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Abstract 
 
Repositories of code written by end-user program-

mers are beginning to emerge, but when a piece of 
code is new or nobody has yet reused it, then current 
repositories provide users with no information about 
whether that code might be appropriate for reuse. Ad-
dressing this problem requires predicting reusability 
based on information that exists when a script is 
created. To provide such a model for web macro 
scripts, we identified script traits that might plausibly 
predict reuse, then used IBM CoScripter repository 
logs to statistically test how well each corresponded to 
reuse. We then built a machine learning model that 
combines the useful traits and evaluated how well it 
can predict four different types of reuse that we saw in 
the repository logs. Our model was able to predict 
reuse from a surprisingly small set of traits. It is simple 
enough to be explained in only 6-11 rules, making it 
potentially viable for integration in repository search 
engines for end-user programmers.  

1. Introduction 

End-user programmers often solve problems by 
adapting, extending or otherwise reusing existing solu-
tions. For example, an end-user programmer might copy 
an existing script that automates some computation, then 
modify it to automate a slightly different computation. 

An essential step for this adaptive reuse is identify-
ing useful code. To be useful, the code must be rele-
vant to the programmer’s task, and it must be reusable 
enough for the programmer to get some benefit from it. 
In particular, even if a piece of code is exactly relevant 
to the needs of the programmer, but it lacks the quali-
ties needed to support reuse—perhaps because its func-
tionality is not understandable or not reliable—then the 
code is not useful.  

Repositories provide mechanisms to help users share 
code. Yet while today’s repositories offer some support 
for identifying relevant code, they offer poor support for 
identifying reusable code. 

One large repository of end-user code, IBM’s Co-
Scripter wiki [12], illustrates these limitations. With the 
CoScripter repository, users can publish and search for 
scripts that automate browser interactions with web 
sites. For example, one search feature locates scripts 
based on keyword queries, and another finds scripts that 
are relevant to a user-specified web site. But the reposi-
tory provides users with little reusability-associated in-
formation, relying mainly on download counters and rat-
ings that previous users gave to scripts. For example, a 
skilled user might publish an excellent script that auto-
mates a common, complicated task (such as searching 
several sites to find the cheapest airfare), with meticu-
lously-commented code – and yet with today’s reposito-
ry features, this script would remain buried amid thou-
sands of other scripts until it is “discovered”, down-
loaded, and rated. 

We would like to address this lack of reusability in-
formation in order to help users find hidden gems in 
the repository. For example, we would like the reposi-
tory to sort search results based not only on keyword-
based relevance but also on some reliable measure of 
probable reusability. Moreover, because a script might 
be reusable in some ways but not in others (e.g.: reada-
ble but buggy), we would like the repository to provide 
succinct explanations of its recommendations, so users 
can judge recommendations. Finally, we would like to 
accomplish this when the script is new and undisco-
vered, well before ratings and downloads occur.  

As a first step, in this paper we explore how accurate-
ly we can predict whether a newly created web script 
will be reused. In essence we ask, “What kind of reuse 
predictions can we make at the time the code is 
created?”  

Toward this end, Section 2 introduces web macro 
scripting and considers the applicability of existing 
models for evaluating reusability. Section 3 identifies 
script traits that each empirically correspond to reuse 
of scripts. Sections 4 and 5 present and evaluate a ma-
chine learning model that combines script traits to pre-
dict reuse. Section 6 summarizes our findings. 
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2. Related work 

Web macro scripting is a form of end-user pro-
gramming that “mashes up” information from web 
sites. IBM’s CoScripter tool (formerly called Koala) 
records users’ actions in Firefox as re-playable scripts 
[12]. For example, a user might record a script that sub-
mits a form at www.aa.com to look up a flight’s status. 
The author can edit the script, possibly giving it a title, 
modifying recorded instructions, changing literal strings 
to variable references (read at runtime from a per-user 
configuration file called the Personal Database), and can 
insert “mixed-initiative” instructions that cause CoScrip-
ter to pause at runtime while the user makes decisions 
and performs actions manually.  

All scripts are stored on a wiki so other users can run, 
edit, or copy-and-customize them. With scripts created 
by over 6000 users, the CoScripter repository is one of 
the largest repositories of end-user code on the web. 

