
Debugging Reinvented: Asking and Answering Why and
Why Not Questions about Program Behavior

Andrew J. Ko and Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213

{ajko, bam}@cs.cmu.edu

Abstract
When software developers want to understand the reason for a
program’s behavior, they must translate their questions about the
behavior into a series of questions about code, speculating about
the causes in the process. The Whyline is a new kind of debugging
tool that avoids such speculation by instead enabling developers
to select a question about program output from a set of why did
and why didn’t questions derived from the program’s code and
execution. The tool then finds one or more possible explanations
for the output in question, using a combination of static and
dynamic slicing, precise call graphs, and new algorithms for
determining potential sources of values and explanations for why
a line of code was not reached. Evaluations of the tool on one task
showed that novice programmers with the Whyline were twice as
fast as expert programmers without it. The tool has the potential to
simplify debugging in many software development contexts.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids, tracing
H.5.2 [User Interfaces]: User centered design, interaction styles

General Terms
Reliability, Algorithms, Performance, Design, Human Factors.

1. INTRODUCTION
Software developers have long struggled with understanding the
causes of software behavior. And yet, despite decades of knowing
that program understanding and debugging are some of the most
challenging and time consuming aspects of software development,
little has changed in how people work: these tasks still represent
up to 70% of the time required to ship a software product [17].

A simple problem underlies this statistic: once a person sees an
inappropriate behavior, they must then translate their questions
about the behavior into a series of queries about the program’s
code. In doing this translation, developers basically have to guess
about what code is responsible [10]. This is worsened by the fact
that bugs often manifest themselves in strange and unpredictable
ways: a typo in a crucial conditional can dramatically alter
program behavior. Even for experienced developers, speculation

about the relationship between the symptoms of a problem and
their cause is a serious issue. In our investigations, developers’
initial guesses were wrong almost 90% of the time [7,8].

Unfortunately, today’s debugging and program understanding
tools do not help with this part of the task. Breakpoint debuggers
require people to choose a line of code. Slicing tools require a
choice of variable [2]. Querying tools require a person to write an
executable expression about data [11]. As a result, all of these
tools are subject to a ‘garbage-in garbage-out’ limitation: if a
developer’s choice of code is irrelevant to the cause, the tool’s
answer will be similarly irrelevant. Worse yet, none of today’s
tools allow developers to ask why not questions about things that
did not happen; such questions are often the majority of
developers’ questions [10]. Of course, lots of things do not happen
in a program, but developers tend only to ask about behaviors that
a program is designed to do.

In this paper, we present a new kind of program understanding
and debugging tool called a Whyline, which overcomes these
limitations. The idea is simple: rather than requiring people to
translate their questions to code queries, the Whyline allows
developers to choose a why did or why didn’t question about
program output and then the Whyline generates an answer to the
question using a variety of program analyses. This avoids the
problems noted above because developers are much better at
reasoning about program output, since unlike the execution of
code, it is observable. Furthermore, in many cases, developers
themselves define correctness in terms of the output.

This work follows earlier prototypes. The Alice Whyline [8]
supported a similar interaction technique, but for an extremely
simple language with little need for procedures and a rigid
definition of output (in a lab study, the Whyline for Alice
decreased debugging time by a factor of 8). The Crystal
framework [14], which supported questions in end-user
applications, applied the same ideas, but limited the scope mostly
to questions about commands and events that appear in an
application’s undo stack (in lab studies of Crystal, participants
were able to complete 30% more tasks, 20% faster).

These successes inspired us to extend these ideas to an
implementation for Java, which removes many of the limitations
of our earlier work. We contribute (1) algorithms for deriving
questions from code that are efficient and output-relevant, (2)
algorithms for answering questions that provide near immediate
feedback, and (3) a visualization of answers that is compact and
simple to navigate. We achieve all of this with no limitations on
the target program, other than that it uses standard Java I/O
mechanisms and that the program does not run too long (given our
trace-based approach).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE’08, May 10-18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

In the rest of this paper, we will discuss interactive aspects of our
prototype and then discuss its design and implementation. We then
present empirical evaluations of the technique, one of which
found that novice programmers with the Whyline were nearly
twice as fast as experts without it. We end with a discussion of the
Whyline’s limitations relative to prior work.

2. AN EXAMPLE
For a study in 2004 [10], the first author wrote a simple painting
application, which supported drawing colored strokes (see Figure
1.1). Among the 500 lines of code, there were a few bugs in the
program unintentionally inserted, which we left in for the study.
One problem was that the RGB color sliders did not create the
right colors. Participants took a median of 10 minutes (from 3 to
38) to find the problem; the high variation in times was largely
due to their strategies: most used text searches for “color” to find
relevant code, revealing 62 matches over 9 files; others manually
followed data dependencies, sometimes using breakpoints.

With the Whyline, the process would be greatly simplified (see
Figure 1). The user simply demonstrates the behavior they want to
inquire about (1). After the program halts, the Whyline loads the
trace, and then the user finds the point in time they want to ask
about by moving the time controller (2). Then, they click on
something related to the behavior to pop up questions about it (3).
In this case, they could click on the stroke with the wrong color,
resulting in the question, ‘why did this line’s color = ■?’.

When they release, the Whyline determines the cause of the color
and shows a visualization explaining the sequence of executions
that caused the stroke to have its color (4)(5). This visualization
includes assignments, method invocations, branches, and other
events that cause the behavior. When the user selects an event, the
corresponding source file is shown (6), along with the call stack
and locals at the time of the selected execution event (7).

In this case, the Whyline selects the most recent event in the
answer, which was the color object used to paint the stroke (4). To
find out where the color came from, the user could find the source
of the value selecting the label “(1) why did color = ...” (4). This
causes the selection to go to the instantiation event (5) and the
corresponding instantiation code (6). Here, the user would likely
notice that the green slider was used for the blue component of the
color; it should have used the blue slider.

In a user study of this task, which we report on at the end of this
paper, people using the Whyline took half the time that it took for
participants to debug the problem with traditional techniques. This
was because participants did not have to guess a search term or
speculate about the relevance of various matches of their search
term, nor did they have to set any breakpoints. Instead, they
simply pointed to something that they knew was relevant and
wrong, and let the Whyline determine the related evidence.

