
Mapping the Space of API Design Decisions

Jeffrey Stylos and Brad Myers
Carnegie Mellon University

{ jsstylos, bam }@cs.cmu.edu

Abstract

When creating new application programming inter-

faces (APIs), designers must make many decisions.
These decisions affect the quality of the resulting APIs
in terms of performance (such as speed and memory
usage), power (expressiveness, extensibility and
evolvability) and usability (learnability, productivity
and error prevention). Experienced API designers have
written recommendations on how to design APIs, offer-
ing their opinions on various API design decisions.
Additionally, empirical research has begun to measure
the usability tradeoffs of specific design decisions.
While previous work has offered specific suggestions,
there has not been a clear description of the design
space of all possible API design decisions, or the qual-
ity attributes that these decisions affect. This paper
puts existing API design recommendations into context
by mapping out the space of API design decisions and
API quality attributes.

1. Introduction

Using application programming interfaces (APIs) is
becoming a larger part of programming. There are
more APIs than ever, and their size is growing. Large
APIs like Microsoft’s .NET Framework or the Java
APIs have grown to thousands of classes with tens of
thousands of methods, and grow larger with each suc-
cessive release.

One motivation for APIs is to improve program-
mers’ productivity by enabling the reuse of more code
instead of writing it from scratch. However, having
large APIs means that the usability of the APIs can be
a significant barrier to programmers’ productivity. In
some cases, deciding how to correctly use APIs can be
more work than writing code from scratch. However
there are pressures to use the APIs anyway. Other mo-
tivations for using APIs include using UI elements that
are consistent with those in other applications, and
because encapsulation forces resources to be only ac-
cessible through a particular API. In observations of

programmers, our research group has found API us-
ability to be a significant problem for all programmers,
from novices learning to program [10] to experts pro-
gramming professionally [15].

To address the growing problem of API usability,
some researchers are trying to design more usable
APIs. Microsoft has run usability tests as part of the
development of specific APIs, and has demonstrated
that more usable APIs can improve programmers’ pro-
ductivity [3][4]. This research is promising, but expen-
sive. Modern APIs are too large to test every feature,
and so it is impractical to apply this method to each
API.

Recent research aims to make APIs more usable by
providing general API design recommendations that
can inform the design of many APIs [6][14][16]. This
research complements books written by expert API
designers in which they offer their opinions on API
design that have been formed by years of experience
[1][5]. These research studies and expert guidelines
help create better APIs by informing API developers
about the tradeoffs of making different API design
decisions.

Because the space of design decisions for APIs is
still a relatively unexplored research area, it has re-

Figure 1. An overview of API design decisions
relevant to object-oriented languages.

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.44

50

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.44

50

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.44

50

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

mained unclear how big of a space it is, and what the
space looks like. This paper maps out a space of API
design decisions relevant to object-oriented languages
such as Java and C#. It does this by combining the top-
ics that API experts have discussed with the list of lan-
guage constructs from the programming language defi-
nitions. An overview of this API design decision space
is shown in Figure 1, and this paper adds specific rec-
ommendations to the map of this space. To help define
and understand this space, this paper additionally ad-
dresses the issues of what an API is, who the stake-
holders are, what quality attributes they want APIs to
have, and what makes different API decisions impor-
tant.

These contributions provide a more solid basis for
the designs of future APIs, and for API usability re-
search in general.

2. What Is an API?

Roughly speaking, an API is a collection of existing
code that other programmers can call to help accom-
plish programming tasks. Usually the APIs are avail-
able only in compiled form, as an interface.

APIs are created and used for several reasons. First,
they can save programmers time by providing func-
tionality that a programmer could create but which
would be faster to reuse. Second, APIs provide infor-
mation hiding so that, even within a single application,
implementation details can be changed without affect-
ing code that uses the API. Third, APIs can provide the
application end-users with a set of consistent
interaction elements, so that, for example, the color-
chooser in one application acts the same as the color-
chooser in another. Finally, many APIs provide access
to functionality that is not easily achievable without the
APIs. In the case of device drivers, operating system
APIs and others, programmers wishing to program-
matically interact with an existing device or piece of
software must use the provided APIs because the im-
plementation details are intentionally hidden.

