
Predicting Reuse of End-User Web Macro Scripts

Chris Scaffidi1, Chris Bogart2, Margaret Burnett2, Allen Cypher3, Brad Myers1, Mary Shaw1

1 Carnegie Mellon University
{cscaffid, bam, mary.shaw}

@cs.cmu.edu

 2 Oregon State University
 {bogart, burnett}

 @eecs.oregonstate.edu

3 IBM Research-Almaden
acypher

@us.ibm.com

Abstract

Repositories of code written by end-user program-

mers are beginning to emerge, but when a piece of
code is new or nobody has yet reused it, then current
repositories provide users with no information about
whether that code might be appropriate for reuse. Ad-
dressing this problem requires predicting reusability
based on information that exists when a script is
created. To provide such a model for web macro
scripts, we identified script traits that might plausibly
predict reuse, then used IBM CoScripter repository
logs to statistically test how well each corresponded to
reuse. We then built a machine learning model that
combines the useful traits and evaluated how well it
can predict four different types of reuse that we saw in
the repository logs. Our model was able to predict
reuse from a surprisingly small set of traits. It is simple
enough to be explained in only 6-11 rules, making it
potentially viable for integration in repository search
engines for end-user programmers.

1. Introduction

End-user programmers often solve problems by
adapting, extending or otherwise reusing existing solu-
tions. For example, an end-user programmer might copy
an existing script that automates some computation, then
modify it to automate a slightly different computation.

An essential step for this adaptive reuse is identify-
ing useful code. To be useful, the code must be rele-
vant to the programmer’s task, and it must be reusable
enough for the programmer to get some benefit from it.
In particular, even if a piece of code is exactly relevant
to the needs of the programmer, but it lacks the quali-
ties needed to support reuse—perhaps because its func-
tionality is not understandable or not reliable—then the
code is not useful.

Repositories provide mechanisms to help users share
code. Yet while today’s repositories offer some support
for identifying relevant code, they offer poor support for
identifying reusable code.

One large repository of end-user code, IBM’s Co-
Scripter wiki [12], illustrates these limitations. With the
CoScripter repository, users can publish and search for
scripts that automate browser interactions with web
sites. For example, one search feature locates scripts
based on keyword queries, and another finds scripts that
are relevant to a user-specified web site. But the reposi-
tory provides users with little reusability-associated in-
formation, relying mainly on download counters and rat-
ings that previous users gave to scripts. For example, a
skilled user might publish an excellent script that auto-
mates a common, complicated task (such as searching
several sites to find the cheapest airfare), with meticu-
lously-commented code – and yet with today’s reposito-
ry features, this script would remain buried amid thou-
sands of other scripts until it is “discovered”, down-
loaded, and rated.

We would like to address this lack of reusability in-
formation in order to help users find hidden gems in
the repository. For example, we would like the reposi-
tory to sort search results based not only on keyword-
based relevance but also on some reliable measure of
probable reusability. Moreover, because a script might
be reusable in some ways but not in others (e.g.: reada-
ble but buggy), we would like the repository to provide
succinct explanations of its recommendations, so users
can judge recommendations. Finally, we would like to
accomplish this when the script is new and undisco-
vered, well before ratings and downloads occur.

As a first step, in this paper we explore how accurate-
ly we can predict whether a newly created web script
will be reused. In essence we ask, “What kind of reuse
predictions can we make at the time the code is
created?”

Toward this end, Section 2 introduces web macro
scripting and considers the applicability of existing
models for evaluating reusability. Section 3 identifies
script traits that each empirically correspond to reuse
of scripts. Sections 4 and 5 present and evaluate a ma-
chine learning model that combines script traits to pre-
dict reuse. Section 6 summarizes our findings.

2009 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4244-4876-0/09/$25.00 ©2009 IEEE
93

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

2. Related work

Web macro scripting is a form of end-user pro-
gramming that “mashes up” information from web
sites. IBM’s CoScripter tool (formerly called Koala)
records users’ actions in Firefox as re-playable scripts
[12]. For example, a user might record a script that sub-
mits a form at www.aa.com to look up a flight’s status.
The author can edit the script, possibly giving it a title,
modifying recorded instructions, changing literal strings
to variable references (read at runtime from a per-user
configuration file called the Personal Database), and can
insert “mixed-initiative” instructions that cause CoScrip-
ter to pause at runtime while the user makes decisions
and performs actions manually.

