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Abstract
When software developers want to understand the reason for a 
program’s behavior, they must translate their questions about the 
behavior into a series of questions about code, speculating about 
the causes in  the process. The Whyline is a new kind of debugging 
tool  that avoids such speculation by instead enabling developers 
to  select a question about program output from a set of why did 
and why didn’t  questions  derived from the program’s  code and 
execution. The tool then finds one or more possible explanations 
for the output  in question, using a combination of static and 
dynamic slicing, precise call  graphs, and new algorithms for 
determining potential sources of values  and explanations for why 
a line of code was not reached. Evaluations of the tool on one task 
showed that novice programmers  with the Whyline were twice as 
fast as expert programmers without  it. The tool has the potential to 
simplify debugging in many software development contexts. 

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids, tracing
H.5.2 [User Interfaces]: User centered design, interaction styles

General Terms
Reliability, Algorithms, Performance, Design, Human Factors.

1. INTRODUCTION
Software developers have long struggled with understanding the 
causes of software behavior. And yet, despite decades of knowing 
that program understanding and debugging are some of the most 
challenging and time consuming aspects of software development, 
little has changed in how people work: these tasks still  represent 
up to 70% of the time required to ship a software product [17].

A simple problem underlies this statistic: once a person sees  an 
inappropriate behavior, they must then translate their questions 
about the behavior into a series of queries about  the program’s 
code. In doing this translation, developers basically have to guess 
about what code is  responsible [10]. This is worsened  by the fact 
that bugs often manifest themselves in strange and unpredictable 
ways: a typo in a crucial  conditional  can dramatically alter 
program behavior. Even for experienced developers, speculation 

about the relationship between the symptoms of a problem and 
their cause is a serious issue. In our investigations, developers’ 
initial guesses were wrong almost 90% of the time [7,8].

Unfortunately, today’s  debugging and program understanding 
tools do not help  with this part of the task. Breakpoint debuggers 
require people to  choose a line of code. Slicing tools  require a 
choice of variable [2]. Querying tools require a person to write an 
executable expression  about  data [11]. As a result, all  of these 
tools are subject  to a ‘garbage-in garbage-out’  limitation: if a 
developer’s choice of code is irrelevant to the cause, the tool’s 
answer will be similarly irrelevant. Worse yet, none of today’s 
tools allow developers to ask why not questions about things that 
did not happen; such questions are often the majority  of 
developers’  questions [10]. Of course, lots of things do not happen 
in  a program, but developers  tend only to ask about behaviors that 
a program is designed to do.

In this paper, we present a new kind of program understanding 
and debugging tool called a Whyline, which overcomes these 
limitations. The idea is  simple: rather than requiring people to 
translate their questions to code queries, the Whyline allows 
developers to choose a why did  or why didn’t question about 
program output and then the Whyline generates  an answer to  the 
question using a variety of program analyses. This avoids the 
problems noted above because developers are much better at 
reasoning about program output, since unlike the execution of 
code, it is observable. Furthermore, in  many cases, developers 
themselves define correctness in terms of the output.

This work follows earlier prototypes. The Alice Whyline [8] 
supported a similar interaction technique, but for an extremely 
simple language with little need for procedures and a rigid 
definition of output  (in  a lab study, the Whyline for Alice 
decreased debugging time by a factor of 8). The Crystal 
framework [14], which supported questions in  end-user 
applications, applied the same ideas, but limited the scope mostly 
to  questions about commands and events that appear in an 
application’s undo stack (in lab studies of Crystal, participants 
were able to complete 30% more tasks, 20% faster).

These successes inspired us to extend these ideas to an 
implementation for Java, which removes many of the limitations 
of our earlier work. We contribute (1) algorithms for deriving 
questions from code that are efficient and output-relevant, (2) 
algorithms for answering questions that  provide near immediate 
feedback, and (3) a visualization of answers that is  compact and 
simple to navigate. We achieve all of this with  no limitations on 
the target program, other than that it uses standard Java I/O  
mechanisms and that the program does not run too long (given our 
trace-based approach).
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In the rest of this paper, we will  discuss interactive aspects of our 
prototype and then discuss its design and implementation. We then 
present empirical  evaluations of the technique, one of which 
found that novice programmers with the Whyline were nearly 
twice as fast as experts without it. We end with a discussion of the 
Whyline’s limitations relative to prior work.

2. AN EXAMPLE
For a study in 2004 [10], the first author wrote a simple painting 
application, which supported drawing colored strokes (see Figure 
1.1). Among the 500 lines  of code, there were a few bugs in the 
program unintentionally inserted, which we left  in for the study. 
One problem was that the RGB color sliders did  not create the 
right colors. Participants took a median of 10 minutes (from 3 to 
38) to find the problem; the high variation in times was largely 
due to their strategies: most used text searches for “color” to find 
relevant code, revealing 62 matches over 9 files; others manually 
followed data dependencies, sometimes using breakpoints.

With the Whyline, the process would be greatly simplified (see 
Figure 1). The user simply demonstrates the behavior they want to 
inquire about (1). After the program halts, the Whyline loads  the 
trace, and then the user finds the point  in time they want to ask 
about by moving the time controller (2). Then, they click on 
something related to the behavior to pop up questions about it (3). 
In this case, they could click on the stroke with the wrong color, 
resulting in the question, ‘why did this line’s color = ■?’.

When they release, the Whyline determines the cause of the color 
and shows a visualization explaining the sequence of executions 
that caused the stroke to have its color (4)(5). This visualization 
includes assignments, method invocations, branches, and other 
events that cause the behavior. When the user selects an event, the 
corresponding source file is shown (6), along with the call stack 
and locals at the time of the selected execution event (7).

In this case, the Whyline selects the most recent event in the 
answer, which was the color object used to paint the stroke (4). To 
find out where the color came from, the user could find the source 
of the value selecting the label “(1) why did color = ...” (4). This 
causes the selection to go to the instantiation event (5) and the 
corresponding instantiation code (6). Here, the user would likely 
notice that the green slider was  used for the blue component  of the 
color; it should have used the blue slider.