Different programmers and organizations use dif-
ferent terminology to refer to APIs and related con-
cepts like frameworks, libraries, toolkits, and develop-
ment kits (see Table 1). These terms are not well
distinguished, and are used inconsistently. However by
looking at the aggregate of how they have been used
most often, one can pick out connotations that vary
between terms:

Libraries are small, and usually not object-
oriented. They are usually stand alone (not being the
sole method of interacting with an application or de-
vice). Examples include a math library and the “stan-
dard” library in C. A counter-example is the MSDN

“library” (which refers to a collection of documenta-
tion). “Class libraries” can refer to the compiled bina-
ries of an API or application.

Frameworks are large, and usually object-oriented.
They often provide an entirely new way of writing a
program, and it is generally difficult to only partially
use a framework. Examples include the .NET frame-
work, the Eclipse framework, and the Microsoft Foun-
dation Classes. Python creator Guido van Rossum says
that frameworks can be more haphazard while libraries
require more thought, but this distinction does not
seem to match others’ usage of the terms [12].

Development kits are often attached to a language
or device. The term can also refer to a distribution in-
cluding a compiler, framework and possibly runtime
application. Examples include the Java Development
Kit (also called the JDK), and the Microsoft .NET
Software Development Kit (which includes the .NET
Framework, compilers, and the .NET runtime).

Toolkit is sometimes used for the collection of
software that provides the user interface widgets.
Sometimes, this term is used synonymously with de-
velopment kit. Examples include the Macintosh Tool-
box, the GIMP Toolkit, and the Google Web Toolkit.

API is used to describe both large and small “inter-
faces.” It is also sometimes used to describe interfaces
between two components in the same program. It is
possibly the most general of the terms in this section,
so it is the term that is used in the rest of this docu-
ment. We include libraries, frameworks, development
kits, and toolkits when using the term APIs. The term
can refer to either the abstract notion of the interfaces,
the distribution suitable for use when programming
(binaries with definition files), or the implementation
source of the APIs. Some examples are the Win32
APIs, and the Google Maps APIs.

Libraries Math library

 “standard” library in C
Frameworks .NET Framework

Eclipse Framework
Development Kits .NET Development Kit

Java Development Kit
Toolkits The GIMP Toolkit (GTK)

Google Web Toolkit
APIs Win32 APIs

Google Map APIs

Table 1. Different API-related terms and examples
for each. In this paper, we use "APIs" to refer to all

of these together.

2.1. What Is Not an API?

515151

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

The terms above are inclusive enough that is merits
asking what they are not used to describe.

A language is not an API. This is perhaps conten-
tious and it can be difficult to separate the two (the
Java APIs are integral to the Java language), but for
our definitions a language includes a syntax and com-
piler or interpreter, while an API is always built on a
language.

A tool is not an API. An API consists of binaries,
definition files and documentation, but not binary ap-
plications. This is potentially tricky when the tools are
required to create or edit resources used by any API.

Documentation is not, by itself, an API, though it
can be essential to an API’s usability.

Example code is not an API, although it may be in-
cluded in documentation, and is indeed often the pri-
mary or only means of documentation.

An application’s source code is not an API. If you
are creating code that will be used by only one applica-
tion, then it is not an API.

3. Who are the Stakeholders of an API?

To identify the attributes that affect the quality of an
API, we look at the different parties that are most af-
fected by the API.

API designers are involved early in the lifetime of
an API. Some of their goals are: to maximize the adop-
tion of an API, to minimize the support costs, to mini-
mize development costs (this is perhaps less important
since it is a one-time cost), and to be able to release the
API in a timely fashion.

API users are the programmers who use an API to
help write their programs. Their goals are: to be able to
quickly write error-free programs (without having to
limit their scope or features), to use APIs that many
other programmers use (so that other users can test the
APIs, provide answers to questions and post sample
code using the APIs), and to have their applications run
quickly and efficiently.

A commonly acknowledged property about APIs is
that they need to be appropriate for their audience
[1][5]; an API that works well for one set of program-
mers might not work well for others. This raises the
problem of how API designers can cluster and classify
programmers into groups that accurately correspond to
different API requirements.

One approach is to group programmers by how
much experience they have, and with what languages
and tools. In this approach, an API designer might
make one set of APIs for novice programmers and an-
other for experts. For example, one set of APIs for
programmers comfortable with Visual Basic, and an-
other for programmers comfortable with C++.

A related approach is to classify programmers by
their job type [13]. “Professional” programmers are
typically software engineers whose primary job is cod-
ing and who often have formal programming educa-
tion. “End-user programmers,” on the other hand, cre-
ate code only as needed to support another primary
occupation, such as physicist or administrative assis-
tant.

