these operations.

7. Conclusions

We did a user-centric design of an API wrapper and
then performed a usability evaluation to assess its val-
ue in terms of helping application-level developers
address their specific use cases more easily.

Beyond the implications for our target API, we
hope that this project will help demonstrate the impor-
tance and viability of API usability. Our project
showed that, while not trivial, an API can be investi-
gated, designed and evaluated (in prototype form) in
three months with a handful of people and the help of
current and prospective users.

8. References

[1] Clarke, S. Measuring API Usability. Dr. Dobbs Journal, May
2004, pp S6-S9. 2004.
[2] Clarke, S. Describing and Measuring API Usability with the
Cognitive Dimensions. Cognitive Dimensions Workshop. 2006.
[3] Clarke, S. “What is an End User Software Engineer?”, End
User Software Engineering, Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2007.
[4] . Ellis, B., Stylos, J. and Myers, B. The Factory Pattern in
API Design: A Usability Evaluation. International Conference
on Software Engineering. 2007
[5] Green, T.R.G., and M. Petre, “Usability Analysis of Visual
Programming Environments: A ‘Cognitive Dimensions’ Frame-
work”, Journal of Visual Languages and Computing, 1996, pp
131-174.
[6] McLellan, S.G., Roesler, A.W., Tempest,, J.T. and C.I. Spi-
nuzzi, "Building More Usable APIs," IEEE Software, vol. 15,
no. 3, May/Jun 1998, pp. 78-86.
[7] Ross, R. G. Principles of the Business Rules Approach. Addi-
son-Wesley Longman, Amsterdam, February 2003.
[8] Stylos, J. and Clarke, S. Usability Implications of Requiring
Parameters in Objects’ Constructors. International Conference
on Software Engineering. 2007.

192

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 8, 2008 at 14:17 from IEEE Xplore. Restrictions apply.