Figure 1. Using the Whyline: (1) The developer demonstrates the behavior; (2) after the trace loads, the developer finds the
output of interest by scrubbing the I/O history; (3) the developer clicks on the output and chooses a question; (4) the Whyline
provides an answer, which the developer navigates (5) in order to understand the cause of the behavior (6).

1

5

6

2 3 4

7

3. DESIGN AND IMPLEMENTATION
The Whyline is intended to support interactive debugging (unlike
automated debuggers, which take a specification of correctness
and find an cause [4]). Therefore, we had to develop new
incremental and cache reliant algorithms to ensure near immediate
feedback for most user actions. The Whyline also takes a post
mortem approach to debugging, capturing a trace [19,20] and then
analyzing it after the program has stopped, like modern profilers.
This choice was based on evidence that bug fixing is generally a
collaborative process [7], which could benefit from the ability to
share executions of failures (a real-time approach would possible,
but would require effort to support questions on real-time output).

3.1 Recording an Execution Trace
A Whyline trace of an execution consists of a number of types of
information: sequences of events that occurred in each thread, all
class files executed and the source files that represent them, and
other types of meta data recorded to interpret the data in the trace.
A trace contains everything necessary for reproducing (but not
necessarily reexecuting) a specific execution of a Java program.

To capture an execution trace, we use bytecode instrumentation.
As each Java class is loaded, we intercept its byte array (using the
java.lang.instrument package), instrument each of the methods in
the class, and return the modified code. We copy the
uninstrumented version of each class in a trace folder, in case the
class was loaded off a network. In order to keep track of code not
executed (for answering why didn’t questions), we also keep track
of each class referenced by the dynamically loaded class, and just
before the program halts, we write each of these unexecuted class
files to the same trace folder. Ideally, this would be done
recursively, in order to get the complete call graph of all of the
code that the program could have executed, but this would take
considerable time and likely include all known classes.

As classes load, we skip those that the user has marked to skip, as
well as a number of classes that are used in the instrumentation
code itself. We also skip methods that, once instrumented, exceed
the 65,536 byte length limit imposed by the JVM. Then, we cache
instrumented versions of the class files and their modification date
so that later executions of the target program or other programs
that use the same classes can load faster.

Each execution thread has a separate trace file for its events. Each
event has a header containing the following information:

• 1 bit switch flag to represent whether the event is the first
occurring after a thread switch. If it is set, a 32-bit serial event
ID is recorded. The IDs for all subsequent events follow this ID
in sequence, until the next switch. Switches are identified by
checking whether the next event ID follows the last in a thread.

• A 1 bit io_callstack flag; set to true if the code represents I/O
or is necessary for maintaining a call stack, which helps the
trace loader know which events to process immediately.

• 6 bits to represent the event type (there are currently 55 types).

• 32 bits to represent an instruction ID, consisting of two parts: a
14 bit class ID (maintained for all instrumented classes, across
all programs), and an 18 bit integer represent the index of the
instruction as it appears in the class file. (The largest JDK class
file contains fewer than 200,000 instructions and is an outlier).

Event types include assignments, invocations and returns, thread
synchronization events, exception throws and catches,
instantiations of objects and arrays, and some special events to

represent I/O events that are generated natively (such as mouse
and keyboard events). Our studies also suggest that developers
find concrete values essential for interpreting program state
[7,8,10]. Therefore, unlike prior work [19,2], many of these events
also include a value after their header. For example, for an
invocation event, we would record values passed as arguments to
the invocation, or for an assignment, the value assigned.

In every case where the value recorded is an object, we obtain a
unique 64-bit ID for it, creating a new one if the object has yet to
be encountered. These are stored in a thread safe weak reference
hash table, so that objects can be garbage collected. For each new
object encountered, we also write the type of the object (as a class
ID) with its object ID to a separate file.

3.2 Loading the Trace
When a Whyline trace is loaded, the loader performs a number of
duties to prepare for question asking. First, the source files and
class files are loaded, since these are used for nearly every aspect
of question asking and answering. As they are loaded, the
Whyline constructs lists of output instructions, which are later
used to generate questions. After loading this static information,
the Whyline generates a precise call graph, using all of the
invocations found in class files. By precise, we mean that rather
than using the type in the invocation instructions, we use a static
analysis (described in Section 3.4) that conservatively finds all of
the potential types of the actual instance used in the call, and
resolves the method on these types. This omits many types of
infeasible calls, increasing the precision of why didn’t answers.

Next, the loader reads the thread traces, loading events in order of
their event IDs, switching between thread trace files as necessary
using the switch flag in each event. This allows the Whyline to
have a complete ordering of the events in the execution. As events
are read, events whose io_callstack flag are set are processed
immediately (essentially output and events needed to maintain a
call stack); others are loaded on demand. As call stacks are
maintained, they are cached at equal intervals to provide semi-
random access to the call stack state at any event. To improve the
performance of question derivation and answering, the Whyline
constructs lists of invocations, assignments to fields, and other
types of events. These histories are stored as integer sequences of
event IDs and are searched using binary search.

3.3 Creating an I/O History
The creation of an I/O history is fundamental to the Whyline’s
question support: it is how the Whyline establishes a connection
between the pixels on screen and the data and logic used to paint
the pixels. Our prototype assumes that a program uses standard
Java I/O interfaces and their subclasses to produce output:
java.awt.Graphics2D for graphical output, java.awt.Window to
represent windows and KeyEvent and MouseEvent for input events in
these windows, java.io.Writer, OutputStream, PrintStream, Reader
and InputStream for console and file I/O, and java.lang.Throwable
for exception output. The Java Whyline does not trace executions
of native I/O (such as those used in some Java look and feels).

The Whyline creates output events from the low-level events
described in previous sections. For example, a call to
Graphics2D.drawRect() and its arguments are combined into an I/O
event representing the rectangle drawn. The Whyline then uses
these I/O events to construct a user interface for navigating the
output history. The console output is relatively straightforward to
create, as it is just a list of strings to show and make selectable.
The graphical history, like the one seen in Figure 1, is more

complicated. To recreate this history, we created an emulator for
the Graphics2D class, including special support for the use of
double buffering, in order to track precisely when and where each
render event occurred on screen. As these events are read from the
trace, we also track when they occlude other render events, to
enable random access to the graphical history by only drawing
render events that would be visible at a particular time.