In a user study of this task, which we report on at the end of this 
paper, people using the Whyline took half the time that it took for 
participants to debug the problem with traditional techniques. This 
was because participants did not have to  guess a search term or 
speculate about the relevance of various  matches of their search 
term, nor did they have to set  any breakpoints. Instead, they 
simply pointed  to something that they knew was relevant and 
wrong, and let the Whyline determine the related evidence. 

Figure 1. Using the Whyline: (1) The developer demonstrates the behavior; (2) after the trace loads, the developer finds the 
output of interest by scrubbing the I/O history; (3) the developer clicks on the output and chooses a question; (4) the Whyline 
provides an answer, which the developer navigates (5) in order to understand the cause of the behavior (6).
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3. DESIGN AND IMPLEMENTATION
The Whyline is intended to support interactive debugging (unlike 
automated debuggers, which take a specification of correctness 
and find an cause [4]). Therefore, we had to develop new 
incremental and cache reliant algorithms to ensure near immediate 
feedback for most user actions. The Whyline also takes  a post 
mortem approach to debugging, capturing a trace [19,20] and then 
analyzing it after the program has stopped, like modern profilers. 
This choice was based  on evidence that bug fixing is generally  a 
collaborative process  [7], which  could benefit  from the ability to 
share executions of failures (a real-time approach would possible, 
but would require effort to support questions on real-time output).

3.1 Recording an Execution Trace
A Whyline trace of an execution consists of a number of types of 
information: sequences of events that occurred in each thread, all 
class files executed and the source files that  represent them, and 
other types of meta data recorded to interpret the data in the trace. 
A trace contains everything necessary for reproducing (but not 
necessarily reexecuting) a specific execution of a Java program.

To capture an execution trace, we use bytecode instrumentation. 
As each Java class is loaded, we intercept its byte array (using the 
java.lang.instrument package), instrument each of the methods in 
the class, and return the modified code. We copy the 
uninstrumented version of each class in a trace folder, in  case the 
class was loaded off a network. In order to  keep track of code not 
executed (for answering why didn’t questions), we also keep track 
of each class referenced by the dynamically loaded class, and just 
before the program halts, we write each of these unexecuted class 
files to the same trace folder. Ideally, this would be done 
recursively, in order to get the complete call  graph of all of the 
code that the program could have executed, but  this would take 
considerable time and likely include all known classes.

As classes load, we skip those that the user has marked to skip, as 
well as a number of classes  that  are used in the instrumentation 
code itself. We also skip methods that, once instrumented, exceed 
the 65,536 byte length limit imposed by the JVM. Then, we cache 
instrumented versions of the class files and their modification date 
so  that later executions of the target program or other programs 
that use the same classes can load faster.

Each execution thread has a separate trace file for its events. Each 
event has a header containing the following information:

• 1 bit switch flag to represent whether the event is the first 
occurring after a thread switch. If it is set, a 32-bit serial event 
ID is recorded. The IDs for all subsequent events follow this ID 
in sequence, until the next switch. Switches are identified by 
checking whether the next event ID follows the last in a thread.

• A 1 bit io_callstack flag; set to true if the code represents I/O 
or is necessary for maintaining a call stack, which helps the 
trace loader know which events to process immediately.

• 6 bits to represent the event type (there are currently 55 types).

• 32 bits to represent an instruction ID, consisting of two parts: a 
14 bit class ID (maintained for all instrumented classes, across 
all programs), and an 18 bit integer represent the index of the 
instruction as it appears in the class file. (The largest JDK class 
file contains fewer than 200,000 instructions and is an outlier).

Event types include assignments, invocations and returns, thread 
synchronization events, exception throws and catches, 
instantiations of objects and arrays, and some special events to 

represent I/O events that are generated natively (such as mouse 
and keyboard events). Our studies also suggest that  developers 
find concrete values essential for interpreting program state 
[7,8,10]. Therefore, unlike prior work [19,2], many of these events 
also include a value after their header. For example, for an 
invocation event, we would record values passed as  arguments to 
the invocation, or for an assignment, the value assigned.

In every case where the value recorded is an object, we obtain  a 
unique 64-bit ID for it, creating a new one if the object  has yet to 
be encountered. These are stored in a thread safe weak reference 
hash table, so that objects can be garbage collected. For each new 
object encountered, we also write the type of the object (as a class 
ID) with its object ID to a separate file. 

3.2 Loading the Trace
When a Whyline trace is loaded, the loader performs a number of 
duties to  prepare for question asking. First, the source files and 
class files are loaded, since these are used for nearly every aspect 
of question asking and answering. As they are loaded, the 
Whyline constructs lists of output instructions, which are later 
used to generate questions. After loading  this static information, 
the Whyline generates a precise call graph, using  all  of the 
invocations found in  class files. By precise, we mean that rather 
than using the type in the invocation instructions, we use a static 
analysis (described in  Section 3.4) that  conservatively finds all of 
the potential  types of the actual instance used in the call, and 
resolves the method on these types. This  omits many types of 
infeasible calls, increasing the precision of why didn’t answers. 

Next, the loader reads the thread traces, loading events  in order of 
their event IDs, switching between thread trace files as necessary 
using the switch flag in each event. This allows the Whyline to 
have a complete ordering of the events in the execution. As events 
are read, events  whose io_callstack flag are set are processed 
immediately (essentially output and events needed to maintain a 
call stack);  others are loaded on demand. As call stacks  are 
maintained, they are cached at equal  intervals to provide semi-
random access to the call  stack state at any event. To improve the  
performance of question derivation and answering, the Whyline 
constructs lists  of invocations, assignments to fields, and other 
types of events. These histories are stored as  integer sequences of 
event IDs and are searched using binary search.

3.3 Creating an I/O History
The creation of an I/O history is fundamental to the Whyline’s 
question support: it is how the Whyline establishes a connection 
between the pixels on  screen and the data and logic used to paint 
the pixels. Our prototype assumes that  a program uses standard 
Java I/O interfaces and their subclasses to produce output: 
java.awt.Graphics2D for graphical output, java.awt.Window to 
represent windows and  KeyEvent and MouseEvent for input events in 
these windows, java.io.Writer, OutputStream, PrintStream, Reader 
and InputStream for console and file I/O, and java.lang.Throwable 
for exception output. The Java Whyline does not trace executions 
of native I/O (such as those used in some Java look and feels).