All scripts are stored on a wiki so other users can run,
edit, or copy-and-customize them. With scripts created
by over 6000 users, the CoScripter repository is one of
the largest repositories of end-user code on the web.

The CoScripter repository’s user interface provides
some information about the reusability of each script:
the number of users who have downloaded it, the aver-
age rating that it has received from users, the number
of users who have “favorited” it, and reviews/com-
ments that users typed about the script. Figure 1 illu-
strates how the repository displays “favoriting” informa-
tion; other screens show other information.

These pieces of information are popularity measures
requiring that someone previously tried out a script.
Relying on popularity as an indicator of reusability
presents a “catch-22”: somebody must try to reuse a
script before it can be found to be reusable. This limits
the usefulness of popularity as a “predictor” of reusa-
bility—in fact, only 68 of the 3754 public scripts cur-
rently in the repository have any ratings at all.

Other end-user programming repositories share the
same circularity. For example, the Matlab File
Exchange repository shows download counters,
ratings, and reviews [7]. The Forms/3 spread-
sheet repository helps users evaluate code by let-
ting them interactively try out spreadsheets—
again, users cannot see how reusable code is un-
til after they have tried to reuse it [19].

Even some repositories for professional pro-
grammers have this circularity. For instance, re-
positories based on collaborative filtering issue
recommendations of the form, “People like you
found the following components to be helpful”
[13], which requires that some people try code
before it can be recommended to other people.

Some repository features for professional
programmers do not require prior uses of code
in order to evaluate reusability. However, for the
most part, these features depend on information
that is unavailable in the end-user programming

context. For example, many repositories for professional
programmers recommend components based on call
graphs, inheritance hierarchies, method signatures, and
similar information based on types (e.g.: [8]). Others use
call graphs and code complexity metrics to predict
whether code contains defects [3][15] or use topological
structural dependencies to identify sections of code that
are related to one another [16]. Still others rely on do-
cumentation in order to find or recommend reusable
code [5]. Such approaches are appropriate in repositories
for Java-like code but less so for CoScripter scripts,
which do not contain loops, call each other, inherit from
each other, have static types, or carry any significant do-
cumentation aside from comments and script titles.

There is one approach that might apply to end-user
scripting: predicting that code will have high reusability
if the author previously created code that was reused, in-
dicating that the author has high expertise [18]. This ap-
proach’s information requirements are not very restric-
tive, as a component’s reusability can be predicted even
if it has never been reused, as long as someone previous-
ly tried to reuse one of the programmer’s other compo-
nents. In subsequent sections, we include information of
this kind in our model of web script reuse.

Research shows that in addition to repository fea-
tures, other factors promote code reuse by professional
programmers. These factors include budgeting time for
careful design of code for reuse, long-term backing from
management, and systematic consideration of how to
support reuse during each phase of development
processes [10]. The CoScripter repository offers an op-
portunity to empirically study what factors affect reuse
in the end-user programming context, which often is op-
portunistic (with little up-front design for reuse), inde-
pendent (with minimal centralized management), and in-
formal (with no clearly specified development process).

Figure 1: Searching with the word “directions” yields six
scripts, two of which were “favorited” by one user each

94

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

3. Script traits that correspond to reuse

To identify candidate script traits corresponding to
reuse, we began with the four key steps involved in
reuse: finding, understanding, modifying, and compos-
ing code [1]. In our context, scripts rarely call one
another, so composability is unlikely to play a major
role, and while high modifiability is desirable, scripts are
probably more reusable if they need no modification.

Thus, predicting reuse at script creation-time requires
information that reflects the findability, understandabili-
ty, and need to modify scripts prior to reuse. Based on
these criteria, we identified promising script traits and
tested how well each empirically corresponded to reuse.

3.1 Candidate script traits

We identified 35 candidate traits in 8 categories (Table 1):

• Mass appeal: Scripts might be more likely to be
found if they reflect the interests of many users, as
reflected by website URLs and other tokens in
scripts. Promotion of a script as a tutorial (on the
homepage) might also improve findability.

