
Usability Implications of Requiring Parameters in Objects’ Constructors

Jeffrey Stylos
Carnegie Mellon University

jsstylos@cs.cmu.edu

Steven Clarke
Microsoft

stevencl@microsoft.com

Abstract

The usability of APIs is increasingly important to
programmer productivity. Based on experience with
usability studies of specific APIs, techniques were
explored for studying the usability of design choices
common to many APIs. A comparative study was
performed to assess how professional programmers
use APIs with required parameters in objects’
constructors as opposed to parameterless “default”
constructors. It was hypothesized that required
parameters would create more usable and self-
documenting APIs by guiding programmers toward the
correct use of objects and preventing errors. However,
in the study, it was found that, contrary to
expectations, programmers strongly preferred and
were more effective with APIs that did not require
constructor parameters. Participants’ behavior was
analyzed using the cognitive dimensions framework,
and revealing that required constructor parameters
interfere with common learning strategies, causing
undesirable premature commitment.

1. Introduction

Microsoft has created and supported many different

application programming interfaces (APIs) that are in
wide use today. The .NET framework APIs alone
include more 140,000 methods and property fields and
are shared by a collection of programming languages
including C#, VB.NET and C++. To increase the
usability of these and future APIs, and to improve the
productivity of the programmers who use them, the
Visual Studio User Experience group conducts user
studies of APIs before they are finalized. These studies
involve representative programmers of an API’s target
audience performing typical programming tasks using
pre-release versions of an API, and the studies have
proven effective at increasing these APIs’ usability [4].

However, because Microsoft creates so many APIs,
it is not always possible to run user studies on each
API designed. Smaller organizations may not have the
resources to run user studies of their APIs at all. This
paper describes a case study of a new type of API
usability study that instead of testing the usability of a
specific API, tests the usability of a design choice that

is common to many APIs. By better understanding API
design choices, we can better inform the design of all
APIs. This study was performed as part of an
internship at Microsoft in the fall of 2005 and was
designed to inform the .NET framework developers,
who develop new APIs.

In object-oriented languages like the .NET
languages and Java, one of the most common API
design choices involves what object constructors to
provide. These constructors are also some of the most
commonly encountered parts of an API by
programmers, who have to figure out whether or how
to construct each object before they using that object.
There are two common design choices: provide only
constructors that require certain objects (a "required
constructor"). This option has the benefit of enforcing
certain invariants at the expense of flexibility. An
alternative design, “create-set-call,” allows objects to
be created and then initialized. Examples of these two
are shown in Figure 1.

To get a fuller understanding of when to use each in
API design, we compared the two approaches in a user
study of thirty professional programmers from three
distinct programming persona [8]. Personas are an
archetypical representation of users, and we used three
personas that had been developed to help target APIs to
different sets of programmers [4]. The programmers

var foo = new FooClass();
foo.Bar = barValue;
foo.Use();

var foo = new FooClass(barValue);
foo.Use();

vs
.

Required constructor

Default constructor (“create-set-call”)

Figure 1. The "create-set-call" construction pattern
and required constructor parameters. We compared

the usability of these two construction options.

performed several tasks; some these tasks involved
APIs with required constructors and other tasks used
create-set-call APIs. Some of the tasks involved code
creation, and others involved debugging or reading of
code.

We found that APIs that used the create-set-call
pattern (not requiring any constructor parameters) were
preferred and less problematic for all three
programming personas. The reasons for this differed
for each persona. Opportunistic programmers are more
concerned with productivity than control or
understanding. For these programmers objects that
required constructor parameters were unfamiliar and
unexpected, and even after repeated exposure these
programmers had difficulty with these objects.
Pragmatic programmers balance productivity with
control and understanding. These programmers also
did not expect objects with required constructors, and
while pragmatic programmers were more effective
than opportunistic programmers at using these objects,
the objects still provided a minor stumbling block and
these programmers preferred the flexibility offered by
objects that used the create-set-call pattern. Systematic
programmers program defensively and these are the
programmers for whom low-level APIs are targeted.
These programmers were effective at using all of the
objects; however, they preferred create-set-call because
of the finer granularity of control it offered by allowing
objects to be initialized one piece at a time.