The Whyline creates output events from the low-level events 
described in previous sections. For example, a call to 
Graphics2D.drawRect() and its  arguments are combined into an I/O 
event representing the rectangle drawn. The Whyline then uses 
these I/O events to construct  a user interface for navigating the 
output  history. The console output is relatively straightforward to 
create, as it is just a list of strings to show and make selectable. 
The graphical  history, like the one seen in Figure 1, is  more 



complicated. To recreate this history, we created an emulator for 
the Graphics2D class, including special support for the use of 
double buffering, in order to track precisely when and where each 
render event occurred on  screen. As these events are read from the 
trace, we also track when they occlude other render events, to 
enable random access to the graphical history by only drawing 
render events that would be visible at a particular time.

Before the user can ask questions, the Whyline handles the output 
instructions gathered during class loading. After parsing the 
output, the Whyline finds fields and invocations could have 
affected output, using  the first algorithm in  Figure 2. For example, 
the color of a rectangle might be affected by some field in an 
object, or by the return value of a call to some method. To find 

these fields and invocations, the algorithm follows upstream static 
data dependencies, marking fields and methods  along the way. 
Next, if the output instruction directly invokes output (such as 
drawing  a rectangle, unlike setting the color, which merely affects 
appearance), all  potential  indirect  callers to the output instructions 
method are marked as  output invoking. This is done by simply 
following potential  callers of a method, starting with the output 
instruction’s method (Figure 2). Each algorithm is run on each 
primitive output instruction, and halts either when reaching code 
already visited or code with no dependencies. Also, as we traverse 
instance methods, we track the class that we started in to filter out 
infeasible calls. 

Intuitively, it would seem these algorithms mark everything; after 
all, what code is not  responsible for affecting or invoking output? 
The insight here is that particular code is responsible for particular 
output. The Whyline uses these distinctions to generate and filter 
questions based on what the user expresses interest in.

3.4 Deriving Questions
In any program execution, many things  happen, and many things 
do  not. The Whyline uses both static and dynamic analyses  to 
derive questions about these behaviors  that the developer may or 
may not have expected.

Why did  questions refer to a specific event from a trace; the 
questions available for asking depend on the input time selected 
by  the user (Figure 1.2), since this time also determines what 
events are visible on screen. When they click on an output event, 
the Whyline shows questions related to  the output event  selected. 
For example, in Figure 3.1, why did questions relate to the 
properties of the rectangle the user has selected.

markAffectors(Instruction inst)

  if inst been visited, return, otherwise, mark inst as visited

  if inst acquires a field value      // mark assignments to fields
    mark field as affecting inst
    for each definition of field, markAffectors(definition)

  else if inst is an invocation       // mark data used by return statements
    for each method potentially called by inst
      mark method as affecting inst
      for each return in method, markAffectors(return)

  for each control dependency of inst // mark code causing inst to execute
    markAffectors(control)

  for each stack dependency of inst   // mark data used by inst
    markAffectors(stack)

markInvokers(Instruction inst)

  if inst has not been visited        // mark callers to method of inst
    mark inst as visited
    mark inst’s method as invoking inst
    for each caller of inst’s method, markInvokers(caller)

Figure 2. Algorithms markAffectors and markInvokers, which 
mark methods and fields that affect or invoke output.

Figure 3. The question hierarchy for a graphical output event in the Java Whyline prototype, showing six types of questions 
currently supported by the prototype (numbered 1-6) and three types of menus. For each, the content on the left lists the meaning 
of the question (items in []’s represented menus of the specified type) and the content on the right gives an example screen shots.

GRAPHICAL OUTPUT MENU
  PROPERTIES
    why did property = value ?
      (refers to value passed to output call)
  FIELDS AFFECTING OUTPUT
    [FIELD MENUS]
  OBJECTS INVOKING OUTPUT
    [OBJECT MENUS]

FIELD MENU
  why did field = value ? 
    (refers to assignment before T)

 why didn’t field’s value change after time T ?
    (refers to potential assignment instructions)
  [if value is object, include OBJECT MENU]

OBJECT MENU
  why did object get created ?
    (refers to instantiation of object)
  FIELDS AFFECTING OUTPUT
    [FIELD MENUS]
  OUTPUT INVOKING METHODS

 
 why didn’t method execute after time T ?
      (refers to potential invocation instructions)

OUTPUT‐INVOKING CLASSES MENU

 why didn’t an instance of class C appear?
    (refers to instantiations of C)
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In addition to questions about output primitives, it is also helpful 
to  have questions about various widgets in a user interface toolkit, 
as well as any user defined classes that are represented by 
graphical output. Therefore, the user can ask about  two types of 
higher level entities:  object  fields  that influence the output 
primitive’s arguments and objects on the call  stack that  indirectly 
invoked the primitive output. These are entity questions, which 
allow the user to ask about output affecting fields  and methods of 
the classes they may be familiar with. These questions refer to the 
specific instance of the class represented by the selected output 
primitive. An example would be a button, which often consists of 
filled rectangles and text. 

In identifying such entities, it is important  to include only objects 
that are relevant to output and that the user is  likely to have 
created or used;  we want to exclude intermediary  and helper 
classes, such as look and feel classes that a UI widget might use to 
render itself, since the user may have never seen or created them. 
To achieve this, we inspect the call stack of the invocation  that 
produced the selected  output primitive. For each call stack entry 
that represents a call on  an object, the object represents  an output 
entity if it  is an  instance of a familiar  class. A class  is  familiar if 
user owned code either defines or references the specific class. In 
our prototype, user owned code consists of those classes that  were 
derived from source on the last compile (thus excluding  APIs and 
libraries for which the developer has no source). One could 
imagine more sophisticated definitions for familiarity  and 
ownership based on authorship, checkins, or other measures.