• Language: Scripts might be more understandable if
their data and target web sites are written in the
community’s primary language (English).

• Annotations: Code comments and proper script
titles might increase understandability.

• Flexibility: Parameterization and use of mixed-
initiative instructions might increase the flexibility
of scripts, reducing the need for modification.

• Length: Longer code requires more effort for under-
standing and tends to have more defects [14] that
might require fixing. (Conversely, longer scripts con-
tain more functionality, which may increase reuse.)

• Author information: Early adopters, IBM employees,
online forum participants, and users who already
created reused scripts might tend to produce bug-free
scripts that can be reused with minimal modification.

• Advanced syntax: The use of advanced keywords
might suggest that script authors were experts who
could produce bug-free, reusable scripts.

• Preconditions: In a prior study, reuse seemed lower
for scripts with preconditions such as requiring Fire-
fox to be at some URL prior to execution, requiring
users to log into a site prior to execution, or requiring
many sites to be online during execution [4]. Precon-
ditions might limit flexibility and impede reuse.

3.2 Data sources and measures of reuse

We extracted six months of logs from the CoScrip-
ter repository, which is primarily used by non-IBM

employees. (IBM employees mainly use a small com-
pany-internal repository instead.) In addition, we re-
trieved the initial source code from version control for
each public script in that period (yielding 937 scripts).
We considered four forms of reuse:

• Self-exec: Did the script author ever execute the script
between 1 day and 3 months after creating it? (We
omitted executions within 1 day, as such executions
could relate to creating and testing a script, rather than
reuse per se.) {17% of all scripts met this criterion}

• Other-exec: Did any other user execute the script
within 3 months of its creation? {49%}

• Other-edit: Did any other user edit the script within
3 months of its creation? {5%}

• Other-copy: Did any other user copy the script to
create a new script within 3 months of the original
script’s creation? {4%}

We chose binary measures instead of absolute counts
for three reasons. First, by default, the wiki sorts scripts
by the number of times that each was run. This seems to
cause an information cascade [2]: oft-run scripts tend to
be reused very much more in later weeks. Second,
scripts can recursively call themselves (albeit without
parameters). Third, some users also apparently set up
non-CoScripter programs to run scripts periodically
(e.g.: once per day). These three factors cloud the mean-
ing of absolute counts. When computing reuse meas-
ures, we considered a script to be reused if a periodic
program ran it. However, we examined the logs to find
automated spiders that executed (or even copied) many
scripts in a short time, and we filtered out those events.

Our 3 month post-creation observation interval was a
compromise. Using a short interval risks incorrectly rul-
ing a script as un-reused if it was only reused after the
interval. Selecting a long interval reduces the number of
scripts whose observation interval fell in the 6 months of
logs. Selecting half of the log period as the observation
interval resulted in few cases (20) of erroneously ruling
a script as un-reused yet yielded over 900 scripts.

3.3 Testing script traits

For each trait, we divided scripts into two groups
based on if each script had an above-average or below-
average level of the trait (for Boolean-valued traits,
treating “true” as 1 and “false” as 0). For each group’s
scripts, we computed the four reuse measures. Finally,
for each combination of trait and reuse measure, we
performed a one-tailed z-test of proportions. In cases
where the correspondence between script trait and
reuse measure was actually opposite what we expected,
we also report whether a one-tailed z-test would have
been significant in the opposite direction.

95

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

We report statistical significance at several levels,
including a level based on a Bonferroni correction that
compensates for the large number of tests (140). Some
traits are not statistically independent, nor are the
measures of reuse. Thus, the correction establishes a
lower-bound on the statistical significance of results.

In terms of robustness, we noted that many traits are
count integers that could be normalized by script
length. We tested these traits twice, once with the traits
in Table 1, and again with length-normalized traits. In
virtually every case, results were identical.