The rest of the paper describes the study and related
research in more detail. Section 2 summarizes related
work done by ourselves and others. Section 3 describes
the specifics of the study design. Sections 4 presents
the results, and Section 5 offers related discussion.
Section 6 presents a model of programmer behavior
derived from these results. Section 7 discusses
limitations of this research. Section 8 discusses
directions for future research and Section 9 offers some
final conclusions.

2. Related Work

2.1. API Usability Studies

Our study was motivated by the usability studies of
specific APIs done at Microsoft [4] and elsewhere
[9][2]. These studies involve studying a particular API
– a mail API, for example – then having programmers
representative of the intended audience for the API
perform tasks intended to be common for the API –
sending an email message and connecting to a POP
server, for example.

The primary difference between these studies and
ours is that while the prior studies focus on finding the

usability issues of a specific API, ours looked at the
usability issues of a more abstract pattern that occurs in
many different APIs. Our construction of study tasks
also differs from these previous studies. Studies of
specific APIs can use common tasks that the API is
intended to perform, while our study used tasks from a
variety of real and artificial APIs so that our results
would generalize to many types of APIs.

2.2. Cognitive Dimensions

The Cognitive Dimensions framework was
designed to describe usability problems in
programming environments [7] and has been adapted
to describe API usability problems [3]. The dimensions
help differentiate symptoms of usability issues from
the root problems. We used the API adaptation of this
framework to help analyze and understand the results
of our study.

2.3. Framework Design Guidelines

Based on years of .NET library development,
experienced API designers at Microsoft [5] and
elsewhere [1] have begun to create a set of guidelines
on how to create usable APIs. Our research approach
aims to validate, explain and add to these guidelines by
providing direct comparisons between specific API
design choices in a controlled lab environment.

The framework design guidelines recommend the
use of the create-set-call pattern for opportunistic
programmers. Our study was designed to better inform
this recommendation by directly comparing create-set-
call to required constructors in a variety of tasks and by
studying three different personas.

2.4. Design Patterns

Design patterns capture common implementation
techniques used in building large software systems [6].
API design choices differ from design patterns because
by relate only to the externally visible choices, while
design patterns often relate to internal architecture
decisions. The two overlap when design patterns are
externally visible, such as the factory-builder pattern of
object construction [6].

Our research is focused on the usability of APIs by
programmers who use APIs while design pattern
research has traditionally focused on how patterns can
create maintainable architectures for implementers of
APIs or large systems.

3. Study Method

The study involved thirty participants performing a
collection programming tasks, some of which had
multiple conditions. Participants were asked to think
aloud.

In order to make an informed decision about when
to use or avoid the create-set-call pattern, our study
elicited the expectations, preferences and effectiveness
of different users performing different types of tasks.
Understanding programmers' expectations can help us
create APIs that are more discoverable and less
dependent on documentation.

By having programmers use APIs with different
object construction patterns and by using the think-
aloud technique, we elicited programmers' preferences
without revealing what we were studying.
Programmers' preferences let us know what types of
APIs they enjoyed working with and which ones they
found annoying.

By administering several different tasks and having
two different conditions for some of these tasks, we
compared how effective programmers are between and
within participants, including wrong assumptions
programmers made, problems they overcame as a
result of these assumptions and the time programmers
took to finish the tasks.

We were interested in discovering this information
for each of the three personas described in Section 3.2
because these are the personas used by the API
designers to target their APIs.

Our tasks were designed to assess code readability,
debug-ability and initial writability.

3.1. Participant Personas

Personas are archetypical representations of users
[8]. Well-designed personas capture the typical
motivations and behaviors of different target
populations. The three programmer personas we used
were developed at Microsoft through observations of
many Visual Studio users [4]. These personas capture
different work styles, not experience or proficiency.
We used these personas to tailor our experiments and
participant recruitment criteria. By studying a number
of programmers of a specific persona, we are able to
get results that generalize well to other programmers of
that same persona.

Systematic programmers work from the top down,
attempting to understand the system as a whole before
focusing on an individual component. They program
defensively, making few assumptions about code or
APIs and mistrusting even the guarantees an API
makes, preferring to do additional testing in their own

environment. They want not just to get their code
working, but to understand why it works, what
assumptions it makes and when it might fail. They are
rare, and prefer languages that give them the most
detailed control such as C++, C and assembly.