Once the Whyline identifies  each entity represented by the 
selected output primitive, the Whyline generates questions for 
each entity. These include why did questions about each of the 
familiar, output affecting fields’  current values, such as why did 
this  Button’s  visible = true? (Figure 3.2) and also questions about 
why these fields were not assigned after the selected time (Figure 
3.3). Familiarity is defined in a similar manner as for classes, 
where those fields that were referenced directly, or set  by a setter 
method, are familiar. Each of these why did questions points to the 
most recent assignment to  the field on that instance. The Whyline 
also generates questions about objects  that indirectly  invoked the 
selected output primitive, including questions about  the creation 
of the object  (Figure 3.4), about the objects output-affecting 
fields, and about  output-invoking methods that the user believes 
did not execute (Figure 3.5).

The actual phrasing and  presentation of questions  depends on the 
type of output. Exceptions thrown by the program, caught or 
uncaught, are phrased as why did questions, and map to a throw 
event. Output in the console history supports questions about  why 
a particular string was printed (mapping to the event that produced 
it). The questions supported for graphical output are a bit more 
diverse, because the output itself is more complex in nature. For 
primitive level output, such as a line, circle, or rectangle, users 
may ask why did questions about any of the properties  used to 
render the output. These correspond to  arguments  passed to the 
render method, such as position and size, as well as state in the 
Graphics2D object such as color and font.

Why didn’t questions refer to one or more instructions in the code. 
For why didn’t  questions about variables, there are two types. For 
discrete-valued variables such as booleans or enumerated types, 
the system can identify specific values for why didn’t questions. 
For example, one might ask “Why didn’t the filled  rectangle’s 
color = red?” if the program referred to  the constant Color.red; 
these values are found by following upstream data dependencies 
until reaching constant values. For variables of other types, this is 

usually is not feasible; for these variables, the system instead 
supports questions of the form why didn’t the variable get 
assigned?  For both kinds of questions, there may be numerous 
places that could have caused a variable to be assigned, these 
questions refers to the set  of potential sources. These instructions 
are grouped into a single question to avoid user speculation about 
which particular source should have executed; instead, all of them 
are considered together.

One final type of why didn’t  question supports questions about 
output  that has no representative output  to click on. For example, 
a user might have expected a dialog box to appear after a certain 
input event, or a console string after a certain action; there are no 
primitives to choose that would enable questions about such 
output. To support these, the Whyline includes a question for each 
familiar class that has  output invoking methods, inherited or 
declared (see Figure 3.6, showing only windows in the 
screenshot). Because this list  does  not include classes  that are 
used only to affect output, the size of the list is manageable.

3.5 Answering ‘Why did...’ Questions
Although there are a variety of types of why did questions, each 
maps to an event  that is analyzed using dynamic slicing 
techniques [2], including control [5] and data dependencies. 
However, rather than producing a set of instructions, as slicing is 
usually defined, the Whyline produces  a causal chain of events. 
This chain is the tree of events that are traversed in a typical 
dynamic slicing algorithm. Although the algorithm is essentially 
the same [2], the difference in data structures affect how the 
information is  presented  to the user:  a chain of events  shows what 
happened at  runtime temporally, where as a set of instructions 
simply states dependencies, many of which a user might already 
know. Furthermore, each event’s control and data dependencies 
are computed on  demand when a user selects an  event. This 
means that  answers are almost  produced immediately, making 
slicing time largely  moot [2]. Nevertheless, the Whyline can 
benefit from other innovations in slicing, such as the recently 
proposed thin slicing [16].

3.6 Answering ‘Why didn’t...’ Questions
To answer why didn’t questions, the Whyline handles each of the 
instructions referred to by the question individually. Thus, if there 
were six instructions that could have made a rectangle red, it 
analyzes each individually and then unions the resulting answers.

To explain each individual instruction, the Whyline uses two 
analyses: (1) determining why an instruction was not  executed, 
and (2) determining why a particular dynamic data dependency 
did not occur. Each of these is constrained by two types of scope. 
Temporal scope affects what events it  considers. For example, a 
developer may ask about something that did not occur after a 
specific event, but may have occurred in other situations. 
Therefore, why didn’t  analyses only search through events that 
occurred after  the event selected by the time cursor (see Figure 1) 
and before the end of the program. This omits other executions  of 
events and reduces the amount of information to process. (We 
could have supported scopes that  end at a time different than the 
end of the program, but we chose to keep scope selection simple. 
This may be extended in the future). Identity scope considers what 
object(s) the developer has expressed interest in. For example, if 
they have selected a particular entity, the analyses are restricted to 
events on those entities. If they have selected a render event, only 
entities represented by that graphical primitive are considered.



Why was this  instruction not executed?  To explain  why an 
instruction was not executed, the first thing the Whyline does is 
check if it did execute. Our prior studies [8,10] have shown that 
developers are often prone to misperceiving  output, and believe 
something has occurred when it has not (for example, believing 
that something did  not change color, when it did, but  then changed 
back). By supporting why didn’t questions about  things that did 
happen, the Whyline can reveal these assumptions. If the 
instruction did not execute, the Whyline uses an algorithm (which 
we call whynotreached) to explain why. Essentially, if the method 
of the instruction being analyzed was not executed  within the time 
chosen by the user, there are few potential reasons why:

• It has no known callers (although such a call  may exist, but its 
class may not have been dynamically loaded).

• A caller of the instruction’s method’s did execute, but on a 
different instance.

• None of the method’s callers executed; the algorithm then 
recursively explains why each potential caller was not reached.

If the instruction’s  method was executed, there are many possible 
reasons why the instruction was not reached:

• The method executed, but the instruction of interest had not yet.
• A caught exception jumped over the instruction of interest, or 

the method exited because of an uncaught exception.
• None of the instruction’s control dependencies  executed (such 

as an if or switch); the algorithm recursively explains why 
none of these control dependencies executed.

• One of the instruction’s control dependencies did  execute, but 
jumped to the wrong target, skipping over the instruction.