Table 1: Each row shows one script trait tested for correspondence to four kinds of reuse. Traits are sorted in the order dis-
cussed in Section 3.1. A + (-) hypothesis Hyp indicates that we expected higher (lower) levels of reuse to correspond to the trait
(e.g.: for keywrd_sim, we expected if a script had many tokens in common with other scripts, then it is more likely to be reused).
Non-empty empirical results indicate statistically significant differences in reuse, with + (-) indicating that higher (lower) reuse
corresponds to higher levels of the trait. One + or - indicates one-tail significance at p<0.05, ++ or -- indicate p<0.01, and
+++ or --- indicate p<0.00036 (which is the cutoff corresponding to a Bonferroni correction of p<0.05). The shaded cells were
particularly useful in our predictive model, as explained later in Section 5.2.
Trait Empirical Results
Catg Name Meaning Hyp Self

Exec
Other
Exec

Other
Edit

Other
Copy

M
as

s a
pp

ea
l

keywrd_sim real: normalized measure of how many scripts contain the same
tokens as this script + +

urldom_sim real: normalized measure of how many other scripts contain the
same URL domains as this script + +++ ++ +

ip_urls int: # of URLs in script that use numeric IP addresses -
inet_urls int: # of hosts referenced by script that seem to be on intranets - -
tutorial bool: true if script was created for tutorial list + + +++ +++

La
n-

gu
ag

e

us_urls int: # of US URLs in script + + +
nonus_urls int: # of non-English words in literals + # of URLs outside USA - - - --
no_urls bool: true if nonus_urls and us_urls are each 0 - ---
nonroman pct: % of non-whitespace chars in title or content that are not roman - - -

An
no

ta
tio

ns
 comments int: # of comment lines + + ++ +++ +++

test_title bool: true if script title contains the word "test" - --
copy_title bool: true if script title contains the phrase "Copy of" - -- -
titled bool: true if script has a title + +++ ++
punct_title bool: true if script title contains punctuation other than periods - -

Fl
ex

. params int: # of parameters (configuration variables) read by script + ++ + +++ +++
literals int: # of literal strings hardcoded into script + +++
mixed_init int: # of mixed-initiative “you manually do this” instructions + + + ++

Le
ng

th
 code_lines int: total # of non-comment lines in script - ++

total_lines int: total # of lines (code_lines + comments) - +
distinct_lines int: total # of distinct non-comment lines in script - +++ ++

Au
th

or

author_idx int: id of the user who authored the script (lower for early adopters) - +++ --- -- ---
script_idx int: id of the script (tends to be lower for early adopters) - --- --- ---
ibm bool: true if script's author was at an IBM IP address + ++ +++ +++
forum_posts int: # of posts by the script author on the CoScripter forum + ++ ++
loauth_name bool: true if script author’s name starts with punctuation or 'A' + -
prev_created int: # of scripts by same author that were created prior to this script + +++ ---
prev_selfexec int: # of scripts by same author that were executed by author prior

to this script's creation + +++ --- --

prev_otherexec int: # of scripts by same author that were executed by other users
prior to this script's creation + --- +++ - -

prev_otheredit int: # of scripts by same author that were edited by other users prior
to this script's creation + --- +++ - -

prev_othercopy int: # of scripts by same author that were copied by other users
prior to this script's creation + --- +++ - -

Ad
v

Sy
n ordinals bool: true if script uses ordinals (eg: “third”) to reference form fields + +++

ctl_click bool: true if script uses "control-click" or "control-select" keywords + + +++

Pr
e-

co
nd

. assume_url bool: true if first line of script is not a "go to URL" instruction - ---
assume_login bool: true if script contains "log in", "logged in", "login", or "cookie" -
distinct_hosts int: # of distinct hostnames in script’s URLs - +++

96

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

3.4 Results and discussion

Most traits corresponded to reuse as hoped. Different
reuse measures corresponded to different traits, suggest-
ing that different kinds of reuse occur for different rea-
sons. For example, scripts created by apparent experts
were more likely to be run by other users, but less likely
to be edited—perhaps such scripts worked properly and
rarely needed tweaks. Thus, rather than combining script
traits into one model that attempts to accurately predict all
possible forms of reuse, we need a generalized model that
can be instantiated for each measure of reuse.

Length traits corresponded to higher likelihood of
reuse by the script author, though this was not a com-
plete surprise. Empirically, the increased functionality in
longer scripts seemed to outweigh any risk of increased
defects. This reveals the importance of code’s useful-
ness, in addition to findability, understandability, and
modifiability (or lack of need for modification).

