Dimensions Characterizing Programming Feature Usage by Information Workers

Christopher Scaffidi, Andrew Ko, Brad Myers, Mary Shaw
School of Computer Science, Carnegie Mellon University
{cescaffid, ajko, bam, mary.shaw}@cs.cmu.edu

Abstract

Information workers such as administrative staff,
consultants, and their managers constitute one of the
largest groups of end users, yet little research about
their usage of programming features is available to
guide development of end user programming tools. In
this paper, we describe our survey of over 800 infor-
mation workers and our analysis of their feature usage
in applications such as spreadsheets, browsers, and
databases. Our factor analysis reveals three clusters of
features—macro features, linked structure features,
and imperative features—such that information work-
ers with an inclination to use a feature in each cluster
also were inclined to use other features in that cluster,
even though each cluster spans several tools. We dis-
cuss the implications for research aimed at providing
end user programming tools for information workers.

1. Introduction

Many applications include features enabling cus-
tomization and extension by end user programmers.
Such features facilitate creating macros and dynamic
charts in spreadsheets, scripts and forms in web pages,
and stored procedures and tables in databases.

Researchers have performed surveys, ethno-
graphies, and other studies of certain populations’ use
of programming features. These studies are essential to
successful improvement on those features. For exam-
ple, Rosson et al. ran a survey of over 300 web devel-
opers to document their work practices and to identify
opportunities for better tool support [3]. Likewise,
Rode et al. conducted an ethnography to characterize
abstraction creation by people using domestic appli-
ances, informing design of automation features [2],
and Pane et al. performed studies to identify features
needed in a programming system for children [1].

In this paper, we present a survey of programming
feature usage by another group of end users: informa-
tion workers, such as managerial and administrative
staff, whose jobs involve managing data with spread-
sheets, browsers, and other common applications.

0-7695-2586-5/06 $20.00 © 2006 IEEE

59

These workers are one of the largest end user groups
[5], yet basic questions remain about their use of pro-
gramming features: What kinds of features are most
heavily used by this group? What feature usage pat-
terns span across the applications that are used?

To address these questions, we surveyed over 800
Information Week magazine readers concerning their
use of 23 programming features within five applica-
tions. We focused on features related to abstraction
creation, since prior research showed that professional
programmers rely on abstraction to help enhance the
quality of their work (as discussed in detail in [4]).

Usage rates of features varied widely. For instance,
only 16% reported use of server-side “include” files
(which contain reusable HTML chunks like web sites’
headers), whereas 89% reported use of simple spread-
sheet functions (like “sum”) that link cells.

To characterize feature usage patterns across applica-
tions, we applied factor analysis, which revealed three
feature clusters. These clusters dealt with macros, textual
imperative code, and linked structures (such as database
tables linked by keys). For each cluster, users who were
inclined to use one feature also were inclined to use that
cluster’s other features. For example, users who were in-
clined to use one imperative feature such as JavaScript
functions were generally inclined to use other imperative
features such as stored procedures. Overall, the features
used by the most people were linked structure features.

2. Data collection method

We collaborated with Information Week to develop,
test, and run a web-based survey containing 96 ques-
tions. To recruit respondents, Information Week pub-
lished a link to the survey on their web site and emailed
125,000 randomly selected subscribers who had previ-
ously indicated their willingness to do surveys. The
email mentioned our goals to learn about feature usage
and to improve software flexibility, and it noted that we
would enter respondents into a drawing for one prize of
$500 and five of $100 each. Within two months, 831
people completed the survey (which Information Week
reports is a typical response rate for their surveys).

In the first set of questions, we asked respondents
whether they or their subordinates had used five
classes of applications in the past three months: data-
bases, web page editors, web server scripting environ-
ments, spreadsheets, and word processors / slide pres-
entation editors. For each application used, we asked
about usage of that application’s features during those
three months; for example, if databases were used,
then we asked whether tables were created. In total, we
asked about 23 features, as shown in Table 1. For each
feature, respondents could answer “Yes,” ‘“No,” or
“Don’t Know” (or skip the question).

Next, to assess respondents’ knowledge about pro-
gramming terms, we asked if they were familiar with
certain terms: variables, subroutines, conditionals, and
loops. For each term, we provided a definition and, if
appropriate, a list of synonyms. If respondents were
familiar with the term, then we asked if they had per-
sonally created the corresponding construct in the past
year. For the “subroutines” term, we asked two usage
questions to distinguish between creation of subrou-
tines and usage of subroutines created by other people.