Pragmatic programmers are less defensive and
learn as they go, starting working from the bottom up
with a specific task. However when this approach fails
they revert to the top-down approach used by
systematic programmers. Pragmatic programmers are
willing to trade off control for simplicity but prefer to
be aware of and in control of this trade off. For
example, pragmatic programmers often use tools such
as graphical layout editors but prefer to be able to edit
the automatically generated code in case they need
additional control later. Pragmatic programmers use
languages that offer elements of both control and
simplicity such as Java and C#.

Opportunistic programmers work from the bottom
up on their current task and do not want to worry about
the low-level details. They want to get their code
working and quickly as possible without having to
understand any more of the underlying APIs than they
have to. They are the most common persona and prefer
simple and easy to use languages that offer high levels
of productivity at the expense of control, such as
Visual Basic.

To recruit participants of the above personas, we
used the following prescreening guidelines.

• To recruit systematic programmers, we

prescreened for professional programmers with at
least five years experience who used C or C++ as
their primary programming language. We
preferred programmers who typically worked on
large projects with an emphasis on reliability.

• To recruit pragmatic programmers, we
prescreened for professional programmers with at
least two years professional experience who used
C# as their primary language. We preferred
programmers whose typical application was a
desktop application using WinForms.

• To recruit opportunistic programmers, we
prescreened for professional programmers with at
least two years experience who used Visual Basic
as a primary programming language. We preferred
programmers without a formal computer degree
and whose typical project was a web-application
using HTML and Visual Basic.

We recruited participants who had registered with

the Microsoft Usability Research website:
http://microsoft.com/usability. In compensation for
their time participants were given two vouchers each

redeemable for a software or hardware item at the
Microsoft Store, such as Visual Studio, Windows XP
or a Microsoft keyboard.

The actual participants we studied matched or
exceeded our desired levels of experience. All of the
participants were current or retired professional
programmers, and none were currently students. All of
the programmers had recent experience with the
language in which they performed the programming
task. The opportunistic programmers we studied most
commonly had experience with programming the back-
ends of web-based applications. The pragmatic
programmers we studied most commonly had
experience programming desktop applications. The
systematic programmers we studied each had
professional experience programming low-level
devices such as embedded device drivers for laser-
etching systems and work on the Linux Kernel.

During the study, participants demonstrated
proficiency in the languages in which they used as part
of the study, as well as the Visual Studio programming
environment.

3.2. Study Environment

The studies were performed in a usability lab that
separated the participant and experimenter by a one-
way mirror. Participants worked on a PC running
screen-capturing software, and could not see the
experimenter. The experimenter could see the
participant directly, as well as being able to see a copy
of the participant’s screen.

Participants performed their tasks using Visual
Studio 2005, with the exception of one task that
required the use of Notepad. Participants had access to
the internet.

Participants recruited using the systematic
recruitment criteria were given their tasks in C++;
pragmatic programmers were given identical tasks in
C#, opportunistic programmers were given identical
VB.NET tasks. This design was intended to give each
persona a familiar and representative work
environment. We were able to let each persona use a
different language while having them use the same
APIs by using cross-language .NET assemblies.

The study involved six different programming tasks
that participants performed in-order over 2 hours and
15 minutes. Some of these tasks had two conditions to
allow us to compare two possible versions of an API.
The tasks were chosen to be of several different
domains to gain a more general understanding of the
usability tradeoffs.

Each session lasted up to 2 hours and 15 minutes.
Participants were able to speak to the experimenter

over an intercom system, and were allowed to ask
questions, however most questions were not answered,
to avoid influencing participants’ behavior.
Participants were asked to vocalized their thought
process throughout the tasks and were reminded by the
experimenter if they fell silent.

When participants reached a point in a task when
unable to make any further progress, the experimenter
first sought to get the participant to vocalize what they
thought the current problem was, what they had tried to
solve it, and what they thought other possible solutions
might be. When participants had attempted all of the
possible solutions they could think of, the experimenter
would offer advice to help the participants make
further progress.

3.3. Task 1: Notepad Programming

Task 1 instructed participants to “Write the code
they would expect would read in a file and send its
contents in the body of an email message.” They were
asked to use only the text editor Notepad to write their
code.

In addition to being a warm-up task (because their
code is not error-checked or compiled there can be no
“wrong code”), this task was designed to elicit
participants’ expectations and mental models without
the influences of code-completion, example code or
extensive task wording. Specifically the task makes it
likely that participants will initialize multiple objects
so that we can see what type of constructors they
expect to be able to use.