Before the user can ask questions, the Whyline handles the output
instructions gathered during class loading. After parsing the
output, the Whyline finds fields and invocations could have
affected output, using the first algorithm in Figure 2. For example,
the color of a rectangle might be affected by some field in an
object, or by the return value of a call to some method. To find

these fields and invocations, the algorithm follows upstream static
data dependencies, marking fields and methods along the way.
Next, if the output instruction directly invokes output (such as
drawing a rectangle, unlike setting the color, which merely affects
appearance), all potential indirect callers to the output instructions
method are marked as output invoking. This is done by simply
following potential callers of a method, starting with the output
instruction’s method (Figure 2). Each algorithm is run on each
primitive output instruction, and halts either when reaching code
already visited or code with no dependencies. Also, as we traverse
instance methods, we track the class that we started in to filter out
infeasible calls.

Intuitively, it would seem these algorithms mark everything; after
all, what code is not responsible for affecting or invoking output?
The insight here is that particular code is responsible for particular
output. The Whyline uses these distinctions to generate and filter
questions based on what the user expresses interest in.

3.4 Deriving Questions
In any program execution, many things happen, and many things
do not. The Whyline uses both static and dynamic analyses to
derive questions about these behaviors that the developer may or
may not have expected.

Why did questions refer to a specific event from a trace; the
questions available for asking depend on the input time selected
by the user (Figure 1.2), since this time also determines what
events are visible on screen. When they click on an output event,
the Whyline shows questions related to the output event selected.
For example, in Figure 3.1, why did questions relate to the
properties of the rectangle the user has selected.

markAffectors(Instruction inst)

 if inst been visited, return, otherwise, mark inst as visited

 if inst acquires a field value // mark assignments to fields
 mark field as affecting inst
 for each definition of field, markAffectors(definition)

 else if inst is an invocation // mark data used by return statements
 for each method potentially called by inst
 mark method as affecting inst
 for each return in method, markAffectors(return)

 for each control dependency of inst // mark code causing inst to execute
 markAffectors(control)

 for each stack dependency of inst // mark data used by inst
 markAffectors(stack)

markInvokers(Instruction inst)

 if inst has not been visited // mark callers to method of inst
 mark inst as visited
 mark inst’s method as invoking inst
 for each caller of inst’s method, markInvokers(caller)

Figure 2. Algorithms markAffectors and markInvokers, which
mark methods and fields that affect or invoke output.

Figure 3. The question hierarchy for a graphical output event in the Java Whyline prototype, showing six types of questions
currently supported by the prototype (numbered 1-6) and three types of menus. For each, the content on the left lists the meaning
of the question (items in []’s represented menus of the specified type) and the content on the right gives an example screen shots.

GRAPHICAL OUTPUT MENU
 PROPERTIES
 why did property = value ?
 (refers to value passed to output call)
 FIELDS AFFECTING OUTPUT
 [FIELD MENUS]
 OBJECTS INVOKING OUTPUT
 [OBJECT MENUS]

FIELD MENU
 why did field = value ?
 (refers to assignment before T)

 why didn’t field’s value change after time T ?
 (refers to potential assignment instructions)
 [if value is object, include OBJECT MENU]

OBJECT MENU
 why did object get created ?
 (refers to instantiation of object)
 FIELDS AFFECTING OUTPUT
 [FIELD MENUS]
 OUTPUT INVOKING METHODS

 why didn’t method execute after time T ?
 (refers to potential invocation instructions)

OUTPUT‐INVOKING CLASSES MENU

 why didn’t an instance of class C appear?
 (refers to instantiations of C)

1

2

3

4

5

6

In addition to questions about output primitives, it is also helpful
to have questions about various widgets in a user interface toolkit,
as well as any user defined classes that are represented by
graphical output. Therefore, the user can ask about two types of
higher level entities: object fields that influence the output
primitive’s arguments and objects on the call stack that indirectly
invoked the primitive output. These are entity questions, which
allow the user to ask about output affecting fields and methods of
the classes they may be familiar with. These questions refer to the
specific instance of the class represented by the selected output
primitive. An example would be a button, which often consists of
filled rectangles and text.

In identifying such entities, it is important to include only objects
that are relevant to output and that the user is likely to have
created or used; we want to exclude intermediary and helper
classes, such as look and feel classes that a UI widget might use to
render itself, since the user may have never seen or created them.
To achieve this, we inspect the call stack of the invocation that
produced the selected output primitive. For each call stack entry
that represents a call on an object, the object represents an output
entity if it is an instance of a familiar class. A class is familiar if
user owned code either defines or references the specific class. In
our prototype, user owned code consists of those classes that were
derived from source on the last compile (thus excluding APIs and
libraries for which the developer has no source). One could
imagine more sophisticated definitions for familiarity and
ownership based on authorship, checkins, or other measures.

Once the Whyline identifies each entity represented by the
selected output primitive, the Whyline generates questions for
each entity. These include why did questions about each of the
familiar, output affecting fields’ current values, such as why did
this Button’s visible = true? (Figure 3.2) and also questions about
why these fields were not assigned after the selected time (Figure
3.3). Familiarity is defined in a similar manner as for classes,
where those fields that were referenced directly, or set by a setter
method, are familiar. Each of these why did questions points to the
most recent assignment to the field on that instance. The Whyline
also generates questions about objects that indirectly invoked the
selected output primitive, including questions about the creation
of the object (Figure 3.4), about the objects output-affecting
fields, and about output-invoking methods that the user believes
did not execute (Figure 3.5).

The actual phrasing and presentation of questions depends on the
type of output. Exceptions thrown by the program, caught or
uncaught, are phrased as why did questions, and map to a throw
event. Output in the console history supports questions about why
a particular string was printed (mapping to the event that produced
it). The questions supported for graphical output are a bit more
diverse, because the output itself is more complex in nature. For
primitive level output, such as a line, circle, or rectangle, users
may ask why did questions about any of the properties used to
render the output. These correspond to arguments passed to the
render method, such as position and size, as well as state in the
Graphics2D object such as color and font.