Finally, we asked about respondents’ company and
individual background. See [4] for the full text of the
survey, in which we also asked about usage of the
web, suggestions for software improvement, and sev-
eral other issues not relevant to this paper.

3. Characteristics of the sample

Information Week advertises itself as “exclusively for
information managers... involved in computer, commu-
nications and corporate planning,” so unsurprisingly,
76% of respondents managed at least one subordinate.
Only 10% worked for IT vendor firms; instead, respon-
dents generally came from business services, education,
government, manufacturing, and finance/insurance. Al-
though 99% had attended college, only 22% majored in
computer science or computer-centric fields; the others
mostly majored in business, sciences, or engineering.
Only 23% were IT or networking staff; the remainder
were consultants, managers, or administrative staff.

Yet respondents generally displayed certain charac-
teristics of programmers. As shown in Table 1, they
used applications’ programming features quite heavily.
Moreover, 79% were familiar with all four program-
ming terms (variables, subroutines, conditionals, and
loops); in the past year, 35% actually created all four
of the corresponding constructs in their own code.
Thus, our sample’s information workers could gener-
ally be characterized as skilled end user programmers.

4. Analysis method

To evaluate feature usage, we applied factor analy-
sis, a technique that summarizes correlations among
observed variables. A “factor loading” is a vector

Table 1. Most (but not all) features were used by many people; the top ten usage rates are bolded.

Application

Application Usage (% of Feature Description

In addition, factor loadings exceeding an arbitrary cutoff of 0.15 are also bolded.

Feature
Usage (% of

Factor Loadings (see Section 5)
Macro LinkStruct

Imperative

Creating document templates 73.3 -0.59 -0.02 -0.17
Slide Editors and 9.1 Making inter-document hyperlinks 53.7 -0.63 -0.04 0.07
Word Processors ' Recording desktop editor macros 33.3 0.86 0.03 0.07
Creating/editing desktop editor macros 30.8 0.87 0.07 0.09
Using functions (“sum”) linking cells 89.3 -0.21 0.37 -0.10
Creating charts in spreadsheets 80.1 -0.40 0.27 0.14
Spreadsheets 93.1 Creating inter-spreadsheet references 66.2 omitted omitted omitted
‘ Creating spreadsheet templates 50.4 -0.24 0.19 0.12
Recording spreadsheet macros 42.3 0.60 -0.35 -0.13
Creating/editing spreadsheet macros 38.6 0.68 -0.18 0.02
Referencing records by key 74.0 -0.02 0.68 -0.06
Databases 793 Creat@ng tables . .7 -0:01 0..54 -0:21
' Creating database views 68.1 omitted omitted omitted
Creating stored procedures 495 0.04 -0.72 0.22
Creating hyperlinks 65.2 -0.05 0.06 -0.62
Creating web forms 52.2 0.15 0.18 -0.50
Web Pages 68.6 Creating web page behavior scripts 42.9 omitted omitted omitted
Creating JavaScript functions 34.3 -0.04 -0.09 0.50
Using JavaScript “new” function 23.3 -0.03 -0.07 0.64
Creating web server script functions 40.9 omitted omitted omitted
Web Server 523 Referencing PHP/Perl libraries 27.9 -0.06 0.41 -0.06
Script Hosts ' Using PHP/Perl “new” function 254 0.07 0.01 0.42
Using Web server-side static includes 16.3 -0.09 0.25 -0.26

0-7695-2586-5/06 $20.00 © 2006 IEEE 60

whose cells each reflect the correlation of that factor
with an observed variable; if a factor has large values
in two cells, then the corresponding two data variables
highly correlate with the factor (and with each other).
For example, an ethnography might record the amount
of time that programmers spend in sixty activities,
ranging from typing code to talking on the phone; fac-
tor analysis might reveal a “collaborativeness” factor
showing that people who often talk on the phone also
tend to perform other collaboration activities, such as
writing emails and attending meetings.

To prepare for factor analysis, our data cleaning in-
volved the following stages.

Although most questions, including feature usage
questions, were multiple-choice, some demographic
items such as college major and industry required a
coding system. In general, these were fairly unambigu-
ous to code (and none of these variables were statisti-
cally significantly related to our results), so we did not
implement inter-rater checks.