Because there was no provided code, there was only
a single condition for this task.

3.4. Task 1-B: File API design

Task 1-B involved using Notepad to design an API
for file reading and writing operations. This task was
given only to systematic programmers and was used in
place of Task 1 for these participants. The motivation
for changing Task 1 for systematic programmers was
to elicit even more assumptions from the programmers
who had more experience designing APIs about all of
the objects constructors that should be offered in a
class. Participants were asked to write the declarations
for the API without implementing it.

The file domain was chosen because it offered at
least one likely candidate for a required property – the
file’s name or “path” – and all of the existing .NET
APIs for files include this as a required constructor
parameter.

As with Task 1, because of the free-form nature of
the task, there was only one condition.

3.5. Task 2: Files and Emails

In Task 2 participants were asked to write code that
performed the same function as the code in Task 1,
however this time using the Visual Studio IDE and real
APIs. Participants were given a template project in
which to write their code and the project was linked to
one of two libraries, depending on the experimental
condition. The libraries each provided APIs for File
and Mail operations, the difference being that one
provided only default constructors (taking no
arguments) for each object and the other provided only
required constructors (requiring all parameters to be
provided on construction).

This task was designed to compare between
participants the ease of use of the create-set-call APIs
to the required-constructor APIs. It also provided an
opportunity for participants to comment on differences
in the provided API and their imagined API from the
previous task.

This was a code-creation task that used real APIs
(which we hid with wrapper APIs when it was
necessary to change which constructors were provided)
and had two different conditions.

3.6. Task 3: Domain-Independent Classes

Task 3 had participants create and use two objects.
Using the object involved calling a specific method
“use()”, on each object. The objects were given
plausible but not understandable names and properties
(the objects were “CptrObject” and “CptrModel”).
By using a made-up domain whose requirements
participants have no experience with or intuition about,
this task was designed to also help answer the question
of how well the different patterns convey object
requirements to programmers who are unfamiliar with
them.

Of the two objects, each had several required
properties. One required these properties in its only
constructor and the other provided a default constructor
and a constructor that took different combinations of
the required properties. When the create-set-call object
was used without initializing all of the required
properties, the object threw a runtime exception, while
code that constructed the required-constructor object
would not compile unless the proper arguments were
provided.

This task was a code-creation task with a single
condition. Each participant created both objects.

3.7. Task 4: Message Queue Debugging

In Task 4 participants were given a short (100 line)
program that sent and received messages using the
.NET System.Messaging API. A bug in the
construction of the MessageQueue class prevented
messages from being received: the instances were
created with the Boolean “DenySharedReceive”
argument set to true, which caused the MessageQueue
to throw an “access denied” runtime exception.

There were two conditions for this task. In the first
condition the MessageQueues were constructed using
a default constructor and the DenySharedReceive
property (along with other properties) was set on a
separate line (messageQueue.DenySharedReceive
=true;). In the second condition the MessageQueues
were constructed using a four-parameter constructor
where the second argument represented the
DenySharedReceive parameter.

In order to solve the task, participants had to change
the DenySharedReceive property or constructor
argument from true to false for both MessageQueue
instances.

This task was designed to compare the readability
and debugability of code that uses constructors vs.
code that uses create-set-call. By requiring a small fix
in two separate code locations, the task was intended to
be complex enough to require understanding of the
code while still being solvable in a reasonable amount
of time.

3.8. Task 5: Optional Constructors

Task 5 involved a small application that initialized
the inventory of an online store and it required the
creation of several objects of different complexity. (For
example, a book required an author, title and ISBN,
while a magazine only required a title and ISBN).
There were 5 different objects, which required up to 5
properties, and each provided a range of constructors
that included a default constructor and a constructor
that took all essential parameters.

By providing participants the choice of which
constructors to use, after having seen APIs that used
required-constructors and create-set-call in earlier
tasks, this task was designed to test the usability of
optional “convenience” constructors. By providing
objects of a range of complexities, the task sought to
test whether there were trade-offs in construction
approaches depending on the number of arguments.

There was only one set of APIs and each participant
constructed each object, however there were two
conditions: one where the task instructions presented
the objects to create in increasing order of complexity
and one where the objects were presented in decreasing
order of complexity.