For most questions, there are one or more objects of interest (for 
example, the button clicked on or the set of entities represented by 
a rectangle). In the algorithm above, if a call to a method is found, 
it  is only analyzed if it executed  using the object of interest as the 
instance invoked on or as an argument. For example, if the user 
has asked why a method did not execute on  a particular button, 
and some upstream caller did execute, the algorithm checks to see 
if the specific button was referenced. As the algorithm traverses 
calls, the local variable that would reference the object of interest 
is  tracked through invocations (for example, in one call the object 
may be the instance, but in an  upstream call, it may be an 
argument). If at any point, the local  is not a method argument, the 
algorithm stops tracking identity and analyzes all potential callers.

The result of the algorithm is  a directed graph (not a tree, because 
of recursion), with nodes consisting of invocations and 
conditional instructions that were not reached. Nodes that involve 
an invocation on a different object or a conditional branching in 
the wrong direction also have a causal chain of events attached, 
explaining the source of the wrong object, or the values of the 
conditional’s expression (Figure 7.4), respectively.

Why was this  value not used? Questions that  ask about  potential 
values of fields or primitive properties compare the expected 
dynamic dependency path to the actual dynamic dependency path 
at runtime. The former is obtained by tracking the path  followed 
by  getSources;  the latter comes from the dynamic slice on the 
event that actually occurred, whether it was a field assignment or 
argument of an  output instruction. (These are lists because the 
algorithm only analyzes unmodified values  passed through 
intermediaries). To illustrate, consider the following code, which 
controls a text field’s background based on various state.

Imagine that the user expected the background to be red (line 8). 
The expected dependency path from 2 would be 2,1,5,4,8. Then 
imagine that  instead, the background was gray (line 10), with 
actual dependency path 2,1,5,4,10, or black, with path 
2,1,5,4,12. In both cases, the point of deviation was 4: the 
program called setBack() with some color other than red.  To 
explain why, the Whyline then checks if the expected line (8) did 
execute. If it  did and the other call to setBack() occurred after, 
then the color was overridden; if the other call occurred before, 
then red was used. If line 8 did not  execute, then we use the 
whynotreached algorithm to  determine why the instruction did not 
execute (in this example, it  would be because enabled and/or 
invalid were false, or determineColor() was not called). This 
algorithm is shown in Figure 5.

4. PRESENTING ANSWERS
We designed the Whyline’s  answers largely as a navigational  aid, 
to  help users understand the relationship between events that 
occurred at  runtime and the code that caused  them. Therefore, 
most Whyline answers (including those answering why did 
questions and some why didn’t) include execution events that 
occurred at runtime, separated by threads on the vertical axes, or 
optionally collapsed (Figure 6). The events are shown with very 
little information in order to keep the visualization compact, 
focusing the developer on the code.

We employed a number of design strategies to help with this 
focus. For example, the user can express interest  in a single 
selection in the Whyline’s answer at a time. When a user selects 
an event, the Whyline shows the line of code that  the event 
represents (Figure 1.6), other lines of code that influenced the 
execution of that code (potentially in other files), the call stack at 
the time that the event occurred with the values of all local 
variables, and values that were used to execute the line of code.

The Whyline also hides information that  the user would find 
unfamiliar or irrelevant. For example, when first showing a causal 
chain, the Whyline shows causes on demand, rather than 
everything at once. It also collapses events that  occurred in 

  draw()
1   color = getBack()
2   setColor(color)
3   fillRect()

4 setBack(newColor) color = newColor
5 getBack() return color

  determineColor()
6   if(invalid)
7     if(enabled)
8       setBack(red)
9     else
10      setBack(gray)
11  if(override)
12    setBack(black)

whynotvalue(List of instructions expected, List of events actual)

  co‐iterate through expected and actual, comparing
    instructions and finding point of deviation

  if deviation was not found, reason = value was used
  let exp be instruction after deviation in expected
  let act be event after deviation in actual

  if exp executed within temporal scope
    if all of exp’s executions occurred before act
      reason = value was used, but then overriden
    else reason = value was used
  else whynotreached(next_exp)

Figure 5. Algorithm whynotvalue, which explains why a certain 
dynamic data dependency did not occur. Figure 6. Threads separated along the y-axis.



unfamiliar methods (using the same definition  as in question 
derivation), effectively black boxing API calls and other code for 
which the developer has no source (Figure 7.1). In addition, if 
events from familiar code occur in methods that were called by 
unfamiliar  methods (for example, a user-defined call  back method 
called by an API), those events are shown, but the surrounding 
calling context is not (Figure 7.2). Both of these filtering 
mechanisms dramatically reduce the number of events presented 
in  a dynamic slice (a major criticism of slicing in the past [2]). 
One could argue that it gives just the right amount of information, 
assuming  the familiarity metric is right; after all, if everything in a 
slice is familiar, anything in that slice might be a candidate for a 
bug fix. Another form of filtering is to only include certain types 
of events  in the causal  chains. These include invocations, 
branches, returns, argument values, and assignments, but not uses 
of variables or the results of computation. These latter two are 
visible statically from the code, and thus redundant.

The Whyline also provides a simple navigational  model  for 
exploring an answer. The left  and right  arrows go back and forth 
in  a causal chain. The down arrow acts  like a breakpoint 
debugger’s “step into” command, going into the next  method’s 
invocation. The up arrow goes back to the most recent  conditional 
or invocation. Data dependencies  for the current selection are 
always shown above or below the event, and in the source code 
(Figure 1.5, 1.6). To navigate to one, the user simply clicks the 
arrow or types the dependency number shown. By default, this 
command finds the “source” of a value, which is where the value 
was computed or instantiated (the direct data dependency is 
reached using a modifier key). For example, an argument may be 
passed through multiple methods, and ultimately  come from a 
constant assigned to a field. This “go to source” command jumps 
to  the constant, skipping argument passing. Finally, in a study of 
developers doing program understanding tasks [10],  “peeking” at 
a control or data dependency, and then returning back to a line of 
code was quite common. Therefore, for every action affecting the 
selection in our prototype, backspace always  goes back to the 
prior selection, giving users confidence that  they will be able to 
return to their previous location after a navigation.