These statistical tests show that it is possible to find
traits that correspond to reuse and are automatically
computable when a script is created. While we do not
claim to have found a definitive set of all traits that might
correspond to reuse, we do have an appropriate set of
traits for use in constructing a predictive model of reuse.

4. Prediction of reuse

In order to predict reuse, we developed a model that
evaluates how well scripts satisfy arithmetic rules that
we call “predictors”. We present a machine learning al-
gorithm that selects rules that predict the reuse measure
used during training. For example, one predictor might
be that the number of comments comments ≥ 3, another
might be that the number of referenced intranet sites
inet_urls ≤ 1, and a third might be titled ≥ 1. Ideally,
predictors are true for every reused script and false for
every un-reused script.

After the first algorithm selects a set of predictors, a
second algorithm uses this set to predict if some other
script will be reused. It counts how many predictors the
script matches and predicts that the script will be reused
if it matches at least a certain number of predictors. Con-
tinuing the example above, requiring at least 1 predictor
match would predict that a script will be reused only if
comments ≥ 3 or inet_urls ≤ 1 or titled ≥ 1.

After describing the algorithms for training and us-
ing this model, we evaluate it by comparing its quality
to that of several machine learning models commonly
used on other software engineering problems.

4.1 Training and using the predictive model

Our algorithm trains a predictive model (Figure 2).
Its inputs are a training set of scripts R’, real-valued traits

C defined for each script, a measure of reuse m that tells
if each script is reused, and a tunable parameter α de-
scribed below. The output of our algorithm is a set of
predictors Q.

In the first of three stages, the algorithm determines if
each script trait ci corresponds to higher or lower reuse.
To do this, the algorithm places scripts into two groups

(Rm and mR), depending on if each script was reused
according to m. It compares the proportion of reused
scripts with an above-average value of ci to the propor-
tion of un-reused scripts with an above-average value of
ci. If higher levels of ci correspond to lower reuse, the al-
gorithm multiplies the trait by -1, so higher levels of ad-
justed traits ai correspond to higher levels of reuse.

Second, for each adjusted trait ai, the algorithm
finds the threshold τ i that best distinguishes between
reused and un-reused scripts. The selected value of τ i
maximizes the difference between the proportion of
reused scripts that have an above-threshold level of ad-
justed trait versus the proportion of un-reused scripts
that have an above-threshold level of adjusted trait.

Finally, the algorithm creates a predictor for each
adjusted trait that is relatively effective at distinguish-
ing between reused and un-reused scripts. As noted
above, each predictor should ideally match every
reused script but not match any un-reused scripts. Of
course, achieving this ideal is not feasible in practice.
Instead, a predictor is created if the proportion of
reused scripts that have an above-τ i amount of the ad-
justed trait is at least a certain amount α higher than
the proportion of un-reused scripts that have an above-
τ i amount of the adjusted trait.

This minimal difference α between proportions in
the reused and un-reused groups is a tunable parameter.
Lowering α allows more adjusted traits to qualify as
predictors, which increases the amount of information
captured by the model but might let poor-quality pre-
dictors enter the model. This is a typical over-training
risk in machine learning, so we must evaluate the em-
pirical impact of changing α.

After training, predicting if a new script will be
reused requires testing each predictor (Figure 3). If the
script matches at least a certain number of predictors β,
the model predicts that the script will be reused.

The minimal number of predictors β is tunable. Lo-
wering β increases the number of scripts predicted to
be reused, decreasing the chance that useful scripts slip
by. However, lowering β risks erroneously predicting
that un-reused scripts will be reused. As with α, this
leads to a trade-off typical of machine learning, but in
the case of β, the trade-off is directly between false
negatives and false positives. As with α, we must eva-
luate the empirical impact of changing β.