3.9. Task 6: Reading Code on Paper

In Task 6 participants were given a paper printout
of a short program (a dozen lines) and asked what the
program would do. The program called imaginary
APIs that took either Boolean constructor arguments of
ambiguous meaning or used create-set-call to set
Boolean properties.

This task was designed to test the readability of
printed code (in the absence of IDE features like code-
completion) for each construction pattern. While
constructor calls clearly convey less information, since
they do not include the parameter names, we
hypothesized that by being easy to overlook,
participants might skim over unnamed parameters and
fail to realize their lack of comprehension. There were
two conditions: one that used constructors and another
that used create-set-call.

3.10. Interviews

In addition to the programming tasks, we prepared
questions for a semi-structured face-to-face interview
to follow the tasks. We began the interviews by
describing to the participant the focus of the study.
(The participants had previously only been told that the
study involved performing small programming tasks.)
Hearing the focus of the study, participants would
usually offer their opinion on why APIs should or
should not require constructors. After listening to their
opinion, we offered our own study observations so far
to engage a dialog of the advantages of each option.
We then asked participants which APIs they used in
their professional programming work, and what API
design practices they used if API creation was a part of
their job.

4. Study Results

The following observations were taken from notes
the experimenter made while running the study and
while reviewing screen-captured video taken during
the study. Although we could have made more
quantitative assessments of participants’ behavior, the
primary goal of the study was to communicate our
perceptions to .NET framework developers by example
and trend rather than statistics. Nevertheless, the
process by which we derived our observations was
systematic. For example, if we believed we had
observed a particular trend, we did investigate the
videos thoroughly to verify its existence.

4.1. Common Participant Behavior

We consistently found that opportunistic and
pragmatic programmers assumed that a default
constructor exists for any class. This was often evident
by participants writing code to call a default
constructor and not noticing until the next line of code
or two that the constructor call would not compile.
Their expectations were also evident by a common
misunderstanding of why the constructor call would
not compile, especially by opportunistic programmers.
These programmers were much more likely to initially
assume the compiler error resulted from incorrect
syntax – a missing parenthesis or keyword – than a
more semantic error. This often caused participants to
doubt their own syntactic understanding of a language;
however when using create-set-call APIs, these same
participants rarely made syntactic errors, indicating
that these programmers were in fact relatively familiar
with the language’s syntax. We found that these
assumptions did not change over the course of the
study, even after exposure to several APIs that used
required constructors.

When opportunistic and pragmatic participants
discovered that they needed to use a required
constructor, they tended not to interpret this as a
functional requirement imposed by the API but rather a
syntactic barrier to compilation. A common reaction to
a required constructor was to try to pass null for the
parameter (in the APIs in this study, this would always
cause a runtime exception). Another strategy we
observed was to create empty new objects for each
required parameter, without trying to initialize or
validate these objects.

Though we found required constructors to be less
usable when creating code, we did not find the same to
be true when participants debugged code. Even when
code used ambiguous constructor parameters such as
“true, true”, programmers did not a have
significantly harder time debugging this code
compared with seemingly more self descriptive code
like “obj.sharing = true; obj.caching =

true;”. This was because all of our participants used
IDE features like code-completion to easily access
constructor parameter information when it was not
directly visible in the code.

While required constructors hurt usability, we found
no negative impact from optional constructors:
constructors provided in addition to a default
constructor. Optional constructors were sometimes
helpful, most often to pragmatic programmers, by
suggesting what combinations of properties might be
used together, and by provided a shorter mechanism
for initializing multiple properties.

4.2. Task 1 Results: Notepad Programming

All the participants used create-set-call when
creating objects in their Notepad programming task.

The opportunistic programmers were more resistant
to the idea of writing code outside of an IDE than
pragmatic programmers.

4.3. Task 1-B Results: File API Design

All of the systematic participants designed APIs for
a File class that included a default constructor,
allowing the possibility that a File could exist in a state
where the filename had not yet been set. This was
surprising as all of the participants had experience with
real file APIs from Microsoft libraries, none of which
provide a default constructor.

In addition to a default constructor, most
participants also provided at least one additional
constructor that accepted a filename as a constructor
parameter.

4.4. Task 2 Results: Files and Emails

Participants in the create-set-call condition
completed this task with less difficultly than
participants in the required-constructor condition.