The CoScripter repository’s user interface provides 
some information about the reusability of each script: 
the number of users who have downloaded it, the aver-
age rating that it has received from users, the number 
of users who have “favorited” it, and reviews/com-
ments that users typed about the script. Figure 1 illu-
strates how the repository displays “favoriting” informa-
tion; other screens show other information.  

These pieces of information are popularity measures 
requiring that someone previously tried out a script. 
Relying on popularity as an indicator of reusability 
presents a “catch-22”: somebody must try to reuse a 
script before it can be found to be reusable. This limits 
the usefulness of popularity as a “predictor” of reusa-
bility—in fact, only 68 of the 3754 public scripts cur-
rently in the repository have any ratings at all.  

Other end-user programming repositories share the 
same circularity. For example, the Matlab File 
Exchange repository shows download counters, 
ratings, and reviews [7]. The Forms/3 spread-
sheet repository helps users evaluate code by let-
ting them interactively try out spreadsheets—
again, users cannot see how reusable code is un-
til after they have tried to reuse it [19]. 

Even some repositories for professional pro-
grammers have this circularity. For instance, re-
positories based on collaborative filtering issue 
recommendations of the form, “People like you 
found the following components to be helpful” 
[13], which requires that some people try code 
before it can be recommended to other people. 

Some repository features for professional 
programmers do not require prior uses of code 
in order to evaluate reusability. However, for the 
most part, these features depend on information 
that is unavailable in the end-user programming 

context. For example, many repositories for professional 
programmers recommend components based on call 
graphs, inheritance hierarchies, method signatures, and 
similar information based on types (e.g.: [8]). Others use 
call graphs and code complexity metrics to predict 
whether code contains defects [3][15] or use topological 
structural dependencies to identify sections of code that 
are related to one another [16]. Still others rely on do-
cumentation in order to find or recommend reusable 
code [5]. Such approaches are appropriate in repositories 
for Java-like code but less so for CoScripter scripts, 
which do not contain loops, call each other, inherit from 
each other, have static types, or carry any significant do-
cumentation aside from comments and script titles. 

There is one approach that might apply to end-user 
scripting: predicting that code will have high reusability 
if the author previously created code that was reused, in-
dicating that the author has high expertise [18]. This ap-
proach’s information requirements are not very restric-
tive, as a component’s reusability can be predicted even 
if it has never been reused, as long as someone previous-
ly tried to reuse one of the programmer’s other compo-
nents. In subsequent sections, we include information of 
this kind in our model of web script reuse. 

Research shows that in addition to repository fea-
tures, other factors promote code reuse by professional 
programmers. These factors include budgeting time for 
careful design of code for reuse, long-term backing from 
management, and systematic consideration of how to 
support reuse during each phase of development 
processes [10]. The CoScripter repository offers an op-
portunity to empirically study what factors affect reuse 
in the end-user programming context, which often is op-
portunistic (with little up-front design for reuse), inde-
pendent (with minimal centralized management), and in-
formal (with no clearly specified development process). 

 
Figure 1: Searching with the word “directions” yields six 
scripts, two of which were “favorited” by one user each  
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3. Script traits that correspond to reuse 

To identify candidate script traits corresponding to 
reuse, we began with the four key steps involved in 
reuse: finding, understanding, modifying, and compos-
ing code [1]. In our context, scripts rarely call one 
another, so composability is unlikely to play a major 
role, and while high modifiability is desirable, scripts are 
probably more reusable if they need no modification. 

Thus, predicting reuse at script creation-time requires 
information that reflects the findability, understandabili-
ty, and need to modify scripts prior to reuse. Based on 
these criteria, we identified promising script traits and 
tested how well each empirically corresponded to reuse. 

3.1 Candidate script traits 

We identified 35 candidate traits in 8 categories (Table 1): 

• Mass appeal: Scripts might be more likely to be 
found if they reflect the interests of many users, as 
reflected by website URLs and other tokens in 
scripts. Promotion of a script as a tutorial (on the 
homepage) might also improve findability. 

• Language: Scripts might be more understandable if 
their data and target web sites are written in the 
community’s primary language (English). 

• Annotations: Code comments and proper script 
titles might increase understandability. 

• Flexibility: Parameterization and use of mixed-
initiative instructions might increase the flexibility 
of scripts, reducing the need for modification. 

• Length: Longer code requires more effort for under-
standing and tends to have more defects [14] that 
might require fixing. (Conversely, longer scripts con-
tain more functionality, which may increase reuse.) 