97

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

Figure 3. Predicting if a script will be reused

TrainModel
 Inputs: Training scripts R, RepositoryR' ⊆
 where R is a set of scripts
 Script traits)}[0, R : i{c C ∞→=

 Measure of reuse 1} {0, R : m →
 Minimal proportion difference 1) (0, ∈α
 Outputs: Predictors } 1} {0, R : iq { Q →=

Let the reused script set 1} m(s) : R' {s Rm =∈=

Let the un-reused script set 0} m(s) :R' {s mR =∈=
Let S} c(s) : S {s) c, p(S, ττ ≥∈=
Initialize Q to an empty set of predictors

For each Cci ∈ ,

 Let ∑
∈

=
R's

R'(s)iciμ

 Let adjusted trait
),), µµ i ci ,Rmp(i ci ,Rmp(if (s)ci (s)ia ≥=

 or otherwise (s)c- i (s)ia =
 Compute threshold (through exhaustive search)
),), τττ ai ,Rmp(- ai ,Rmp(argmax i =

 If αττ i ai ,Rmp(- i ai ,Rmp(≥),),
 then add the following predictor to Q…
 otherwise 0 and i ai if 1 (s)iq τ≥=)(s
Return Q

Figure 2. Selecting predictors during training

EvalScript
 Inputs: One script R Repositorys ∈
 Minimal predictor matches]Q (0, ∈β
 Predictors 1}} {0, R : iq { Q →=

 Outputs: Prediction of reuse 1} {0, ∈

Let nmatches = 0
For each Qiq ∈
 If 1 (s)iq = then nmatches = nmatches + 1
If nmatches ≥ β then return 1 else return 0

5. Evaluation

Ten-fold cross-validation is the usual method used
when training and evaluating a model on the same data
set. We used this approach to compare the quality of
our model with the quality of model variants, as well

as the quality of other machine learning models, all of
which attempt to predict reuse solely based on infor-
mation available when a script is created.

5.1 Quality measures

Our approach of training a model on traits to predict
reuse resembles the approach used in software engi-
neering defect prediction, which trains a model on
module traits to predict the presence of defects [3]. The
primary quality measures used in that literature are
False Positive (FP) and True Positive (TP) rates:

TP = # reused scripts correctly predicted as
 # reused scripts

reused

FP = # un-reused scripts erroneously predicted as
 # un-reused scripts

reused

TP is the same as the recall measure used in informa-
tion retrieval, indicating the fraction of interesting items
(reused scripts) correctly identified. FP indicates the
fraction of uninteresting items (un-reused scripts) erro-
neously identified; it is similar in purpose to the preci-
sion measure (fraction of identified items that are cor-
rectly identified as interesting) used in information re-
trieval to quantify prediction specificity, but FP is often
preferred over precision in software engineering, since
FP is more robust than precision to small changes in the
experimental data [14].

5.2 Evaluating model quality

For each reuse measure, we performed 10-fold cross-
validation at varying levels of α and β (Figure 4).

Figure 4. Model quality at various

parameter values

The resulting level of prediction quality was compa-

rable to that of other research that applies machine
learning to software engineering problems. For exam-
ple, TP ≤ FP + 0.3 for many defect prediction models

98

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

[15]. At this level of quality, such algorithms are ade-
quate for focusing programmers’ attention on particular
pieces of code, and the programmers can then evaluate
for themselves whether the code actually is worthy of
further attention. As our algorithm achieved similar
quality, we are optimistic that it will prove useful for fo-
cusing end-user programmers’ attention on scripts that
might be worthy of further attention for reuse.

To determine if our simple algorithm for combining
predictors yielded quality as good as more complex al-
gorithms, we considered alternative comparison mod-
els: logistic regression, Naïve Bayes, and J48 decision
trees. We selected these because they have proven use-
ful in prior research on defect prediction [15]. Howev-
er, deeply-nested models like those generated from
Naïve Bayes and J48 have been found in experiments
to be unintuitive to users [9][17], so we also compared
our algorithm to one that generates fairly explainable
models. Specifically, we compared to PART, a
“straightforward and elegant” algorithm [6] that pro-
duces relatively flat and easy-to-interpret rule sets,
much like our own algorithm. We used the Weka ma-
chine learning toolkit implementation of the algorithms
[20], which exposes few tunable parameters for mod-
els, so we recorded the quality measures using model
designers’ suggested (default) parameters (Table 2).