A third approach is to use programmer “personas”
[8][11][2]. Personas are user archetypes often used in
design to make different groups of users more concrete
and understandable during the design process. Micro-
soft uses three different programming personas con-
structed after observing several hundred Visual Studio
users [2]. These personas attempt to capture the most
common programming work styles. While the personas
correlate roughly with different experience levels and
job types, they do not correspond directly; any pro-
grammer can potentially have any persona, which is
most commonly judged by the different approaches
they take to different programming tasks.

Consumers of resulting products are also affected
by APIs, though because they are often unaware of the
specific APIs, this can be indirect. In the case of user
interface widgets, however, the consumers might be
aware of which API is being used; for example, some
might prefer products created using Eclipse’s SWT
API rather than the JDK’s Swing API since SWT uses
OS-specific widgets that respect the OS settings like
widget style and size. Consumers’ goals include: hav-
ing products with desired features and no bugs, and
consistency, including use of standard widgets.

4. API Recommendation Sources

There are many scattered sources of API recom-
mendations in print and online.

4.1. Expert Opinions

The two most comprehensive sources are currently
the full-length books published on the subject by
Joshua Bloch from Sun Microsystems (now at Google)
[1] and Krzysztof Cwalina from Microsoft [5]. Each
book presents a collection of guidelines that have been
developed over several years and through the creation
of such widespread APIs as the Java Development Kit
and the .NET base libraries, respectively. The books
are informed not just by the authors’ experience but the
experience of their companies.

4.2. Comparative Lab Studies

525252

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

Our research group is beginning to create a new
source of recommendations based on comparative
studies and empirical data [16][6]. So far, we have
performed studies that shed greater light on the trade-
offs involved in requiring constructor arguments [16]
and using the “factory” [7] design-pattern [6].

4.3. Informal Online Discussions

With the growing popularity of blogs and forums,
one can find many, possibly less well-informed, opin-
ions on API design. Additionally, new documentation
and websites that solicit user feedback, such as Micro-
soft’s MSDNWiki, make it easier to find more voices
on API design. These less formal sources provide ven-
ues for debates of contentious API decisions, providing
more viewpoints that the API guideline books tend to
for a given decision.

4.4. Object-Oriented Systems Research

Finally, research on how to build object-oriented
systems contains many design recommendations and
tradeoffs. Many of these are relevant to the design of
APIs, though it is likely that the tradeoffs for these
different object-oriented architectures differ for APIs –
which have a focus on reuse – than for internal imple-
mentations of software – which have a focus on main-
tainability.

5. What Makes an API Good?

The API recommendation sources discussed above
refer to many different qualities that are desirable for
APIs, though none attempts to enumerate them all.
Sometimes the quality attributes are synonyms of each
other, or else one is a specific case of another. We
combine all of the mentioned attributes here, combin-
ing synonyms and forming a hierarchy of attributes.
Figure 2 includes a summary of these attributes and the
stakeholders most affected by each.

At the highest level, the two basic qualities of an
API are its usability and its power. Roughly, “usabil-
ity” refers to the qualities of an API that affect its use
when creating and debugging code, while “power”
refers to limits of the code that can be created.

Usability includes such attributes as how easy an
API is to learn; how productive programmers are using
it; how an API prevents errors; how simple it is; how
consistent; and how well it matches its users’ mental
models.

Power includes an API’s expressiveness (the sorts
of programs it can create); its extensibility (how users
can extend the API to create convenient user-specific

components); its evolvability for the API designers
who will update the API and create new versions; its
performance (in terms of speed, memory and other
resource consumption); and the robustness and bug-
free-ness of the API implementation.

The usability mostly affects API users, though the
error prevention affects the consumers of the resulting
products. The power affects mostly API users and
product consumers, though the evolvability affects API
designers.

Figure 2. Quality attributes of APIs, and the stake-

holders most affected by each quality.

5.1. API Adoption Issues

While the attributes above individually affect

whether and how users adopt an API, there are also
higher level issues that affect adoption. For example,
one phenomenon is that of “death by 1000 paper cuts”:
even if they do not have large problems, APIs can be
unusable because of many small ones, such as multiple
minor lapses in consistency or simplicity. On the other
hand, a positive phenomenon is that of a “self-
documenting” API: this is an API with enough positive
usability attributes that users can figure it out as they
go, and rarely if ever have to refer to the documenta-
tion.

Corporate policies may also affect API adoption.
For example, some of the developers in one study [16]
reported that, should they become stuck trying to use
an API, their managers would ask them to switch to

535353

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

another API or write all of the code from scratch, re-
ducing features if necessary.