The 15 respondents with more than 1000 subordi-
nates reported extremely high feature usage, so after
plotting feature usage versus subordinate count, we
opted to discard their data, which left 816 data records.

We flagged questions that were skipped and “Don’t
Know” answers as missing values. Since factor analysis
models relationships among observed data, it cannot be
applied directly to unobserved/missing values. Our sur-
vey only asked about features for applications that were
actually used, so our factor analysis used only the 168
records from respondents who reported usage of all five
applications and who did not skip any feature usage
questions. To verify that the resulting factor structure
generalized to all 816 respondents with 1000 or fewer
subordinates, we used the factors’ structure to construct
a traditional scale for each factor, and we then checked
each scale’s Cronbach alpha (discussed below).

We were able to cross-check some answers. For ex-
ample, we repeated a question about creating web
forms (once in the context of web page editors, and
once in the context of web server scripting). If the user
skipped the question once but also answered once, then
we used the available answer rather than flagging the
question as a missing value; in contrast, if the user an-
swered twice but in a contradicting way, then we
flagged the item as missing. These cross-checks modi-
fied answers for less than a dozen users.

We recognized that not every instance of feature
usage was equally “significant.” For example, 66% of
respondents reported creating hyperlinks, whereas only
16% reported creating static server-side includes. To
standardize features’ contributions to the factor analy-
sis, we scaled each feature usage variable to a mean of
0.0 and standard deviation of 1.0, thereby ensuring that

0-7695-2586-5/06 $20.00 © 2006 IEEE

61

a “Yes” for a commonly used feature was coded as a
value less than 1.0, while a “Yes” for an uncommonly
used feature was coded as more than 1.0.

Moreover, feature usage co-occurs a great deal
within each application: for example, creating
JavaScript highly correlates with creating web forms.
This “bundling” has nothing to do with abstraction, but
rather with the application. To remove this effect, for
each feature, we subtracted the average feature usage
by that respondent for that application, thus revealing
inclinations to use features rather than applications.

Finally, it is essential to avoid trying to extract more
factors than the data support. Each factor loading is an
eigenvector of the data’s covariance matrix, and one
commonly practiced threshold accepts only factors that
have eigenvalues exceeding 1.0. In addition, variables
lacking significant communality with the other vari-
ables should be omitted and the analysis redone, as in-
cluding outliers may lead to spurious factors.

Following these guidelines, we performed an initial
factor analysis with all 23 feature usage items. Three
eigenvalues exceeded 1.0, so we reran the analysis
with a constraint allowing only three factors. Checking
items’ communality revealed that four were very low.
(Specifically, each had a total squared factor loading
under 0.1, whereas that of the other 19 items exceeded
0.1 and averaged over 0.4.) So as flagged in Table 1
with the label “omitted,” we eliminated the following
items from further analysis: creating database views,
inter-spreadsheet references, web server script func-
tions, and web page behavior scripts. Finally, we ran
our factor analysis with the remaining 19 items.

5. Results

The analysis yielded three factors that each corre-
lated strongly with usage of different features. (Factor
loadings appear in the right column of Table 1; in addi-
tion, loadings that exceeded an arbitrary cutoff of 0.15
appear in parentheses below.)

The first factor correlated most positively with re-
cording (0.60) and textual editing (0.68) of spreadsheet
macros as well as recording (0.86) and textual editing
(0.87) of macros in other desktop applications. This
“Macros” factor indicated that people with an inclina-
tion to use one macro feature also were inclined to use
other macro features. In addition, this factor negatively
correlated with creating document templates and hy-
perlinks in word processors and slideshow software.

The second factor correlated most positively with
creating database tables (0.54) and linking them via
keys (0.68). It correlated positively with creating web
forms (0.18) and “static includes” shared by web pages
(0.25). Finally, it correlated positively with creating
spreadsheet charts (0.27) and linking spreadsheet cells

using simple functions like “sum” (0.37). Because the
factor correlated so strongly with this cluster of fea-
tures related to creating and linking structures, we
termed it the “LinkStruct” factor. It negatively corre-
lated with creating database stored procedures.

The third factor, which we called the “Imperative”
factor, correlated with using Perl and PHP’s “new”
command in web server scripts (0.42), using
JavaScript’s “new” command (0.64), creating
JavaScript functions (0.50), and creating stored data-
bases procedure functions (0.22). It correlated nega-
tively with creating web forms and hyperlinks.