• Author information: Early adopters, IBM employees, 
online forum participants, and users who already 
created reused scripts might tend to produce bug-free 
scripts that can be reused with minimal modification. 

• Advanced syntax: The use of advanced keywords 
might suggest that script authors were experts who 
could produce bug-free, reusable scripts. 

• Preconditions: In a prior study, reuse seemed lower 
for scripts with preconditions such as requiring Fire-
fox to be at some URL prior to execution, requiring 
users to log into a site prior to execution, or requiring 
many sites to be online during execution [4]. Precon-
ditions might limit flexibility and impede reuse. 

3.2 Data sources and measures of reuse 

We extracted six months of logs from the CoScrip-
ter repository, which is primarily used by non-IBM 

employees. (IBM employees mainly use a small com-
pany-internal repository instead.) In addition, we re-
trieved the initial source code from version control for 
each public script in that period (yielding 937 scripts). 
We considered four forms of reuse: 

• Self-exec: Did the script author ever execute the script 
between 1 day and 3 months after creating it? (We 
omitted executions within 1 day, as such executions 
could relate to creating and testing a script, rather than 
reuse per se.) {17% of all scripts met this criterion} 

• Other-exec: Did any other user execute the script 
within 3 months of its creation? {49%} 

• Other-edit: Did any other user edit the script within 
3 months of its creation? {5%} 

• Other-copy: Did any other user copy the script to 
create a new script within 3 months of the original 
script’s creation? {4%} 

We chose binary measures instead of absolute counts 
for three reasons. First, by default, the wiki sorts scripts 
by the number of times that each was run. This seems to 
cause an information cascade [2]: oft-run scripts tend to 
be reused very much more in later weeks. Second, 
scripts can recursively call themselves (albeit without 
parameters). Third, some users also apparently set up 
non-CoScripter programs to run scripts periodically 
(e.g.: once per day). These three factors cloud the mean-
ing of absolute counts. When computing reuse meas-
ures, we considered a script to be reused if a periodic 
program ran it. However, we examined the logs to find 
automated spiders that executed (or even copied) many 
scripts in a short time, and we filtered out those events. 

Our 3 month post-creation observation interval was a 
compromise. Using a short interval risks incorrectly rul-
ing a script as un-reused if it was only reused after the 
interval. Selecting a long interval reduces the number of 
scripts whose observation interval fell in the 6 months of 
logs. Selecting half of the log period as the observation 
interval resulted in few cases (20) of erroneously ruling 
a script as un-reused yet yielded over 900 scripts. 

3.3 Testing script traits 

For each trait, we divided scripts into two groups 
based on if each script had an above-average or below-
average level of the trait (for Boolean-valued traits, 
treating “true” as 1 and “false” as 0). For each group’s 
scripts, we computed the four reuse measures. Finally, 
for each combination of trait and reuse measure, we 
performed a one-tailed z-test of proportions. In cases 
where the correspondence between script trait and 
reuse measure was actually opposite what we expected, 
we also report whether a one-tailed z-test would have 
been significant in the opposite direction. 
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We report statistical significance at several levels, 
including a level based on a Bonferroni correction that 
compensates for the large number of tests (140). Some 
traits are not statistically independent, nor are the 
measures of reuse. Thus, the correction establishes a 
lower-bound on the statistical significance of results.  

In terms of robustness, we noted that many traits are 
count integers that could be normalized by script 
length. We tested these traits twice, once with the traits 
in Table 1, and again with length-normalized traits. In 
virtually every case, results were identical. 

Table 1: Each row shows one script trait tested for correspondence to four kinds of reuse. Traits are sorted in the order dis-
cussed in Section 3.1. A + (-) hypothesis Hyp indicates that we expected higher (lower) levels of reuse to correspond to the trait 
(e.g.: for keywrd_sim, we expected if a script had many tokens in common with other scripts, then it is more likely to be reused). 
Non-empty empirical results indicate statistically significant differences in reuse, with + (-) indicating that higher (lower) reuse 
corresponds to higher levels of the trait. One + or - indicates one-tail significance at p<0.05, ++ or -- indicate p<0.01, and 
+++ or --- indicate p<0.00036 (which is the cutoff corresponding to a Bonferroni correction of p<0.05). The shaded cells were 
particularly useful in our predictive model, as explained later in Section 5.2. 
Trait  Empirical Results 
Catg Name Meaning Hyp Self 