6. The Space of API Design Decisions

This section maps out the space of API design deci-
sions. We start by looking where these decisions fit in
with other development decisions – such as those re-
lated to tool and documentation design. We then dis-
cuss the organization we chose for the space and then
look at specific recommendations in the space.

6.1. Development Decisions

When designing APIs, decisions not directly relat-

ing to the APIs themselves are also relevant. For ex-
ample, alternative solutions to an API usability prob-
lem might be to change the API, change the documen-
tation, provide more example code, or if possible, to
change the development tool. For most of this paper,
we focus only on the design decisions that directly
relate to the resulting APIs themselves. However, we
briefly mention the related decisions here to put these
design decisions in context and to describe the space
that we are not currently exploring (Figure 3).

Figure 3. How the API design decisions we consider
fit into the broader space of design decisions.

Tool design decisions are relatively separable from
API decisions; however, tool decisions are still rele-
vant to APIs. For example, tool features like code-
completion in the code editor can change the way API
users explore APIs.

Documentation decisions are more closely related to
APIs, with documentation being important to and
closely linked with APIs. However, these decisions are
still separable, and often made by different groups of
people.

API designers and organizations make design deci-
sions related to the process of designing APIs in addi-
tion to those about the APIs themselves. We separate
these from decisions relating directly to APIs. Simi-
larly, we separate questions that relate to deciding

which API to create – for example whether to create a
networking API instead of an XML API – from the
questions of how to design APIs for a particular topic.
Finally, we separate the implementation details that are
hidden by an API’s design.

6.2. Mapping the Design Space

To build the design space described in this section,

we first started with the API recommendations by ex-
perts [1][5]. These are arguably the most comprehen-
sive lists of API design decisions, and using these as
our basis ensures that the general shape of our space
reflects the sort of decisions that API designers care
about today. These sources cover a broad range of top-
ics, having collected all of the recommendations from
several years of API development. However, there is
no guarantee that they are complete. This is reflected
by the fact that not all of the topics in these books
overlap, though many do.

To help create a more complete design space, we
consulted the language specifications for Java and C#
and identified all of the language-level features rele-
vant to API design.

To generate a more comprehensive list of the archi-
tectural-level API decisions, we reviewed the literature
on object-oriented system design (e.g., [17]). These
sources contained many architectural patterns that
might be, but rarely are, used in API design. It is likely
that the tradeoffs of using some of these designs in
public APIs, which are used more often then they are
designed, would differ significantly from the design of
large-scale object-oriented systems, which are main-
tained more often than they are reused. It remains un-
clear whether the relative inattention given to architec-
tural decisions in API design is because the field is
new or because these types of complicated architec-
tures are fundamentally unsuited for APIs (for exam-
ple, because they may be less usable).

The API design decisions that we consider in this
paper correspond closely to the decisions that the API
recommendation sources discuss. However, some of
the recommendations from these sources pertain to
process or documentation decisions and are therefore
outside the scope of those we consider here.

6.3. Dimensions of the API Design Space

One of the principal challenges in mapping the

space of API design decisions is that of grouping and
separating different decisions. A challenging aspect of
this task is to identify which categories and dimensions
of decisions are most fundamental to API design,
rather than being a result of the language design. After

545454

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

several iterations, we chose two different categories for
our map.

The first category is the decisions relating to which
classes (and interfaces) to provide – the overall class
structure – versus decisions internal to a specific class,
such as what methods and properties to provide in that
class. The “inter-class” or “structural” decisions are
shown on top of Figure 4, and “specific class design”
or decisions internal to a particular class are shown on
the bottom.

The second category we use is that of specific pro-
gramming language features versus “architectural”
features of an API. For example, a language-level deci-
sion might be whether or not to make a class “static”,
or a method “synchronized,” while an architectural
decision might be whether or not use the “factory”
design pattern for object creation. We use the term
“architectural” here broadly to refer to any decision at
a higher level than a particular language feature. The
architectural decisions are shown on the left of Figure
4 and the language-level decisions are shown on the
right. An important distinction between these two types
of API design decisions is that there are a fixed number
of language features, but a potentially infinite number
of architectural decisions. Despite this, the majority of
API recommendations and discussions referred to spe-
cific language-level features and not architectural deci-
sions.