4.5. Task 3 Results: Domain-Independent
Classes

Multiple participants, of pragmatic and
opportunistic personas, attempted to pass in the value
null to the required constructor in this task. Passing
null caused a runtime exception to be thrown. No
participant ever tried setting a property to null to
satisfy a create-set-call condition.

For the create-set-call object, participants tended to
quickly discover which three of the nine possible
properties were necessary to complete the object, even
though these requirements were completely arbitrary.
In contrast, many participants vocalized wrong
assumptions about why they thought compiler errors
appeared when these participants had failed to use the
required constructor. These participants often assumed
that the error was one of programming syntax, and
were often slow in discovering the actual problem.

Unlike the Notepad programming task,
opportunistic participants were less hesitant to start this
task, voicing less reluctance, while pragmatic
programmers were less comfortable with starting a task
when they did not understand the domain or overall
goal.

4.6. Task 4 Results: Message Queue Debugging

A few participants in the create-set-call condition of
the debugging task did have some difficulty stemming
from the Boolean constructor arguments of this
condition. However, this was neither common nor
severe, and we found that participants used IDE
features to overcome any difference in readability.

4.7. Task 5 Results: Optional Constructors

Most participants used create-set-call when using
objects that provided either constructor mechanism.
Despite the fact that the objects were of different
complexities, participants tended to use either create-
set-call or convenience constructors for all of the
objects, instead of mixing and matching constructor
approaches. Starting with complex or simple objects
did not seem to influence whether or not participants
used convenience constructors.

4.8. Task 6 Results: Reading Code on Paper

Printed code that called constructors conveyed less
information than create-set-call code, since the
constructor parameter names were not visible and there
were no IDE tools to help display them. However, this
did not affect participants’ awareness of their lack of
knowledge as we had hypothesized. In addition, none
of the participants reported reading paper code
printouts as part of their professional programming job.

4.9. Interview Results

In the post-task interviews, nearly all of the
participants expressed a preference for the create-set-
call pattern. Following are some of the justifications
they gave for their preference.

• Initialization flexibility: By allowing objects to be

created before all the property values are known,
create-set-call allows objects to be created in one
place and initialized someone else, possibly in
another class or package. This was a common
justification given by pragmatic programmers.

• Less restrictive: In general, APIs should let their
consumers decide how to do things, and not force
one way over another.

• Consistency: Most APIs have default constructors,
and so people will expect them. This reason was
given by two programmers who created APIs that
were used by other members of their teams.

• More control: Several systematic programmers
cited the fact that create-set-call let them attempt
to set each property individually and deal with any
errors that might come up using return-codes,
while constructors only allowed for exceptions.

5. Discussion

We found the create-set-call pattern to be more

usable than, and preferred to, required constructors.
The reasons for this differed based on persona, but this
held for each persona.

Opportunistic programmers benefited the most from
the create-set-call pattern. Even experienced
opportunistic programmers experienced difficulties
using APIs that did not offer a default constructor, and
this effect continued even after participants had used
multiple APIs with each pattern. Opportunistic
programmers expressed a preference for the create-set-
call pattern, and this issue is important to these
programmers’ effectiveness.

Pragmatic programmers were more effective using
required constructors than opportunistic programmers,
however they too were more effective with create-set-
call and had preferred create-set-call. While not as
critical of an issue for these programmers, required
constructors provide a minor stumbling block to
opportunistic programmers’ effectiveness and a minor
annoyance that can cause them to prefer one API over
another.

Systematic programmers were equally effective at
using each type of API, however as with the other
personas they too preferred APIs that used create-set-
call. There reasons were different, citing the greater
flexibility that create-set-call provides in initializing
objects in any order and by being able to return error-
codes. Contrary to our expectations, they did not feel
that required constructors offered any assurances about
the validity of an object. For this persona the choice of
constructors was relatively unimportant to their
effectiveness or preference, however the create-set-call
pattern was consistently favored.

Based on these observations, we recommend
against the use of required constructor parameters in
new APIs, favoring instead the create-set-call pattern,
especially for APIs targeting the opportunistic persona.

6. Model of Participants’ Strategies

To better understand the underlying causes of
opportunistic and pragmatic programmers’ greater
effectiveness with create-set-call we analyzed videos
of participants’ work and created a model of the
participants’ strategies for creating and using new

objects. This model is represented graphically in
Figure 2 and described in more detail below.