Exec 
Other 
Exec 

Other 
Edit 

Other 
Copy 

M
as

s a
pp

ea
l 

keywrd_sim real: normalized measure of how many scripts contain the same   
tokens as this script + +    

urldom_sim real: normalized measure of how many other scripts contain the 
same URL domains as this script +  +++ ++ + 

ip_urls int: # of URLs in script that use numeric IP addresses -     
inet_urls int: # of hosts referenced by script that seem to be on intranets -  -   
tutorial bool: true if script was created for tutorial list +  + +++ +++ 

La
n-

gu
ag

e 

us_urls int: # of US URLs in script + + +   
nonus_urls int: # of non-English words in literals + # of URLs outside USA - -  - -- 
no_urls bool: true if nonus_urls and us_urls are each 0 -  ---   
nonroman pct: % of non-whitespace chars in title or content that are not roman -  - -  

An
no

ta
tio

ns
 comments int: # of comment lines + + ++ +++ +++ 

test_title bool: true if script title contains the word "test" - --    
copy_title bool: true if script title contains the phrase "Copy of" - -- -   
titled bool: true if script has a title + +++ ++   
punct_title bool: true if script title contains punctuation other than periods - -    

Fl
ex

. params int: # of parameters (configuration variables) read by script + ++ + +++ +++ 
literals int: # of literal strings hardcoded into script + +++    
mixed_init int: # of mixed-initiative “you manually do this” instructions +  + + ++ 

Le
ng

th
 code_lines int: total # of non-comment lines in script - ++    

total_lines int: total # of lines (code_lines + comments) - +    
distinct_lines int: total # of distinct non-comment lines in script - +++   ++ 

Au
th

or
 

author_idx int: id of the user who authored the script (lower for early adopters) - +++ --- -- --- 
script_idx int: id of the script (tends to be lower for early adopters) -  --- --- --- 
ibm bool: true if script's author was at an IBM IP address + ++  +++ +++ 
forum_posts int: # of posts by the script author on the CoScripter forum + ++  ++  
loauth_name  bool: true if script author’s name starts with punctuation or 'A' +  -   
prev_created int: # of scripts by same author that were created prior to this script + +++ ---   
prev_selfexec int: # of scripts by same author that were executed by author prior 

to this script's creation + +++ --- --  

prev_otherexec int: # of scripts by same author that were executed by other users 
prior to this script's creation + --- +++ - - 

prev_otheredit int: # of scripts by same author that were edited by other users prior 
to this script's creation + --- +++ - - 

prev_othercopy int: # of scripts by same author that were copied by other users 
prior to this script's creation + --- +++ - - 

Ad
v 

Sy
n ordinals bool: true if script uses ordinals (eg: “third”) to reference form fields + +++    

ctl_click bool: true if script uses "control-click" or "control-select" keywords +  +  +++ 

Pr
e-

co
nd

. assume_url bool: true if first line of script is not a "go to URL" instruction -  ---   
assume_login bool: true if script contains "log in", "logged in", "login", or "cookie" -     
distinct_hosts int: # of distinct hostnames in script’s URLs -  +++   
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3.4 Results and discussion 

Most traits corresponded to reuse as hoped. Different 
reuse measures corresponded to different traits, suggest-
ing that different kinds of reuse occur for different rea-
sons. For example, scripts created by apparent experts 
were more likely to be run by other users, but less likely 
to be edited—perhaps such scripts worked properly and 
rarely needed tweaks. Thus, rather than combining script 
traits into one model that attempts to accurately predict all 
possible forms of reuse, we need a generalized model that 
can be instantiated for each measure of reuse. 

Length traits corresponded to higher likelihood of 
reuse by the script author, though this was not a com-
plete surprise. Empirically, the increased functionality in 
longer scripts seemed to outweigh any risk of increased 
defects. This reveals the importance of code’s useful-
ness, in addition to findability, understandability, and 
modifiability (or lack of need for modification).  

These statistical tests show that it is possible to find 
traits that correspond to reuse and are automatically 
computable when a script is created. While we do not 
claim to have found a definitive set of all traits that might 
correspond to reuse, we do have an appropriate set of 
traits for use in constructing a predictive model of reuse. 