Table 2. Quality measures of comparison models
 Logistic

Regress.
Naïve
Bayes

J48 PART

 FP TP FP TP FP TP FP TP
Self-
exec .04 .17 .70 .97 .07 .30 .35 .11
Other-
exec .13 .76 .03 .56 .14 .78 .78 .21
Other-
edit .01 .11 .71 .84 .01 .13 .16 .02
Other-
copy .01 .19 .17 .55 .01 .19 .17 .02

Comparing these results to the TP scores of our

model at corresponding values of FP (Figure 4), we
found negligible differences in quality between our
model and these alternative models (or, in a few cases,
our algorithm produced somewhat better results).

Moreover, models generated by our algorithm were
simpler than even those produced by the most explain-
able comparison algorithm, PART. Specifically, PART
generated rule sets of between 18 and 55 rules. In con-
trast, our algorithm generally produced between 6 and
11 rules (as discussed below). Thus, our model not on-
ly achieves high quality, but it does so using a relative-
ly small set of rules, which should enhance the explai-
nability of recommendations to users.

To evaluate whether the quality of our model’s pre-
dictions were purely due to the binary nature of our
reuse measures, we evaluated how the number of reuses
related to script traits. In particular, we set
α = 0.07 so that almost all scripts matched at least one
predictor (TP ≈ 0.98) and plotted the average number of
reuses as a function of predictor matches (nmatches in
Figure 3). We found that the number of execution, edit,
and copy actions by users other than the script’s author
generally rose sharply with the number of predictors
matched (Figure 5), although there was an odd drop in
execution by other users at 10 or more matches. Reuse
by the script author showed no identifiable trend when
compared to number of matches. These results generally
affirm that the traits really do contain information about
reusability and that our results are not simply due to the
binary nature of our measures of reuse.

Figure 5. Absolute level of reuse rose sharply

with the number of matches

To evaluate which traits were most useful for predic-

tions, we shaded cells in Table 1 where script traits
were active at α = 0.16 (FP = 0.4). At this level, 17
script traits were active, including 6 to 11 for each
measure of reuse. The most useful were in the Mass
appeal, Length, and Author categories, with minor con-
tributions from the Language, Annotation, and Flex-
ibility categories. Other traits generated active predic-
tors at lower levels of α. Most of these traits had shown
strong statistical correspondence to reuse. This match
is not perfect, however, as the z-score used in the sta-
tistical tests depends not only on differences in propor-
tions but also the absolute sizes of proportions. This is
common in statistics: differences might be statistically
significant yet not meaningful. This disparity is most
likely to occur when almost all scripts or almost no
scripts have a particular trait (e.g.: tutorial,
forum_posts, ibm, ctl_click, etc), which limits these
traits’ usefulness for making predictions.

99

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

6. Discussion and future work

 In this paper, we have presented a model that can ac-
curately predict whether a web script will be reused by
the script’s author or other end-user programmers.

Perhaps the biggest (pleasant) surprise produced by
this work is that the model predicted reuse so well based
on such a small amount of information. That is, it is not
surprising that each script characteristic individually was
related to reuse—rather, the surprise is that the synthesis
of these characteristics together provides such accurate
predictions of reuse.

Since our target audience is end-user programmers,
it is particularly encouraging that we did not need to
use an incomprehensible, labyrinthine machine learn-
ing model to predict reuse. Our model’s predictions
can be succinctly explained by listing just a handful of
unnested rules and indicating which were satisfied or
violated.

Possible applications of the model include a range of
new features for script repositories, thereby helping to
guide users to code that they can reuse. For example, we
could sort search results based on a weighted combina-
tion of the relevance and reusability, with field testing to
evaluate different approaches for weighting these two
factors. However, just because a script is reused does not
necessarily mean that the reuse was a success. Conse-
quently, as we develop new repository features based on
our model, we will need to evaluate how well guiding
users to likely-to-be-reused code actually helps them to
complete their programming goals. For example, we
could run our model on IBM’s private (internal) reposi-
tory to identify likely-to-be-reused scripts, then inter-
view workers who have already used those scripts, in
order to understand the results of reusing those scripts.