Why didn’t questions refer to one or more instructions in the code.
For why didn’t questions about variables, there are two types. For
discrete-valued variables such as booleans or enumerated types,
the system can identify specific values for why didn’t questions.
For example, one might ask “Why didn’t the filled rectangle’s
color = red?” if the program referred to the constant Color.red;
these values are found by following upstream data dependencies
until reaching constant values. For variables of other types, this is

usually is not feasible; for these variables, the system instead
supports questions of the form why didn’t the variable get
assigned? For both kinds of questions, there may be numerous
places that could have caused a variable to be assigned, these
questions refers to the set of potential sources. These instructions
are grouped into a single question to avoid user speculation about
which particular source should have executed; instead, all of them
are considered together.

One final type of why didn’t question supports questions about
output that has no representative output to click on. For example,
a user might have expected a dialog box to appear after a certain
input event, or a console string after a certain action; there are no
primitives to choose that would enable questions about such
output. To support these, the Whyline includes a question for each
familiar class that has output invoking methods, inherited or
declared (see Figure 3.6, showing only windows in the
screenshot). Because this list does not include classes that are
used only to affect output, the size of the list is manageable.

3.5 Answering ‘Why did...’ Questions
Although there are a variety of types of why did questions, each
maps to an event that is analyzed using dynamic slicing
techniques [2], including control [5] and data dependencies.
However, rather than producing a set of instructions, as slicing is
usually defined, the Whyline produces a causal chain of events.
This chain is the tree of events that are traversed in a typical
dynamic slicing algorithm. Although the algorithm is essentially
the same [2], the difference in data structures affect how the
information is presented to the user: a chain of events shows what
happened at runtime temporally, where as a set of instructions
simply states dependencies, many of which a user might already
know. Furthermore, each event’s control and data dependencies
are computed on demand when a user selects an event. This
means that answers are almost produced immediately, making
slicing time largely moot [2]. Nevertheless, the Whyline can
benefit from other innovations in slicing, such as the recently
proposed thin slicing [16].

3.6 Answering ‘Why didn’t...’ Questions
To answer why didn’t questions, the Whyline handles each of the
instructions referred to by the question individually. Thus, if there
were six instructions that could have made a rectangle red, it
analyzes each individually and then unions the resulting answers.

To explain each individual instruction, the Whyline uses two
analyses: (1) determining why an instruction was not executed,
and (2) determining why a particular dynamic data dependency
did not occur. Each of these is constrained by two types of scope.
Temporal scope affects what events it considers. For example, a
developer may ask about something that did not occur after a
specific event, but may have occurred in other situations.
Therefore, why didn’t analyses only search through events that
occurred after the event selected by the time cursor (see Figure 1)
and before the end of the program. This omits other executions of
events and reduces the amount of information to process. (We
could have supported scopes that end at a time different than the
end of the program, but we chose to keep scope selection simple.
This may be extended in the future). Identity scope considers what
object(s) the developer has expressed interest in. For example, if
they have selected a particular entity, the analyses are restricted to
events on those entities. If they have selected a render event, only
entities represented by that graphical primitive are considered.

Why was this instruction not executed? To explain why an
instruction was not executed, the first thing the Whyline does is
check if it did execute. Our prior studies [8,10] have shown that
developers are often prone to misperceiving output, and believe
something has occurred when it has not (for example, believing
that something did not change color, when it did, but then changed
back). By supporting why didn’t questions about things that did
happen, the Whyline can reveal these assumptions. If the
instruction did not execute, the Whyline uses an algorithm (which
we call whynotreached) to explain why. Essentially, if the method
of the instruction being analyzed was not executed within the time
chosen by the user, there are few potential reasons why:

• It has no known callers (although such a call may exist, but its
class may not have been dynamically loaded).

• A caller of the instruction’s method’s did execute, but on a
different instance.

• None of the method’s callers executed; the algorithm then
recursively explains why each potential caller was not reached.

If the instruction’s method was executed, there are many possible
reasons why the instruction was not reached:

• The method executed, but the instruction of interest had not yet.
• A caught exception jumped over the instruction of interest, or

the method exited because of an uncaught exception.
• None of the instruction’s control dependencies executed (such

as an if or switch); the algorithm recursively explains why
none of these control dependencies executed.

• One of the instruction’s control dependencies did execute, but
jumped to the wrong target, skipping over the instruction.

For most questions, there are one or more objects of interest (for
example, the button clicked on or the set of entities represented by
a rectangle). In the algorithm above, if a call to a method is found,
it is only analyzed if it executed using the object of interest as the
instance invoked on or as an argument. For example, if the user
has asked why a method did not execute on a particular button,
and some upstream caller did execute, the algorithm checks to see
if the specific button was referenced. As the algorithm traverses
calls, the local variable that would reference the object of interest
is tracked through invocations (for example, in one call the object
may be the instance, but in an upstream call, it may be an
argument). If at any point, the local is not a method argument, the
algorithm stops tracking identity and analyzes all potential callers.

The result of the algorithm is a directed graph (not a tree, because
of recursion), with nodes consisting of invocations and
conditional instructions that were not reached. Nodes that involve
an invocation on a different object or a conditional branching in
the wrong direction also have a causal chain of events attached,
explaining the source of the wrong object, or the values of the
conditional’s expression (Figure 7.4), respectively.

Why was this value not used? Questions that ask about potential
values of fields or primitive properties compare the expected
dynamic dependency path to the actual dynamic dependency path
at runtime. The former is obtained by tracking the path followed
by getSources; the latter comes from the dynamic slice on the
event that actually occurred, whether it was a field assignment or
argument of an output instruction. (These are lists because the
algorithm only analyzes unmodified values passed through
intermediaries). To illustrate, consider the following code, which
controls a text field’s background based on various state.

Imagine that the user expected the background to be red (line 8).
The expected dependency path from 2 would be 2,1,5,4,8. Then
imagine that instead, the background was gray (line 10), with
actual dependency path 2,1,5,4,10, or black, with path
2,1,5,4,12. In both cases, the point of deviation was 4: the
program called setBack() with some color other than red. To
explain why, the Whyline then checks if the expected line (8) did
execute. If it did and the other call to setBack() occurred after,
then the color was overridden; if the other call occurred before,
then red was used. If line 8 did not execute, then we use the
whynotreached algorithm to determine why the instruction did not
execute (in this example, it would be because enabled and/or
invalid were false, or determineColor() was not called). This
algorithm is shown in Figure 5.