6.4. Specific API Design Decisions

While so far, this paper has focused on categories

and organization of API design decisions, we now ex-
amine the specific decisions and recommendations
made by API design experts. We use the topics of these
recommendations to fill in the API design decision
space outlined in Figure 1, creating the more detailed
map shown in Figure 4. Each bullet point in this map
represents a topic on which designers have published
recommendations. Multiple recommendations (and
types of recommendations) can exist for a single topic.
The most common type of recommendation is the
situations in which to use a particular pattern or lan-
guage-feature – such as when to make a method “pro-
tected.” However, some topics, in particular naming,
are relevant to all classes and methods and are not op-
tional.

The bullets in Figure 4 contain short descriptions of
API design topics. For longer descriptions, and the
particular recommendations that they correspond to,
see [1] and [5].

6.5. API Design Controversies

Certain API design decisions are more contentious

than others. We list here several topics of debate as
found on online forums. We summarize the topic of
debate but not specifics of the opposing sides, their

 Figure 4. A map of the space of API decisions, with specific recommendation topics from API
experts included as bullet-points.

555555

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

rationales, or merits.
• Java Exceptions: Whether to use checked

versus unchecked exceptions.
• Returning null versus throwing an exception.
• Returning null versus returning an empty object

(i.e., an empty string).
• Returning error codes versus throwing excep-

tions.
• Naming: using of “Hungarian” notation.
• Naming: using namespaces to disambiguate

name collisions.
• Naming: how to name an updated version of an

old class or method.
An interesting property of these points of contention

is that for most, each side has little or no data to sup-
port their beliefs, even though most of the claims made
in the debates are based on testable hypotheses. For
example, on returning null verses returning an empty
object, a hypothesis of the pro-null side is that return-
ing null will cause users of the API to be more aware
of error conditions. Another hypothesis is that this
greater awareness will lead to more aware program-
mers who create code with fewer bugs. Both of these
hypotheses can be tested. Side-by-side usability com-
parisons can help shed actual user data on the issues
that have thus far have mostly been limited to ideologi-
cal debates.

7. What Makes an API Design Decision
Important?

Because there are so many API design decisions, it
is useful to be able to prioritize them. In general, an
API design decision might be said to be “important” if
it has a large impact on at least one stakeholder. This
section identifies different dimensions in which one
API design decision might be more “important” than
another. Because there are different dimensions, there
is no “absolute” importance of an API decision and
comparing design decisions requires making trade-offs
between the different aspects of importance. Table 2
summarizes these different metrics.

Design frequency: How often this decision comes
up when designing APIs. For example, an API de-
signer might frequently have to make naming decisions
and only rarely have to decide which asynchronous
execution pattern to provide.

Design difficulty: How likely API designers are to
make the decision sub-optimally. Some decisions, such
as consistently naming setter and getter methods, have
strong existing recommendations, while others, such as
when to use exceptions, are more contentious and not
consistently applied by API designers.

Use frequency: How often API users are directly af-
fected by a decision. For example, API users might
frequently have to initialize a new object using a con-
structor, but only rarely have to write special error-
handling code.

Use difficulty: How costly a sub-optimal decision is
for an API user. For example, using the “static” modi-
fier contrary to an API user’s expectations might have
less of an effect than changing a method’s access pro-
tection.

 API Designers API Users
Frequent Designers make

this decision often
Users are often
affected by this
decision

Difficult Designers do not
always make this
decision correctly

Users are severely
affected by this
decision

Table 2. Different ways that API decisions can be
important for designers and users of APIs.

As researchers, we are especially interested in find-
ing decisions that API designers currently make sub-
optimally (which might reveal flaws in conventional
wisdom) and that affect API users either frequently or
severely.

8. Discussion

Perhaps the most important point made by our map
of the API design space is that the space is very large.
While previous literature has compiled lists of individ-
ual recommendations, the overall picture of how many
design decisions there are has not before been clear.
From a research perspective, this space is virtually
unexplored, with many tradeoffs to be measured. An
implication of this, and the size of the space, is that we
need ways of prioritizing which design decisions are
most important to different stakeholders in different
situations. Section 7 discusses ways of prioritizing
these design decisions.

9. Future Directions of API Design

The nature and importance of APIs have evolved
over the past few decades, and there are interesting
questions as to how they might continue to evolve.

As programming languages evolve, so will the spe-
cifics of the API design space. For example, the new
“generics” feature in Java 1.5 provides a new set of
decisions on how and when to use Java generics in
Java APIs. Will the overall structure of the API design
space change with each new programming language
paradigm? Will new ways of exposing modules and
services, such as natural-language based approaches,

565656

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

change the types of decisions that are made? This re-
mains to be seen. However, the space described in this
paper covers the API design decisions made in existing
languages.