In the longer term, we would like to help end-user
programmers reuse other kinds of code beyond web
scripts. This will require generalizing the model that we
have developed and finding ways to apply it to spread-
sheets, JavaScript or other kinds of end-user program-
ming. We will also analyze whether the model can accu-
rately predict whether code will be repeatedly or often
reused. We look forward to these and other opportunities
to help end users find code that is not only relevant to
their programming problems, but also reusable enough
to provide practical benefits.

7. Acknowledgements

This work was supported by the EUSES Consortium
via NSF ITR-0325273, by NSF grants CCF-0438929
and CCF-0613823, and by an IBM International Faculty
Award. Opinions, findings, and recommendations are
the authors’ and not necessarily those of the sponsors.

8. References
[1] T. Biggerstaff and C. Richter. Reusability Framework,

Assessment, and Directions, IEEE Software (4), 2, March
1987, 41-49.

[2] S. Bikhchandani, D. Hirshleifer, and I. Welch. A Theory
of Fads, Fashion, Custom, and Cultural Change as Infor-
mational Cascades, J. Political Economy (100), No. 5,
1992, 992-1026

[3] G. Boetticher, et al. 4th Intl. Workshop on Predictor Mod-
els in Software Engineering. Companion Proc. 30th Intl.
Conf. Software Eng., 2008, 1061-1062.

[4] C. Bogart, et al. End-User Programming in the Wild: A
Field Study of CoScripter Scripts, 2008 IEEE Symp. Vis-
ual Lang. and Human-Centric Computing, 2008.

[5] D. Čubranić and G. Murphy. Hipikat: Recommending
Pertinent Software Development Artifacts. 25th Intl. Conf.
Software Eng., 2003, 408-418.

[6] E. Frank and I. Witten. Generating Accurate Rule Sets
Without Global Optimization, 15th Intl. Conf. on Machine
Learning, 1998, 144-151.

[7] N. Gulley. Improving the Quality of Contributed Soft-
ware and the MATLAB File Exchange, 2nd Workshop on
End User Software Eng., 2006, 8-9.

[8] G. Gui and P. Scott. Coupling and Cohesion Measures for
Evaluation of Component Reusability, 2006 Intl. Work-
shop on Mining Software Repositories, 2006, 18-21.

[9] U. Johansson, L. Niklasson, and R. Konig. Accuracy vs.
Comprehensibility in Data Mining Models, 7th IEEE Intl.
Conf. on Information Fusion, 2004, 295-300.

[10] R. Leach. Software Reuse: Methods, Models, and Costs,
McGraw-Hill, 1997.

[11] G. Leshed, et al. CoScripter: Automating & Sharing
How-To Knowledge in the Enterprise, 26th SIGCHI Conf.
on Human Factors in Computing Sys., 2008, 1719-1728

[12] G. Little, et al. Koala: Capture, Share, Automate, Perso-
nalize Business Processes on the Web. 25th SIGCHI Conf.
Human Factors in Computing Sys., 2007, 943-946.

[13] F. McCarey and M. Cinneide. Rascal: A Recommender
Agent for Agile Reuse. Artif. Intell. Rev. (24), No. 3-4,
2005, 253-276.

[14] T. Menzies, et al. Problems with Precision: A Response to
Comments on 'Data Mining Static Code Attributes to
Learn Defect Predictors', Trans. Software Eng. (33), No.
9, 2007, 637-640.

[15] R. Moser, W. Pedrycz, and G. Succi. A Comparative
Analysis of the Efficiency of Change Metrics and Static
Code Attributes for Defect Prediction, 30th Intl. Conf.
Software Eng., 2008, 181-190.

[16] M. Robillard. Automatic Generation of Suggestions for
Program Investigation. 10th European Software Eng.
Conf., 2005, 11-20.

[17] S. Stumpf, et al. Toward Harnessing User Feedback for
Machine Learning, 12th Intl. Conf. on Intelligent User Inter-
faces, 2007, 82-91.

[18] G. Suryanarayana, et al. Architectural Support for Trust
Models in Decentralized Applications, 28th Intl. Conf.
Software Eng., 2006, 52-61.

[19] R. Walpole and M. Burnett. Supporting Reuse of Evolv-
ing Visual Code, 1997 Symp. Visual Lang., 1997, 68-75.

[20] I. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, 2005.

100

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on November 12, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