For why didn’t answers, the Whyline also includes  instructions 
that were not executed (Figure 7.3). This represents a subgraph of 
the call graph  that needed to execute for the output in  question to 
occur. When selected, the Whyline shows the code for the 
unexecuted instruction, and draws arrows from the instructions 
that could  have caused the selection to execute. The Whyline 
includes events when the answer includes a conditional or call that  
branched in the wrong direction. For example, in Figure 7.4, the 
Whyline shows that an instruction was not executed because the 
conditional evaluated to true.

5. EVALUATION

5.1 Performance Feasibility
In order to test  the performance feasibility of the Whyline on 
modern hardware, we investigated four aspects of Whyline traces 
empirically: slow down (comparing normal running time to 
tracing time, as well as to profiling time), trace size, compressed 
trace size, and trace loading time. Our subject programs included 
five open source projects of various sizes and complexity 
including a binary clock (binclock), a command line HTML 
formatter (jTidy), a Java compiler (javac), a text  editor (jEdit), 
and a diagramming tool (ArgoUML). For each, we ran the test case 
listed in Table 1 without tracing, with Whyline tracing (classes 
pre-cached), and with a commercial  profiler tracing (YourKit Java 
Profiler). Table 1 lists  the resulting  size of the Whyline trace (in 
terms of number of events and disk size). Each trace’s folder of 
files was compressed into a ZIP archive using the standard DEFLATE 
algorithm. Finally, we recorded loading time for each trace. All 
tests were run on a 2GHz Intel Core Duo MacBook Pro with 2GB 
of RAM, using the standard  OS X JVM, given a 1 GB heap. Time 
was measured to the tenth of a second using the Unix time 
command, and reported at one-second precision. All tests were 
run five times and the averages are reported in all cases.

As the results show, the Whyline’s tracing time is slower than the 
profiler, because it instruments more code. Once optimized, we 
expect to improve this  considerably. Trace sizes, especially 

Figure 7. An answer showing (1) a collapsed invocation, (2) a hidden call context, (3) several instructions not executed and (4) a 
conditional that evaluated in the wrong direction, preventing the desired instruction from executing.

2 1

Program LOC Test case Execution time (sec) Slowdown (ratio) # of events Trace Size (mb) Loading 

normalnormal YourKit Whyline YourKit Whyline originaloriginal zip % original (sec) events/sec
Binclock 177 Run clock for five seconds 5.7 9.1 9.8 1.6 1.7 140,268 4.7 1.6 34.0% 2.5 56,107
jTidy 12,258 Clean html of NY Times front page 0.9 3.9 13.8 4.3 15.3 16,504,866 118.1 13.7 11.6% 13 1,269,605
JEdit 66,403 Load, open file, type “Goodbye”, quit 8.4 11.7 60.1 1.4 7.2 8,983,890 84.5 15.0 17.8% 17.5 513,365
javac 54,054 Compile 2,810 line Java source file. 2.0 3.7 17.0 1.9 8.5 35,193,667 283.6 40.2 14.2% 46.5 756,853
ArgoUML 113,117 Load to splash screen and quit 5.60 15.00 28.6 2.7 5.1 18,303,691 137.60 17.9 13.0% 14.20 1,288,992

Table 1. Statistics about tracing slow down, trace size with and without compression, and trace loading time, on five open source 
Java programs, averaged over ten runs. The profiling times were computed using the YourKit Java profiler with tracing mode on 
(rather than sampling). Lines of code for each program were computed omitting whitespace lines.
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compressed, compare favorably to those reported in dynamic 
slicing work [19] and this is without using the run length encoding 
to  compress loops, as reported in [19]. It is also clear that  trace 
size depends less  on the program complexity and more on  the 
nature of the output. Command line applications that essentially 
batch-process data have a much higher events per second 
executing ratio than the GUI applications. This is likely due to the 
predominance of time in which the user is performing no actions. 
Loading time is also an issue. Although we have performed 
several optimizations, the biggest limiting factor during  loading is 
memory. In  the larger traces, there were significant delays due to 
garbage collection and virtual memory use, which could be 
avoided with better memory management in the prototype.

Another issue is  how well the Whyline scales with I/O events. The 
largest trace we have tested is  on ArgoUML  (the program listed in 
Table 1) and includes 35,597 I/O events over a minute of user 
interaction. The history is navigable at interactive speeds and  
clicking on any of these events in the history produces a question 
menu at interactive speeds. All of the smaller traces we have 
tested performed similarly.

5.2 Question Coverage
Another aspect to consider is the degree to which users would be 
able to find a question that  matches the question they want to ask. 
Of course, this is difficult to measure, as there are no complete 
classifications of the questions that people can ask about program 
output  (although we have attempted one [9]). Our approach was to 
randomly sample bug reports on the five applications in Table 1, 
and check to  see (1) whether any question seemed like a 
reasonable translation of the problem specified by the report, and 
(2) if so, how much translation was  required.  Of the nine reports  
randomly sampled (Table 2), all but one had a suitable question. 
Two questions were about console output, five were about 
primitive graphical output, and one was about an exception. The 
one report  for which we could not find  a suitable question (the 
2nd jTidy report) was a request for an unsupported feature, and so 
there was no obvious question available. It should  also  be clear 
that the Whyline required some translation of the bug reports into 
questions. In all cases, the difficulty in such translation was in 
finding a suitable subject for the question (which we have listed in 
[]’s in Table 2). It seems that the more difficult it was to find a 
subject, to more distant  the Whyline’s answer from the cause. Of 
course, these tests do not show whether a person would find the 
question or whether the answer would make sense. It does provide 
a best case. In future work, we will assess this issue in greater 
detail and compare answers to those of other techniques.

5.3 User Study
As a pilot  evaluation of the Whyline’s  utility, we had 9 people 
work on the slider bug described in Section 2 with the Whyline. 