4. Prediction of reuse  

In order to predict reuse, we developed a model that 
evaluates how well scripts satisfy arithmetic rules that 
we call “predictors”. We present a machine learning al-
gorithm that selects rules that predict the reuse measure 
used during training. For example, one predictor might 
be that the number of comments comments ≥ 3, another 
might be that the number of referenced intranet sites   
inet_urls ≤ 1, and a third might be titled ≥ 1. Ideally, 
predictors are true for every reused script and false for 
every un-reused script. 

After the first algorithm selects a set of predictors, a 
second algorithm uses this set to predict if some other 
script will be reused. It counts how many predictors the 
script matches and predicts that the script will be reused 
if it matches at least a certain number of predictors. Con-
tinuing the example above, requiring at least 1 predictor 
match would predict that a script will be reused only if 
comments ≥ 3 or inet_urls ≤ 1 or titled ≥ 1. 

After describing the algorithms for training and us-
ing this model, we evaluate it by comparing its quality 
to that of several machine learning models commonly 
used on other software engineering problems. 

4.1 Training and using the predictive model 

Our algorithm trains a predictive model (Figure 2). 
Its inputs are a training set of scripts R’, real-valued traits 

C defined for each script, a measure of reuse m that tells 
if each script is reused, and a tunable parameter α de-
scribed below. The output of our algorithm is a set of 
predictors Q. 

In the first of three stages, the algorithm determines if 
each script trait ci corresponds to higher or lower reuse. 
To do this, the algorithm places scripts into two groups 

( Rm and mR ), depending on if each script was reused 
according to m. It compares the proportion of reused 
scripts with an above-average value of ci to the propor-
tion of un-reused scripts with an above-average value of 
ci. If higher levels of ci correspond to lower reuse, the al-
gorithm multiplies the trait by -1, so higher levels of ad-
justed traits ai correspond to higher levels of reuse. 

Second, for each adjusted trait ai, the algorithm 
finds the threshold τ i that best distinguishes between 
reused and un-reused scripts. The selected value of τ i 
maximizes the difference between the proportion of 
reused scripts that have an above-threshold level of ad-
justed trait versus the proportion of un-reused scripts 
that have an above-threshold level of adjusted trait. 

Finally, the algorithm creates a predictor for each 
adjusted trait that is relatively effective at distinguish-
ing between reused and un-reused scripts. As noted 
above, each predictor should ideally match every 
reused script but not match any un-reused scripts. Of 
course, achieving this ideal is not feasible in practice. 
Instead, a predictor is created if the proportion of 
reused scripts that have an above-τ i amount of the ad-
justed trait is at least a certain amount α higher than 
the proportion of un-reused scripts that have an above-
τ i amount of the adjusted trait. 

This minimal difference α between proportions in 
the reused and un-reused groups is a tunable parameter. 
Lowering α allows more adjusted traits to qualify as 
predictors, which increases the amount of information 
captured by the model but might let poor-quality pre-
dictors enter the model. This is a typical over-training 
risk in machine learning, so we must evaluate the em-
pirical impact of changing α. 

After training, predicting if a new script will be 
reused requires testing each predictor (Figure 3). If the 
script matches at least a certain number of predictors β, 
the model predicts that the script will be reused. 

The minimal number of predictors β is tunable. Lo-
wering β increases the number of scripts predicted to 
be reused, decreasing the chance that useful scripts slip 
by. However, lowering β risks erroneously predicting 
that un-reused scripts will be reused. As with α, this 
leads to a trade-off typical of machine learning, but in 
the case of β, the trade-off is directly between false 
negatives and false positives. As with α, we must eva-
luate the empirical impact of changing β.  
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Figure 3. Predicting if a script will be reused   
 

TrainModel 
 Inputs: Training scripts  R, RepositoryR' ⊆  
     where R is a set of scripts  
    Script traits )}[0,  R : i{c  C ∞→=  

    Measure of reuse 1} {0,  R : m →  
    Minimal proportion difference 1) (0,  ∈α  
 Outputs: Predictors } 1} {0,  R : iq {  Q →=  

Let the reused script set 1}  m(s) : R'  {s Rm =∈=  

Let the un-reused script set 0}  m(s) :R'  {s  mR =∈=  
Let S}  c(s) : S  {s  ) c, p(S, ττ ≥∈=  
Initialize Q to an empty set of predictors 