Template and hyperlink features fell outside all
three clusters yet were heavily used. This may suggest
the existence of undiscovered yet important clusters.

To verify these three factors’ robustness, we reran
the factor analysis using various subsets of the data,
such as only including respondents with no subordi-
nates or using alternate factor extraction techniques. In
each case, the same qualitative structure appeared.

Finally, because the factor analysis could only use
the 168 respondents with no missing feature usage an-
swers, we verified that the factors’ qualitative structure
generalized to our entire sample by using that structure
to construct a traditional scale for each of the factors.
We then checked each scale’s Cronbach alpha. For ex-
ample, the first factor positively correlated with four
items and negatively correlated with two items, so our
first scale equaled the sum of these four items minus
the other two. The Cronbach alphas for these scales
were 0.82, 0.62, and 0.64, respectively, indicating that
the patterns revealed by the factor analysis applied
fairly consistently throughout our entire data set.

6. Discussion and implications

As we design programming tools, we want their fea-
tures to be useful to many people, but if users differ
widely from one another in their feature usage, then we
will be hard pressed to create broadly useful features.
Fortunately, our survey’s primary implication is that
skilled information workers do not differ so much in
their feature usage as to discourage creating new pro-
gramming features intended for large numbers of users.

Moreover, our results offer guidance on what new
programming features might be used by the most peo-
ple. Specifically, the most popular features generally
are “linked structure” features (particularly those that
represent data in 2D grids), highlighting the value of
providing such features to this population.

Almost all respondents were familiar with impera-
tive programming terms such as “loop,” so we suspect
that the low usage of imperative features generally re-
sulted from lack of desire, need, or ability to apply
these features, rather than from unfamiliarity with the

0-7695-2586-5/06 $20.00 © 2006 IEEE

62

features. This suggests that researchers providing im-
perative programming features should carefully evalu-
ate those features’ utility and not just their visibility.

We close by raising the central question prompted
by our results: Why do these clusters exist? One possi-
ble hypothesis is that perhaps common work processes
require using certain features together; in that case,
contextual inquiry of the users’ work may offer clues
for how to make programming features more useful.
Alternatively, once people learn one cluster’s features,
perhaps they are less willing to learn features of other
clusters, even when those other features are highly
relevant to a work task; in that case, studying how to
motivate programming may be more necessary than
studying users’ work context. In short, determining
why these clusters exist is essential to helping informa-
tion workers benefit from end user programming.

7. Acknowledgements

We thank Rusty Weston and Lisa Smith at Informa-
tion Week for their partnership, as well as James Herb-
sleb, Irina Shklovski, and Sara Kiesler at Carnegie
Mellon University for design and analysis assistance.
This work was funded in part by the EUSES Consor-
tium via the National Science Foundation (ITR-
0325273), by an NDSEG fellowship, by the National
Science Foundation under Grant CCF-0438929, by the
Sloan Software Industry Center at Carnegie Mellon,
and by the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-
1298. Opinions, findings, and conclusions or recom-
mendations expressed in this material are the authors’
and do not necessarily reflect sponsors’ views.

8. References

[1] Pane, J., Myers, B., and Miller, L. Using HCI Techniques
to Design a More Usable Programming System, In Pro-
ceedings of IEEE Symposia on Human Centric Comput-
ing Languages and Environments, 2002, pp. 198-206.

[2] Rode, J., Toye, E., and Blackwell, A. The Fuzzy Felt Eth-
nography - Understanding the Programming Patterns of
Domestic Appliances. In Proceedings of the International
Conference on Appliance Design, 2004, pp. 10-22.

[3] Rosson, M.B., Ballin, J., and Rode, J. Who, What, and
How: A Survey of Informal and Professional Web Devel-
opers, In Proceedings of IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2005, pp. 199-206.

[4] Scaffidi, C., Ko, A., Myers, B., and Shaw, M. Identifying
Categories of End Users Based on the Abstractions That
They Create, Technical Report CMU-ISRI-05-110, Car-
negie Mellon University, 2005.

[5] Scaffidi, C., Shaw, M., and Myers, B. Estimating the
Numbers of End Users and End User Programmers, In
Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing, 2005, pp. 207-214.