These participants had a variety of backgrounds, with the least 
experienced having never seen a line of code and the most  having 
programmed for more than a decade. The participants’ 
backgrounds were in psychology, design, computer science, 
linguistics, food science, and engineering. We compared these 
people’s task performance with that  of 18 self-described expert 
Java developers from a prior study [10], who used Eclipse 2.1 (in 
that study, participants were interrupted about every three 
minutes, but this time were removed from our analyses here).

We gave each of the participants a 1-2  minute tutorial about how 
to  use the Whyline, including information on how to ask questions 
and follow data dependencies, and then showed the paint  program 
and the blue slider’s incorrect  behavior. We then asked 
participants to find the cause of the behavior and tell  us when they 
thought they had found it. As they worked, participants were 
allowed to ask  questions about the user interface, but not about the 
task or code (we wanted to focus on utility, and  not on usability 
problems). For example, many participants asked, “what  do these 
numbers mean again?” referring to the data dependencies in 
Figure 1.5). The experimenter also offered clarifications when the 
user expressed confusion about the user interface.

Overall, the participants with  the Whyline completed the task in a 
median of 4 minutes, ranging  from 1 to 12, significantly faster 
than the control group, which had a median of 10 minutes, 
ranging from 3 to 38 (p < .05, Wilcoxon rank sums test). The 
Whyline participants  were more than twice as fast as the experts 
without the Whyline. This  is despite the fact that most of our 
Whyline users were self-described novices and that many of the 
developers in the control condition had already spent  time 
understanding the design of the application. In fact, the novices in 
our pilot study tended to  outperform the experts, for some 
interesting reasons. The novices tended to say aloud, “Why is the 
line blue?” and then ask that question directly, quickly  finding the 
cause. One novice said that “It was like a treasure hunt! It was 
fun! I didn’t know debugging was like this.” The experts  asked the 
same question, but  then rather than proceeding to ask it with  the 
Whyline, speculated about the possible reasons (e.g., “Why didn’t 
this  slider’s event get  handled?”), and then looked for a question 
that allowed them to check their speculation. When they failed to 
find such a question, only then did they ask  about the color. One 
expert explained that they did not “expect the Whyline to  be able 
to  make the connection between the slider and the color,” and so 
they thought they had to make the connection themselves. 

The generality of our results  is obviously limited: this was  a single 
task, a small sample of people, and tested unfamiliar code. In an 
unpublished study completed recently, we compared experts using 
the Whyline to experts using conventional  tools working on two 
bug reports on  ArgoUML. Preliminary results  suggest that  Whyline 
users were twice as successful in half the time.

program bug report title - description whyline question
jTidy Again DOM Parsing error - [error message listed in report] Why did [error message] print?

JTidy allows duplicate ID attributes - If you give the same ID value, should cause error... -

JTidy locks up in a never ending loop - it locks up with this content:... Why didn’t [success message] get printed?
jEdit soft wrap, cut and null-pointer exception - This results in a BeanShell error dialog... Why did this text = [error dialog text] ?

File Open/Save dialog's directory - File/Save dialog should start in the directory last selected Why did this text = [current folder name] ?

Invalid screen line count - java.lang.RuntimeException: Invalid screen line count: 0... Why did [exception thrown] occur?
ArgoUML Autoresize triggers at wrong times - stretch any class to greater than it required size... Why did this [class’s] rectangle width = [wrong size]?

Invisible FigNodes are being saved - software just displays error and doesn’t open project Why did this text = [error dialog text] ?

Can not parse import statement after javadoc comment - unexpected token "import" ... Why did this text = [error dialog text] ?

Table 2. Nine bug reports and the corresponding Whyline questions that could be asked about the bug.



6. RELATED WORK
In the more than half a century of research on debuggers, there 
have been countless ideas of how to make program understanding 
easier [18]. Earlier ideas (such as  core dumps) were constrained 
by performance needs, limiting the type and amount of 
information that a developer could obtain about a program’s 
execution. As performance became less of a concern, researchers 
proposed new ways of collecting data and replaying or explore it 
[12]. However, such techniques failed to consider how users 
might  search through such data. The Whyline is different from 
other tools in its  ability  to elicit high relevance, high precision 
queries from users in an intuitive manner.

One notable approach is Cleve and Zeller’s  Delta Debugging, [4] 
which, given a specification of success and failure, and successful 
and failing program inputs, can empirically deduce a small chain 
of failure-inducing events. Similar tools take successful and 
failing runs of a program and perform other kinds of differential 
diagnosis [13]. These approaches are quite powerful, but limited 
to  circumstances where the success is simple to specify and 
possible to demonstrate (typically in situations where a new 
version of a program has regressed). These techniques could  be 
integrated with the Whyline to provide higher precision answers.

Abraham and Erwig’s goal-directed debugging [1] allows a 
developer to choose a wrong value in a spreadsheet and specify 
the correct value. The tool then offers several change suggestions 
that would  cause the program to compute the desired value. This 
is  feasible because of the limited domain of spreadsheet functions 
and the functional aspect of spreadsheet languages. It remains to 
be seen if such change suggestions are feasible (or even useful) 
for more complex imperative languages.

Another area of work is that of static and dynamic program slicing 
[2], which the Whyline employs in many of its answering 
algorithms. The Whyline is  less a competitor to these approaches 
and more of a consumer of them. It provides a more reliable way 
for users to select inputs to these techniques, providing queries of 
higher relevance than if users chose their queries unassisted. 
Furthermore, the Whyline is easily  capable of taking advantage of 
advancements in slicing techniques [16]. Slicing is also  related to 
other work in feature location tools, which have similar goals to 
the Whyline. For example, Eisenberg and De Volder discuss a test 
case approach to helping users  identify  portions of a system 
relevant to a particular behavior [6].

Finally, the Whyline would integrate well with tools that  address 
other difficulties in bug fixing. For example, work on capturing 
failures in  the field [3] could be used to automatically produce a 
Whyline trace. Bug reports  could then contain replicas  of failures 
observed directly by users, which could then be shared, annotated, 
and analyzed, not only leading to faster debugging, but a form of 
institutional  knowledge that could then be mined for other issues. 
There may also be useful analyses from tools that focus on 
diagnosing particular kinds of failures, such as data structure 
integrity and threading issues [11,15]. The challenge will be to 
adapt the Whyline’s approach to queries to  support these 
techniques input requirements.