4. PRESENTING ANSWERS
We designed the Whyline’s answers largely as a navigational aid,
to help users understand the relationship between events that
occurred at runtime and the code that caused them. Therefore,
most Whyline answers (including those answering why did
questions and some why didn’t) include execution events that
occurred at runtime, separated by threads on the vertical axes, or
optionally collapsed (Figure 6). The events are shown with very
little information in order to keep the visualization compact,
focusing the developer on the code.

We employed a number of design strategies to help with this
focus. For example, the user can express interest in a single
selection in the Whyline’s answer at a time. When a user selects
an event, the Whyline shows the line of code that the event
represents (Figure 1.6), other lines of code that influenced the
execution of that code (potentially in other files), the call stack at
the time that the event occurred with the values of all local
variables, and values that were used to execute the line of code.

The Whyline also hides information that the user would find
unfamiliar or irrelevant. For example, when first showing a causal
chain, the Whyline shows causes on demand, rather than
everything at once. It also collapses events that occurred in

 draw()
1 color = getBack()
2 setColor(color)
3 fillRect()

4 setBack(newColor) color = newColor
5 getBack() return color

 determineColor()
6 if(invalid)
7 if(enabled)
8 setBack(red)
9 else
10 setBack(gray)
11 if(override)
12 setBack(black)

whynotvalue(List of instructions expected, List of events actual)

 co‐iterate through expected and actual, comparing
 instructions and finding point of deviation

 if deviation was not found, reason = value was used
 let exp be instruction after deviation in expected
 let act be event after deviation in actual

 if exp executed within temporal scope
 if all of exp’s executions occurred before act
 reason = value was used, but then overriden
 else reason = value was used
 else whynotreached(next_exp)

Figure 5. Algorithm whynotvalue, which explains why a certain
dynamic data dependency did not occur. Figure 6. Threads separated along the y-axis.

unfamiliar methods (using the same definition as in question
derivation), effectively black boxing API calls and other code for
which the developer has no source (Figure 7.1). In addition, if
events from familiar code occur in methods that were called by
unfamiliar methods (for example, a user-defined call back method
called by an API), those events are shown, but the surrounding
calling context is not (Figure 7.2). Both of these filtering
mechanisms dramatically reduce the number of events presented
in a dynamic slice (a major criticism of slicing in the past [2]).
One could argue that it gives just the right amount of information,
assuming the familiarity metric is right; after all, if everything in a
slice is familiar, anything in that slice might be a candidate for a
bug fix. Another form of filtering is to only include certain types
of events in the causal chains. These include invocations,
branches, returns, argument values, and assignments, but not uses
of variables or the results of computation. These latter two are
visible statically from the code, and thus redundant.

The Whyline also provides a simple navigational model for
exploring an answer. The left and right arrows go back and forth
in a causal chain. The down arrow acts like a breakpoint
debugger’s “step into” command, going into the next method’s
invocation. The up arrow goes back to the most recent conditional
or invocation. Data dependencies for the current selection are
always shown above or below the event, and in the source code
(Figure 1.5, 1.6). To navigate to one, the user simply clicks the
arrow or types the dependency number shown. By default, this
command finds the “source” of a value, which is where the value
was computed or instantiated (the direct data dependency is
reached using a modifier key). For example, an argument may be
passed through multiple methods, and ultimately come from a
constant assigned to a field. This “go to source” command jumps
to the constant, skipping argument passing. Finally, in a study of
developers doing program understanding tasks [10], “peeking” at
a control or data dependency, and then returning back to a line of
code was quite common. Therefore, for every action affecting the
selection in our prototype, backspace always goes back to the
prior selection, giving users confidence that they will be able to
return to their previous location after a navigation.

For why didn’t answers, the Whyline also includes instructions
that were not executed (Figure 7.3). This represents a subgraph of
the call graph that needed to execute for the output in question to
occur. When selected, the Whyline shows the code for the
unexecuted instruction, and draws arrows from the instructions
that could have caused the selection to execute. The Whyline
includes events when the answer includes a conditional or call that
branched in the wrong direction. For example, in Figure 7.4, the
Whyline shows that an instruction was not executed because the
conditional evaluated to true.

5. EVALUATION

5.1 Performance Feasibility
In order to test the performance feasibility of the Whyline on
modern hardware, we investigated four aspects of Whyline traces
empirically: slow down (comparing normal running time to
tracing time, as well as to profiling time), trace size, compressed
trace size, and trace loading time. Our subject programs included
five open source projects of various sizes and complexity
including a binary clock (binclock), a command line HTML
formatter (jTidy), a Java compiler (javac), a text editor (jEdit),
and a diagramming tool (ArgoUML). For each, we ran the test case
listed in Table 1 without tracing, with Whyline tracing (classes
pre-cached), and with a commercial profiler tracing (YourKit Java
Profiler). Table 1 lists the resulting size of the Whyline trace (in
terms of number of events and disk size). Each trace’s folder of
files was compressed into a ZIP archive using the standard DEFLATE
algorithm. Finally, we recorded loading time for each trace. All
tests were run on a 2GHz Intel Core Duo MacBook Pro with 2GB
of RAM, using the standard OS X JVM, given a 1 GB heap. Time
was measured to the tenth of a second using the Unix time
command, and reported at one-second precision. All tests were
run five times and the averages are reported in all cases.

As the results show, the Whyline’s tracing time is slower than the
profiler, because it instruments more code. Once optimized, we
expect to improve this considerably. Trace sizes, especially

Figure 7. An answer showing (1) a collapsed invocation, (2) a hidden call context, (3) several instructions not executed and (4) a
conditional that evaluated in the wrong direction, preventing the desired instruction from executing.