For each Cci ∈ , 

 Let ∑
∈

=
R's

R'(s)iciμ  

 Let adjusted trait 
  ),), µµ i ci ,Rmp(    i ci ,Rmp(  if  (s)ci  (s)ia ≥=  

   or otherwise  (s)c- i   (s)ia =  
 Compute threshold (through exhaustive search) 
  ),), τττ  ai ,Rmp(  -   ai ,Rmp(  argmax  i =  

 If αττ   i ai ,Rmp(  -  i ai ,Rmp( ≥),),   
  then add the following predictor to Q… 
  otherwise 0 and  i    ai  if  1  (s)iq τ≥= )(s  
Return Q 

Figure 2. Selecting predictors during training 
 

EvalScript 
 Inputs: One script  R Repositorys ∈  
    Minimal predictor matches ]Q (0,  ∈β  
    Predictors 1}} {0,  R : iq {  Q →=  

 Outputs: Prediction of reuse 1} {0, ∈  
 

Let nmatches = 0 
For each Qiq ∈  
 If  1  (s)iq = then nmatches = nmatches + 1 
If nmatches ≥ β then return 1 else return 0 

 

5. Evaluation 

Ten-fold cross-validation is the usual method used 
when training and evaluating a model on the same data 
set. We used this approach to compare the quality of 
our model with the quality of model variants, as well 

as the quality of other machine learning models, all of 
which attempt to predict reuse solely based on infor-
mation available when a script is created. 

5.1 Quality measures 

Our approach of training a model on traits to predict 
reuse resembles the approach used in software engi-
neering defect prediction, which trains a model on 
module traits to predict the presence of defects [3]. The 
primary quality measures used in that literature are 
False Positive (FP) and True Positive (TP) rates: 

TP =      # reused scripts correctly predicted as 
                               # reused scripts 

reused 

FP = # un-reused scripts erroneously predicted as 
                             # un-reused scripts 

reused 

TP is the same as the recall measure used in informa-
tion retrieval, indicating the fraction of interesting items 
(reused scripts) correctly identified. FP indicates the 
fraction of uninteresting items (un-reused scripts) erro-
neously identified; it is similar in purpose to the preci-
sion measure (fraction of identified items that are cor-
rectly identified as interesting) used in information re-
trieval to quantify prediction specificity, but FP is often 
preferred over precision in software engineering, since 
FP is more robust than precision to small changes in the 
experimental data [14]. 

5.2 Evaluating model quality 

For each reuse measure, we performed 10-fold cross-
validation at varying levels of α and β (Figure 4). 

 
Figure 4. Model quality at various  

parameter values 
 
The resulting level of prediction quality was compa-

rable to that of other research that applies machine 
learning to software engineering problems. For exam-
ple, TP ≤ FP + 0.3 for many defect prediction models 
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[15]. At this level of quality, such algorithms are ade-
quate for focusing programmers’ attention on particular 
pieces of code, and the programmers can then evaluate 
for themselves whether the code actually is worthy of 
further attention. As our algorithm achieved similar 
quality, we are optimistic that it will prove useful for fo-
cusing end-user programmers’ attention on scripts that 
might be worthy of further attention for reuse. 

To determine if our simple algorithm for combining 
predictors yielded quality as good as more complex al-
gorithms, we considered alternative comparison mod-
els: logistic regression, Naïve Bayes, and J48 decision 
trees. We selected these because they have proven use-
ful in prior research on defect prediction [15]. Howev-
er, deeply-nested models like those generated from 
Naïve Bayes and J48 have been found in experiments 
to be unintuitive to users [9][17], so we also compared 
our algorithm to one that generates fairly explainable 
models. Specifically, we compared to PART, a 
“straightforward and elegant” algorithm [6] that pro-
duces relatively flat and easy-to-interpret rule sets, 
much like our own algorithm. We used the Weka ma-
chine learning toolkit implementation of the algorithms 
[20], which exposes few tunable parameters for mod-
els, so we recorded the quality measures using model 
designers’ suggested (default) parameters (Table 2). 

 

Table 2. Quality measures of comparison models 
 Logistic 

Regress. 
Naïve 
Bayes 

J48 PART 

 FP TP FP TP FP TP FP TP 
Self- 
exec .04 .17 .70 .97 .07 .30 .35 .11 
Other- 
exec .13 .76 .03 .56 .14 .78 .78 .21 
Other- 
edit .01 .11 .71 .84 .01 .13 .16 .02 
Other- 
copy .01 .19 .17 .55 .01 .19 .17 .02 

 
Comparing these results to the TP scores of our 

model at corresponding values of FP (Figure 4), we 
found negligible differences in quality between our 
model and these alternative models (or, in a few cases, 
our algorithm produced somewhat better results).  