When participants encountered a specific problem,
such as how to read in a text file or send an email
message, they first looked for a class they could
instantiate. As an implicit part of this step, participants
assumed how many objects the API would provide and
what their general function would be. When APIs
provided this functionality using a different number
and composition of objects, participants had great
difficulty (see Section 6.2). Code-completion was the
most common tool participants used in this step. Other
tools include the IDE’s object-browser and searching
of the documentation.

When participants had a candidate class, they then
attempted to instantiate it and explore the resulting
object, again using code-completion as the primary
means of exploration. As part of the exploration
process they attempted to answer two questions: (1) is
this the correct object?, and (2) what methods or
properties perform the needed functions? If after
exploration they felt that they probably had the wrong
object, they would return to search for more objects.

If they felt the it was the correct object, then after
calling a method or setting a property they would try to
determine whether they were done (with this object)
and if not what the next step was, figuring out how to
solve the new step in the same exploration manner as
the previous step.

When objects used the create-set-call pattern, the
exploration of an instance’s properties and methods
directly followed finding a candidate object. However,
in the case of objects with required constructors,

What Object Do I Use?

Is This the Right Object? What Properties or
Methods Do I Need?

Do I Have to Do Anything
Else?

What's the Next Step?

Call the method / Set the property

Instantiate the object

Satisfy Required Constructor

Figure 2. When constructors were required, the
IDE indicated a compiler error, leading users to

interrupt their exploration to satisfy the required
constructor.

participants were forced to satisfy the required
constructor (the second box from the top in Figure 2) –
usually by figuring out what the compiler error was,
then recursively trying to instantiate objects for each of
the required parameters – before they could finish
deciding if the object was even the one they wanted.

By requiring more effort at such an early stage of
object exploration, required constructors created, in
terms of the cognitive dimensions, a larger work-step
unit, and greater premature commitment. Required
constructors decreased diffuseness of the code,
however we did not see an increase in readability as a
result. In addition, participants were often annoyed by
the unexpected interruption of their exploration, and
simply wanted the current construction problem to go
away so they could continue their task of finding the
right object.

7. Study Limitations

From a research perspective, we do not intend to
make causal claims about the patterns described in this
paper. These patterns are safely interpreted as
hypotheses, backed by systematic observation.

Given this limitation, there were several factors that
could influenced the observations we made. We
observed ordering effects resulting from having
programmers perform tasks in the same order. We
intentionally maintained this task ordering so that
participants would be guaranteed to have seen both
create-set-call and required constructor APIs by the
time they reached tasks involving debugging or
optional constructors. Because we found participants’
expectations of create-set-call did not change even
after having recently used two or three APIs with
required constructors, the ordering effects do not
weaken the results.

Because the individual tasks we tested were of
relatively small length and the participants had not
used the APIs before, our results might not generalize
to how programmers use APIs that they are familiar
with. Studying behavior in long-term use of APIs
would require either much longer studies, over
multiple sessions, or a less controlled study of how
programmers use APIs in their real projects.

The consistency of the results we saw across three
different programming languages suggest that the
results generalize to other object oriented languages as
well. However, differing syntax, for example named
constructor parameters in languages like Objective C,
may offer additional variables that need to be taken
into account.

We feel the programmers were representative of
professional programmers who use the .NET

framework. Because even experienced professional
programmers encountered difficulty using required
constructors, we feel that less professional or less
experienced developers would experience at least as
much difficulty.

The tasks participants performed were smaller than
typical programming tasks, however because object
construction typically occurs at the beginning of a task,
we feel that the constructor and parameter setting in the
study tasks is representative of larger tasks.

8 Future Work

The tasks in this study several common usability
issues that while not directly related to create-set-call,
suggest several fruitful avenues of API usability
research.

8.1. Runtime Exceptions vs. Compiler Errors

We were surprised by the effectiveness of runtime
exceptions in conveying API requirements when the
opportunistic and pragmatic participants had more
difficultly understanding these requirements from
similar compiler errors. Part of this seemed to stem
from a common assumption that compiler errors
related to syntactic rather than semantic problems.

The comparison between the two forms of feedback
is interesting in part because compiler research is often
focused on attempting to catch errors that might get left
until runtime and detecting them at compile-time.
However, because of programmers’ work strategies,
some of these errors might be better dealt with at
runtime.