2 1

Program LOC Test case Execution time (sec) Slowdown (ratio) # of events Trace Size (mb) Loading

normalnormal YourKit Whyline YourKit Whyline originaloriginal zip % original (sec) events/sec
Binclock 177 Run clock for five seconds 5.7 9.1 9.8 1.6 1.7 140,268 4.7 1.6 34.0% 2.5 56,107
jTidy 12,258 Clean html of NY Times front page 0.9 3.9 13.8 4.3 15.3 16,504,866 118.1 13.7 11.6% 13 1,269,605
JEdit 66,403 Load, open file, type “Goodbye”, quit 8.4 11.7 60.1 1.4 7.2 8,983,890 84.5 15.0 17.8% 17.5 513,365
javac 54,054 Compile 2,810 line Java source file. 2.0 3.7 17.0 1.9 8.5 35,193,667 283.6 40.2 14.2% 46.5 756,853
ArgoUML 113,117 Load to splash screen and quit 5.60 15.00 28.6 2.7 5.1 18,303,691 137.60 17.9 13.0% 14.20 1,288,992

Table 1. Statistics about tracing slow down, trace size with and without compression, and trace loading time, on five open source
Java programs, averaged over ten runs. The profiling times were computed using the YourKit Java profiler with tracing mode on
(rather than sampling). Lines of code for each program were computed omitting whitespace lines.

3

4

compressed, compare favorably to those reported in dynamic
slicing work [19] and this is without using the run length encoding
to compress loops, as reported in [19]. It is also clear that trace
size depends less on the program complexity and more on the
nature of the output. Command line applications that essentially
batch-process data have a much higher events per second
executing ratio than the GUI applications. This is likely due to the
predominance of time in which the user is performing no actions.
Loading time is also an issue. Although we have performed
several optimizations, the biggest limiting factor during loading is
memory. In the larger traces, there were significant delays due to
garbage collection and virtual memory use, which could be
avoided with better memory management in the prototype.

Another issue is how well the Whyline scales with I/O events. The
largest trace we have tested is on ArgoUML (the program listed in
Table 1) and includes 35,597 I/O events over a minute of user
interaction. The history is navigable at interactive speeds and
clicking on any of these events in the history produces a question
menu at interactive speeds. All of the smaller traces we have
tested performed similarly.

5.2 Question Coverage
Another aspect to consider is the degree to which users would be
able to find a question that matches the question they want to ask.
Of course, this is difficult to measure, as there are no complete
classifications of the questions that people can ask about program
output (although we have attempted one [9]). Our approach was to
randomly sample bug reports on the five applications in Table 1,
and check to see (1) whether any question seemed like a
reasonable translation of the problem specified by the report, and
(2) if so, how much translation was required. Of the nine reports
randomly sampled (Table 2), all but one had a suitable question.
Two questions were about console output, five were about
primitive graphical output, and one was about an exception. The
one report for which we could not find a suitable question (the
2nd jTidy report) was a request for an unsupported feature, and so
there was no obvious question available. It should also be clear
that the Whyline required some translation of the bug reports into
questions. In all cases, the difficulty in such translation was in
finding a suitable subject for the question (which we have listed in
[]’s in Table 2). It seems that the more difficult it was to find a
subject, to more distant the Whyline’s answer from the cause. Of
course, these tests do not show whether a person would find the
question or whether the answer would make sense. It does provide
a best case. In future work, we will assess this issue in greater
detail and compare answers to those of other techniques.

5.3 User Study
As a pilot evaluation of the Whyline’s utility, we had 9 people
work on the slider bug described in Section 2 with the Whyline.

These participants had a variety of backgrounds, with the least
experienced having never seen a line of code and the most having
programmed for more than a decade. The participants’
backgrounds were in psychology, design, computer science,
linguistics, food science, and engineering. We compared these
people’s task performance with that of 18 self-described expert
Java developers from a prior study [10], who used Eclipse 2.1 (in
that study, participants were interrupted about every three
minutes, but this time were removed from our analyses here).

We gave each of the participants a 1-2 minute tutorial about how
to use the Whyline, including information on how to ask questions
and follow data dependencies, and then showed the paint program
and the blue slider’s incorrect behavior. We then asked
participants to find the cause of the behavior and tell us when they
thought they had found it. As they worked, participants were
allowed to ask questions about the user interface, but not about the
task or code (we wanted to focus on utility, and not on usability
problems). For example, many participants asked, “what do these
numbers mean again?” referring to the data dependencies in
Figure 1.5). The experimenter also offered clarifications when the
user expressed confusion about the user interface.

Overall, the participants with the Whyline completed the task in a
median of 4 minutes, ranging from 1 to 12, significantly faster
than the control group, which had a median of 10 minutes,
ranging from 3 to 38 (p < .05, Wilcoxon rank sums test). The
Whyline participants were more than twice as fast as the experts
without the Whyline. This is despite the fact that most of our
Whyline users were self-described novices and that many of the
developers in the control condition had already spent time
understanding the design of the application. In fact, the novices in
our pilot study tended to outperform the experts, for some
interesting reasons. The novices tended to say aloud, “Why is the
line blue?” and then ask that question directly, quickly finding the
cause. One novice said that “It was like a treasure hunt! It was
fun! I didn’t know debugging was like this.” The experts asked the
same question, but then rather than proceeding to ask it with the
Whyline, speculated about the possible reasons (e.g., “Why didn’t
this slider’s event get handled?”), and then looked for a question
that allowed them to check their speculation. When they failed to
find such a question, only then did they ask about the color. One
expert explained that they did not “expect the Whyline to be able
to make the connection between the slider and the color,” and so
they thought they had to make the connection themselves.

The generality of our results is obviously limited: this was a single
task, a small sample of people, and tested unfamiliar code. In an
unpublished study completed recently, we compared experts using
the Whyline to experts using conventional tools working on two
bug reports on ArgoUML. Preliminary results suggest that Whyline
users were twice as successful in half the time.

program bug report title - description whyline question
jTidy Again DOM Parsing error - [error message listed in report] Why did [error message] print?

JTidy allows duplicate ID attributes - If you give the same ID value, should cause error... -

JTidy locks up in a never ending loop - it locks up with this content:... Why didn’t [success message] get printed?
jEdit soft wrap, cut and null-pointer exception - This results in a BeanShell error dialog... Why did this text = [error dialog text] ?

File Open/Save dialog's directory - File/Save dialog should start in the directory last selected Why did this text = [current folder name] ?