7. LIMITATIONS
The Whyline approach has several limitations. First and foremost, 
because it is a trace based approach, it is not practical for 
executions that span more than a few minutes, or those that 
process or produce substantial amounts of data. It is also 
impractical for bugs that can only be reproduced without 

interference from instrumentation. Tracing also makes the 
approach feel ‘heavier’  than tools like breakpoint debuggers, 
which require virtually no setup time compared to the time spent 
waiting for a Whyline trace to load. All of these issues  are 
worsened by the fact that  memory demands on  a developer’s 
machine grows with the size of the trace. At a certain size, 
performance becomes an issue as the Whyline begins to rely on 
virtual memory. Better disk bandwidth would  alleviate this. Also, 
there may also be ways  to utilize multi core or distributed CPUs to 
provide dedicated support for trace capture and processing. 
Another possibility is that  there may be ways to only trace at 
certain times, like today’s performance profilers; the challenge 
would be that  the causes of events might not be captured, even if 
the effects were.

Because the Whyline extracts all of the knowledge about a 
program from the program itself, any limitation  on the knowledge 
encoded in a program limits the Whyline’s  utility. The simplest 
example is  in identifier names: if a program’s method and field 
names are cryptic, the Whyline’s questions will be cryptic. In 
designing for Java, we also relied heavily  on its object orientated 
and statically typed nature. Classes and objects compel developers 
to  separate behaviors and store state in fields; it  is the static 
declaration of such divisions that make it straightforward to 
reliably identify output-affecting state, to use identifiers in code to 
name such output, and to identify what code is familiar.

The programming language also effects the precision of the 
Whyline’s why didn’t answers, due to variations in the precision of  
call graphs. Dynamically typed  languages such as Javascript are 
most problematic:  even with runtime data, one cannot find all 
possible calls  to a method without  being conservative and  losing 
precision. Even statically typed late binding languages pose 
problems: when analyzing why an instruction did not execute, it is 
necessary to know all  of the feasible callers to a particular 
method. If the Java class containing the invocation that needed to 
be called was never loaded, the call will not  be known, and will 
not be part of the Whyline’s answer. This can be mitigated by 
actively loading referenced classes, but traversing too many levels 
of depth in such a call graph becomes impractical.

Finally, in terms of the Whyline’s utility, the tool  itself only helps 
a developer find code related to a behavior. It does not explain 
how to change that behavior, nor does it explain how APIs were 
used to cause the behavior. Answers to why didn’t  questions are 
not intended to be a definitive explanation for why something did 
not occur, but rather a set of potential explanations. After all, there 
are many possible fixes to any given problem, and only the 
developer is capable of choosing the appropriate modification 
(although the obvious fix often appears as part of the answer, as in 
Figure 1). The Whyline will help users focus on these more 
important tasks, rather than wandering around source files, 
looking for relevant code [10].

8. DISCUSSION
In designing the Whyline for Java, we were left with several 
issues to consider. For one, our prototype was  limited to graphical, 
textual, and exception output, but  there are obviously other kinds, 
such as audio, network traffic, and other forms that have yet to 
come. From our experience, it is  clear that while the analyses used 
to  answer questions may generalize, the analyses used to generate 
questions may not. The user interfaces we provide for querying 
graphical output  are much more complex than for text and 
exceptions. We took advantage of specific characteristics of 
graphical output in order to  organize and present questions in an 



understandable manner. This suggests  that understanding the 
user’s perceptions of the structure of output is essential to 
providing useable and precise ways of querying such output. For 
example, what characteristics of audio output make sense to 
inquire about?  In other cases, such as network traffic, the structure 
may be well specified, but the right granularity of analysis  may 
not be clear. Numbers  are also an interesting case: should one be 
able to  ask why an integer is not  less than 0?  How could this be 
answered? All of these cases deserve further consideration.

Because the Whyline has no special knowledge of user interface 
toolkits  or other APIs, the specificity of the questions and answers 
is  often lacking. For example, if a user is wondering, “why didn’t 
this  window change?” users  must choose a suitable substitute, 
such as “why didn’t this JFrame’s repaint() method get called?” It 
might  be helpful  if one could write plug-ins for the Whyline to 
add special knowledge and heuristics for certain APIs, to improve 
the specificity of questions and answers, and even offer 
recommendations about potential fixes for errors.

Although we succeeded in designing a Whyline for Java’s 
standard I/O interfaces, other languages may not have standard 
interfaces, or may be more difficult to instrument or prohibitively 
expensive to  track. Furthermore, many programs are written in 
multiple languages, or produce output that cross machine 
boundaries. One very common modern example is  a Javascript 
web application: the program that produces output (the browser)  
is  not the same as the program that invokes the output. Execution 
environments may need special  support for capturing such 
information, and researchers needs  to explore capturing traces of 
programs that run across machines and multiple languages.

Another issue that  we have yet to consider empirically is how 
various aspects of the Whyline might interact with a developer’s 
work, both in isolation, and in the larger context of collaborative 
software development. For example, our familiarity metric is 
fairly effective for a solo developer, but for a developer in an 
organization, code familiarity may be a rapidly changing thing, 
defined more by issues of ownership and team dependencies, than 
by  whether they have the source for a method. Another issue is to 
what degree the Whyline needs to support people collaborating on 
bug fixing—not just in terms of sharing traces, but also in 
annotating and discussing them.

9. CONCLUSIONS
Debugging remains one of the most challenging aspects of 
software engineering, partly because today’s tools require users to 
speculate about  the causes of program behavior. We have 
presented an entirely  new way to query program output, allowing 
the user to  obtain evidence about the program’s execution before 
forming an explanation of the cause. Based on preliminary  results, 
our approach enables people to debug failures substantially faster 
than traditional tools. In the future, we hope to release our 
prototype as open source, motivating people to explore the limits 
of our approach both for Java, and also for other languages and 
computing architectures.
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