Moreover, models generated by our algorithm were 
simpler than even those produced by the most explain-
able comparison algorithm, PART. Specifically, PART 
generated rule sets of between 18 and 55 rules. In con-
trast, our algorithm generally produced between 6 and 
11 rules (as discussed below). Thus, our model not on-
ly achieves high quality, but it does so using a relative-
ly small set of rules, which should enhance the explai-
nability of recommendations to users. 

To evaluate whether the quality of our model’s pre-
dictions were purely due to the binary nature of our 
reuse measures, we evaluated how the number of reuses 
related to script traits. In particular, we set  
α = 0.07 so that almost all scripts matched at least one 
predictor (TP ≈ 0.98) and plotted the average number of 
reuses as a function of predictor matches (nmatches in 
Figure 3). We found that the number of execution, edit, 
and copy actions by users other than the script’s author 
generally rose sharply with the number of predictors 
matched (Figure 5), although there was an odd drop in 
execution by other users at 10 or more matches. Reuse 
by the script author showed no identifiable trend when 
compared to number of matches. These results generally 
affirm that the traits really do contain information about 
reusability and that our results are not simply due to the 
binary nature of our measures of reuse. 

 

 
Figure 5. Absolute level of reuse rose sharply 

with the number of matches 
 
To evaluate which traits were most useful for predic-

tions, we shaded cells in Table 1 where script traits 
were active at α = 0.16 (FP = 0.4). At this level, 17 
script traits were active, including 6 to 11 for each 
measure of reuse. The most useful were in the Mass 
appeal, Length, and Author categories, with minor con-
tributions from the Language, Annotation, and Flex-
ibility categories. Other traits generated active predic-
tors at lower levels of α. Most of these traits had shown 
strong statistical correspondence to reuse. This match 
is not perfect, however, as the z-score used in the sta-
tistical tests depends not only on differences in propor-
tions but also the absolute sizes of proportions. This is 
common in statistics: differences might be statistically 
significant yet not meaningful. This disparity is most 
likely to occur when almost all scripts or almost no 
scripts have a particular trait (e.g.: tutorial,                
forum_posts, ibm, ctl_click, etc), which limits these 
traits’ usefulness for making predictions.  
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6. Discussion and future work 

 In this paper, we have presented a model that can ac-
curately predict whether a web script will be reused by 
the script’s author or other end-user programmers.  

Perhaps the biggest (pleasant) surprise produced by 
this work is that the model predicted reuse so well based 
on such a small amount of information. That is, it is not 
surprising that each script characteristic individually was 
related to reuse—rather, the surprise is that the synthesis 
of these characteristics together provides such accurate 
predictions of reuse.  

Since our target audience is end-user programmers, 
it is particularly encouraging that we did not need to 
use an incomprehensible, labyrinthine machine learn-
ing model to predict reuse. Our model’s predictions 
can be succinctly explained by listing just a handful of 
unnested rules and indicating which were satisfied or 
violated. 

Possible applications of the model include a range of 
new features for script repositories, thereby helping to 
guide users to code that they can reuse. For example, we 
could sort search results based on a weighted combina-
tion of the relevance and reusability, with field testing to 
evaluate different approaches for weighting these two 
factors. However, just because a script is reused does not 
necessarily mean that the reuse was a success. Conse-
quently, as we develop new repository features based on 
our model, we will need to evaluate how well guiding 
users to likely-to-be-reused code actually helps them to 
complete their programming goals. For example, we 
could run our model on IBM’s private (internal) reposi-
tory to identify likely-to-be-reused scripts, then inter-
view workers who have already used those scripts, in 
order to understand the results of reusing those scripts. 

In the longer term, we would like to help end-user 
programmers reuse other kinds of code beyond web 
scripts. This will require generalizing the model that we 
have developed and finding ways to apply it to spread-
sheets, JavaScript or other kinds of end-user program-
ming. We will also analyze whether the model can accu-
rately predict whether code will be repeatedly or often 
reused. We look forward to these and other opportunities 
to help end users find code that is not only relevant to 
their programming problems, but also reusable enough 
to provide practical benefits. 
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