Invalid screen line count - java.lang.RuntimeException: Invalid screen line count: 0... Why did [exception thrown] occur?
ArgoUML Autoresize triggers at wrong times - stretch any class to greater than it required size... Why did this [class’s] rectangle width = [wrong size]?

Invisible FigNodes are being saved - software just displays error and doesn’t open project Why did this text = [error dialog text] ?

Can not parse import statement after javadoc comment - unexpected token "import" ... Why did this text = [error dialog text] ?

Table 2. Nine bug reports and the corresponding Whyline questions that could be asked about the bug.

6. RELATED WORK
In the more than half a century of research on debuggers, there
have been countless ideas of how to make program understanding
easier [18]. Earlier ideas (such as core dumps) were constrained
by performance needs, limiting the type and amount of
information that a developer could obtain about a program’s
execution. As performance became less of a concern, researchers
proposed new ways of collecting data and replaying or explore it
[12]. However, such techniques failed to consider how users
might search through such data. The Whyline is different from
other tools in its ability to elicit high relevance, high precision
queries from users in an intuitive manner.

One notable approach is Cleve and Zeller’s Delta Debugging, [4]
which, given a specification of success and failure, and successful
and failing program inputs, can empirically deduce a small chain
of failure-inducing events. Similar tools take successful and
failing runs of a program and perform other kinds of differential
diagnosis [13]. These approaches are quite powerful, but limited
to circumstances where the success is simple to specify and
possible to demonstrate (typically in situations where a new
version of a program has regressed). These techniques could be
integrated with the Whyline to provide higher precision answers.

Abraham and Erwig’s goal-directed debugging [1] allows a
developer to choose a wrong value in a spreadsheet and specify
the correct value. The tool then offers several change suggestions
that would cause the program to compute the desired value. This
is feasible because of the limited domain of spreadsheet functions
and the functional aspect of spreadsheet languages. It remains to
be seen if such change suggestions are feasible (or even useful)
for more complex imperative languages.

Another area of work is that of static and dynamic program slicing
[2], which the Whyline employs in many of its answering
algorithms. The Whyline is less a competitor to these approaches
and more of a consumer of them. It provides a more reliable way
for users to select inputs to these techniques, providing queries of
higher relevance than if users chose their queries unassisted.
Furthermore, the Whyline is easily capable of taking advantage of
advancements in slicing techniques [16]. Slicing is also related to
other work in feature location tools, which have similar goals to
the Whyline. For example, Eisenberg and De Volder discuss a test
case approach to helping users identify portions of a system
relevant to a particular behavior [6].

Finally, the Whyline would integrate well with tools that address
other difficulties in bug fixing. For example, work on capturing
failures in the field [3] could be used to automatically produce a
Whyline trace. Bug reports could then contain replicas of failures
observed directly by users, which could then be shared, annotated,
and analyzed, not only leading to faster debugging, but a form of
institutional knowledge that could then be mined for other issues.
There may also be useful analyses from tools that focus on
diagnosing particular kinds of failures, such as data structure
integrity and threading issues [11,15]. The challenge will be to
adapt the Whyline’s approach to queries to support these
techniques input requirements.

7. LIMITATIONS
The Whyline approach has several limitations. First and foremost,
because it is a trace based approach, it is not practical for
executions that span more than a few minutes, or those that
process or produce substantial amounts of data. It is also
impractical for bugs that can only be reproduced without

interference from instrumentation. Tracing also makes the
approach feel ‘heavier’ than tools like breakpoint debuggers,
which require virtually no setup time compared to the time spent
waiting for a Whyline trace to load. All of these issues are
worsened by the fact that memory demands on a developer’s
machine grows with the size of the trace. At a certain size,
performance becomes an issue as the Whyline begins to rely on
virtual memory. Better disk bandwidth would alleviate this. Also,
there may also be ways to utilize multi core or distributed CPUs to
provide dedicated support for trace capture and processing.
Another possibility is that there may be ways to only trace at
certain times, like today’s performance profilers; the challenge
would be that the causes of events might not be captured, even if
the effects were.

Because the Whyline extracts all of the knowledge about a
program from the program itself, any limitation on the knowledge
encoded in a program limits the Whyline’s utility. The simplest
example is in identifier names: if a program’s method and field
names are cryptic, the Whyline’s questions will be cryptic. In
designing for Java, we also relied heavily on its object orientated
and statically typed nature. Classes and objects compel developers
to separate behaviors and store state in fields; it is the static
declaration of such divisions that make it straightforward to
reliably identify output-affecting state, to use identifiers in code to
name such output, and to identify what code is familiar.

The programming language also effects the precision of the
Whyline’s why didn’t answers, due to variations in the precision of
call graphs. Dynamically typed languages such as Javascript are
most problematic: even with runtime data, one cannot find all
possible calls to a method without being conservative and losing
precision. Even statically typed late binding languages pose
problems: when analyzing why an instruction did not execute, it is
necessary to know all of the feasible callers to a particular
method. If the Java class containing the invocation that needed to
be called was never loaded, the call will not be known, and will
not be part of the Whyline’s answer. This can be mitigated by
actively loading referenced classes, but traversing too many levels
of depth in such a call graph becomes impractical.

Finally, in terms of the Whyline’s utility, the tool itself only helps
a developer find code related to a behavior. It does not explain
how to change that behavior, nor does it explain how APIs were
used to cause the behavior. Answers to why didn’t questions are
not intended to be a definitive explanation for why something did
not occur, but rather a set of potential explanations. After all, there
are many possible fixes to any given problem, and only the
developer is capable of choosing the appropriate modification
(although the obvious fix often appears as part of the answer, as in
Figure 1). The Whyline will help users focus on these more
important tasks, rather than wandering around source files,
looking for relevant code [10].