While we have consistent evidence of this effect in
the case of constructor and property requirements, a
study that compared a broader range of compiler errors
and runtime-exceptions, and how these interact with
programmers work styles, would be able to offer more
complete guidance to API designers and compiler
writers.

This guidance might suggest a third approach that
detected errors at compile time but not making this
error prominent to developers when in “exploration
mode,” only revealing the error when the developers
are ready to “spot check” the code for bugs.

8.2. Object Decomposition

Another important API usability theme that
occurred in our study was how API functionality was
broken-up between different objects, for example
whether there is a single Mail class or both
MailMessage and MailServer classes.

This was of particular importance because
participants were slow to realize or change their
assumptions about what classes should exist and any
violations of their assumptions created a significant
barrier to their effective use of an API.

A better understanding of how programmers make
their assumptions, how APIs can be designed to
simultaneously service multiple sets of assumptions,
and how development tools can give programmers a
greater awareness of their assumptions could reduce
this barrier to productivity.

8.3. Debugging Strategies by Persona

We found different personas to have markedly
different effectiveness with the debugging problem in
Task 4 that involved multiple interacting components.

Systematic programmers tended to debug programs
from the top down, trying to understand the system as
a whole and the overall architecture before focusing on
a specific piece. Opportunistic programmers tended to
debug from the bottom up, starting from the line of
code that first exhibited the error. Pragmatic
programmers debugged using a bottom-up strategy, but
would switch to top-down when the bottom-up strategy
was ineffective.

Systematic and pragmatic programmers were more
effective when debugging multiple components, while
opportunistic programmers would often focus their on
a single component at a time, making multi-component
problems much more difficult.

A study that compared a wider variety of multi-
component debugging tasks would offer a more precise
view of different personas’ strategies and the types of
bugs likely to be most problematic for each. This
knowledge would be applicable to API designers
creating APIs that avoid difficult errors by their
audience.

9. Conclusions

Based on a study of 30 programmers of three
different personas, we have found that APIs that
required constructor parameters did not prevent errors
as expected and that APIs that instead used the create-
set-call pattern of object construction were more
usable.

This study offers evidence that API usability can be
a significant barrier for programmers, but that despite
the challenges facing API consumers and creators, it is
possible to create APIs that are highly usable by a
broad range of programmers. Some of this recent
success in creating usable APIs is due to running
studies of specific APIs: users of a target population

perform realistic tasks with an early version of an API
[4]. However, this approach is difficult for smaller
organizations to apply, requiring resources for a user
study, and expensive for larger organizations, which
might produce thousands of different APIs a year.

Our approach is to study API design choices
relevant to many different APIs. By using several tasks
that include different instances of a specific API design
choice, we can develop general usability guidelines
that are not specific to any particular API or domain.
By creating a set of API design recommendations, we
hope to be able to significantly improve the usability of
newly designed APIs.

10. Acknowledgements

This study was completed with the help of the
Visual Studio User Experience group at Microsoft, and
under the guidance of Monty Hammontree. We wish to
thank Andrew Ko, Brad Myers, Jonathan Aldrich,
Justin Weisz, Christopher Scaffidi and Brian Ellis for
their helpful comments on drafts of this paper.

11. References

[1] Bloch, J., Effective Java Programming Language Guide,
Sun Microsystems, Mountain View, CA, 2001.

[2] Bore, C, and S. Bore, “Profiling software API usability
for consumer electronics”, Consumer Electronics, 2005.

[3] Clarke, S., “API Usability and the Cognitive Dimensions
Framework”,
http://blogs.msdn.com/stevencl/archive/2003/10/08/57040.as
px, 2003.

[4] Clarke, S., “Measuring API Usability”, Dr. Dobbs
Journal, 2004, pp S6-S9.

[5] Cwalina, K. and B. Abrams, Framework Design
Guidelines, Addison-Wesley Professional, 2005.

[6] Gamma, E., R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Boston, MA, 1995.

[7] Green, T.R.G., and M. Petre, “Usability Analysis of
Visual Programming Environments: A ‘Cognitive
Dimensions’ Framework”, Journal of Visual Languages and
Computing, 1996, pp 131-174.

[8] Grudin, J. and J. Pruitt, Personas, Participatory Design
and Product Development: An Infrastructure for
Engagement, 2002.

[9] McLellan, S.G., A.W. Roesler, et al, “Building More
Usable APIs”, Software, IEEE, 1998, 15(3) pp 78-86.