Will the nature of API design become more or less
centralized? The past decade has seen a few frame-
works, such as the .NET libraries and the Java JDK,
grow in size and importance, filling a role that used to
be filled by a more dispersed collection of libraries
from multiple sources. However, in addition to this
apparent centralization, the internet and programming-
based web search engines have increased the promi-
nence of small third party code, examples and APIs.
This decentralization of information has enabled tools
such as Strathcona [9], which takes advantage of a dis-
persed collection of example code to make a single
centralized framework (Eclipse) more usable. Tools
like this provide one vision of the future in which a
large collection of users indirectly help improve the
usability of a few widely used frameworks.

10. Conclusion

This paper maps the space of API design decisions
to help better understand the burgeoning and relatively
unexplored field of API usability. By revealing how
many decisions there are, we have greater motivation
for focusing our efforts on finding the decisions that
will be most worthwhile to study, and we provide dif-
ferent metrics for deciding which these are. We hope
the definitions, design-space and metrics provided here
will be of use to future API usability researchers.

11. Acknowledgements

We wish to thank George Fairbanks, Uri Dekel and
Justin Weisz for their comments on drafts of this paper.
This research was partially supported by NSF grant
IIS-0329090 and the EUSES Consortium via NSF
grant ITR-0325273. Opinions, findings and conclu-
sions or recommendations expressed in this material
are those of the author and do not necessarily reflect
those of the NSF.

12. References

[1] Bloch, J. Effective Java Programming Language Guide,
Addison-Wesley, Boston, MA, 2001.

[2] Clarke, S. “API Usability and the Cognitive Dimensions
Framework”,
http://blogs.msdn.com/stevencl/archive/2003/10/08/57040.as
px, 2003.

[3] Clarke, S. Describing and Measuring API Usability with
the Cognitive Dimensions. Cognitive Dimensions of Nota-
tions 10th Anniversary Workshop.
http://www.cl.cam.ac.uk/afb21/CognitiveDimensions/worksh
op2005/Clarke_position_paper.pdf. 2005.

[4] Clarke, S. Measuring API Usability. Dr. Dobbs Journal,
May 2004, pp S6-S9. 2004.

[5] Cwalina, K. and Abrams, B. Framework Design Guide-
lines. Addison-Wesley, Upper Saddle River, NJ, 2005.

[6] Ellis, B., Stylos, J. and Myers, B. The Factory Pattern in
API Design: A Usability Evaluation. International Confer-
ence on Software Engineering (To appear). 2007.

[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison-Wesley, Boston, MA, 1995.

[8] Grudin, J. and Pruitt, J. Personas, Participatory Design
and Product Development: An Infrastructure for Engage-
ment. Proceedings of PDC 2002. 144-161.

[9] Holmes, R. and Murphy, G. C. Using structural context to
recommend source code examples. Proceedings of the Inter-
national Conference on Software Engineering (St. Louis,
MO, USA, May 15-21, 2005). 117-125.

[10] Ko, A., Myers, B. and Aung, H. Six Learning Barriers in
End-User Programming Systems. IEEE Symposium on Vis-
ual Languages and Human-Centric Computing (Rome, Italy,
September 26-29, 2004).199-206. 2004.

[11] Pruitt, J., and Grudin, J. Personas: practice and theory.
ACM Press, New York, NY, 2003.

[12] Rossum, G. Library or Framework.
http://www.artima.com/weblogs/viewpost.jsp?thread=15210
4. March 14, 2006.

[13] Scaffidi, C., Shaw, M., and Myers, B. Estimating the
Numbers of End Users and End User Programmers. Visual
Languages and Human-Centric Computing. 207-214, 2005.

[14] Stylos, J., Clarke, S. and Myers, B. Comparing API
Design Choices with Usability Studies: A Case Study and
Future Directions. Psychology of Programming Interest
Group. 2006.

[15] Stylos, J. and Myers, B. Mica: A Web-Search Tool for
Finding API Components and Examples. Visual Languages
and Human-Centric Computing. 195-202. 2006.

[16] Stylos, J. and Clarke, S. Usability Implications of Re-
quiring Parameters in Objects’ Constructors. International
Conference on Software Engineering (To appear). 2007.

[17] Wirfs-Brock, R. and McKean, A. Object Design: Roles
Responsibilities, and Collaborations. Addison-Wesley, Bos-
ton, MA, 2003.

575757

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 7, 2009 at 05:13 from IEEE Xplore. Restrictions apply.