8. DISCUSSION
In designing the Whyline for Java, we were left with several
issues to consider. For one, our prototype was limited to graphical,
textual, and exception output, but there are obviously other kinds,
such as audio, network traffic, and other forms that have yet to
come. From our experience, it is clear that while the analyses used
to answer questions may generalize, the analyses used to generate
questions may not. The user interfaces we provide for querying
graphical output are much more complex than for text and
exceptions. We took advantage of specific characteristics of
graphical output in order to organize and present questions in an

understandable manner. This suggests that understanding the
user’s perceptions of the structure of output is essential to
providing useable and precise ways of querying such output. For
example, what characteristics of audio output make sense to
inquire about? In other cases, such as network traffic, the structure
may be well specified, but the right granularity of analysis may
not be clear. Numbers are also an interesting case: should one be
able to ask why an integer is not less than 0? How could this be
answered? All of these cases deserve further consideration.

Because the Whyline has no special knowledge of user interface
toolkits or other APIs, the specificity of the questions and answers
is often lacking. For example, if a user is wondering, “why didn’t
this window change?” users must choose a suitable substitute,
such as “why didn’t this JFrame’s repaint() method get called?” It
might be helpful if one could write plug-ins for the Whyline to
add special knowledge and heuristics for certain APIs, to improve
the specificity of questions and answers, and even offer
recommendations about potential fixes for errors.

Although we succeeded in designing a Whyline for Java’s
standard I/O interfaces, other languages may not have standard
interfaces, or may be more difficult to instrument or prohibitively
expensive to track. Furthermore, many programs are written in
multiple languages, or produce output that cross machine
boundaries. One very common modern example is a Javascript
web application: the program that produces output (the browser)
is not the same as the program that invokes the output. Execution
environments may need special support for capturing such
information, and researchers needs to explore capturing traces of
programs that run across machines and multiple languages.

Another issue that we have yet to consider empirically is how
various aspects of the Whyline might interact with a developer’s
work, both in isolation, and in the larger context of collaborative
software development. For example, our familiarity metric is
fairly effective for a solo developer, but for a developer in an
organization, code familiarity may be a rapidly changing thing,
defined more by issues of ownership and team dependencies, than
by whether they have the source for a method. Another issue is to
what degree the Whyline needs to support people collaborating on
bug fixing—not just in terms of sharing traces, but also in
annotating and discussing them.

9. CONCLUSIONS
Debugging remains one of the most challenging aspects of
software engineering, partly because today’s tools require users to
speculate about the causes of program behavior. We have
presented an entirely new way to query program output, allowing
the user to obtain evidence about the program’s execution before
forming an explanation of the cause. Based on preliminary results,
our approach enables people to debug failures substantially faster
than traditional tools. In the future, we hope to release our
prototype as open source, motivating people to explore the limits
of our approach both for Java, and also for other languages and
computing architectures.

10. ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
under NSF grant IIS-0329090 and the EUSES consortium under
NSF grant ITR CCR-0324770. The first author was also supported
by NDSEG and NSF Graduate Fellowships.

11. REFERENCES
[1] Abraham R. & Erwig M. (2005). Goal-directed debugging of

spreadsheets, IEEE Symposium on Visual Languages and Human-
Centric Computing, Dallas, Texas, 37-44.

[2] Baowen X., Ju Q., Xiaofang Z., Zhongqiang W., & Lin C. (2005). A
brief survey of program slicing, SIGSOFT Software Engineering
Notes, 30, 2, 1-36.

[3] Clause J. & Orso A. (2007). A technique for enabling and supporting
debugging of field failures, International Conference on Software
Engineering, Minneapolis, MN, 261-270.

[4] Cleve H. & Zeller A. (2005). Locating causes of program failures.
International Conference on Software Engineering, St. Louis, MI,
342-351.

[5] Cooper K.D., Harvey T.J. & Kennedy K. (2001). A simple, fast
dominance algorithm. Available at http://www.hipersoft.rice.edu/
grads/publications/dom14.pdf.

[6] Eisenberg A. & De Volder K. (2005). Dynamic feature traces:
finding features in unfamiliar code. International Conference on
Software Maintenance, Budapest, Hungary, 337-346.

[7] Ko, A.J. DeLine, R., & Venolia, G. (2007). Information needs in
collocated software development teams. International Conference on
Software Engineering, Minneapolis, MN, 344-353.

[8] Ko, A.J. & Myers, B.A. (2004). Designing the Whyline: a debugging
interface for asking questions about program failures. ACM
Conference on Human Factors in Computing Systems, Vienna,
Austria, 151-158.

[9] Ko. A. J., Myers, B.A., Chau, D.H. (2006). A linguistic analysis of
how people describe software problems. IEEE Visual Languages and
Human-Centric Computing, Brighton, UK, 127-134.

[10] Ko. A.J., Myers, B.A., Coblenz, M. & Aung, H.H. (2006). An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks. IEEE Transactions
on Software Engineering, 32(12), 971-987.

[11] Lencevicius R., Holzle U., & Singh A.K. (2003). Dynamic query-
based debugging of object-oriented Programs, Journal of Automated
Software Engineering, 10(1), 367-370.

[12] Lewis B. (2003). Debugging backwards in time, International
Workshop on Automated Debugging, 225-235.

[13] Liblit B., Naik M., Zheng A., Aiken A. & Jordan M. (2005). Scalable
statistical bug isolation. Programming Design and Implementation,
Chicago, IL, USA, 15-26.

[14] Myers B.A., Weitzman D., Ko A.J., & Chau D. H. (2006).
Answering why and why not questions in user interfaces. ACM
Conference on Human Factors in Computing Systems, Montreal,
Canada, 397-406.

[15] Potanin A., Noble J., & Biddle R. (2004). Snapshot query-based
debugging. Australian Software Engineering Conference, 251.

[16] Sridharan M., Fink S.J., & Bodik R. (2007). Thin slicing.
Programming Language Design and Implementation, San Diego,
CA, 112-122.

[17] Tassey, G. (2002). The economic impacts of inadequate
infrastructure for software testing. National Institute of Standards
and Technology, RTI Project Number 7007.011, 2002.

[18] Ungar D., Lieberman H., & Fry C. (1997). Debugging and the
experience of immediacy. Communications of the ACM, 40(4) 39-43.

[19] Wang T. & Roychoudhury A. (2004). Using compressed bytecode
traces for slicing Java programs, International Conference on
Software Engineering, Scotland, UK, 512-521.

[20] Zhang X. & Gupta R. (2005). Whole execution traces and their
applications. ACM Transactions on Architecture and Code
Optimization, 2(3), 301-334.

