
Barista: An Implementation Framework for Enabling New
Tools, Interaction Techniques and Views in Code Editors

Andrew J. Ko and Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213 USA

{ajko, bam}@cs.cmu.edu

ABSTRACT
Recent advances in programming environments have
focused on improving programmer productivity by utilizing
the inherent structure in computer programs. However,
because these environments represent code as plain text, it
is difficult and sometimes impossible to embed interactive
tools, annotations, and alternative views in the code itself.
Barista is an implementation framework that enables the
creation of such user interfaces by simplifying the
implementation of editors that represent code internally as
an abstract syntax tree and maintain a corresponding, fully
structured visual representation on-screen. Barista also
provides designers of editors with a standard text-editing
interaction technique that closely mimics that of
conventional text editors, overcoming a central usability
issue of previous structured code editors.

Author Keywords
Structured editors, programming environments. end-user
software engineering.

ACM Classification Keywords
D2.6 Programming environments: Interactive
environments; H5.2 User interfaces: Interaction styles.

INTRODUCTION
Programming environments are the primary user interfaces
for millions of professional and end-user programmers’
work. In recent years, this observation has led to many
efforts to improve programmer productivity with new tools.
One tool that exemplifies this effort is the Eclipse
environment: by incrementally compiling source files as the
programmer edits them, it can offer semi-immediate
feedback about errors, quick fixes for common problems,
code refactoring tools, and improved searching and
navigation support.

However, many other potentially useful tools are difficult
or impossible to implement in environments like Eclipse
that visually represent code as rows of plain text. For
example, consider the media-rich annotation portrayed in
Figure 1; plain text editors would be forced to show such
annotations as raw HTML source, hiding contextually
relevant information. Other examples include alternative
views of code: rather than just text, expressions could be
pretty-printed to improve readability [1] and complex
operations on data structures could be animated to improve
understanding [7].

Although it is more feasible to implement these ideas in
structured code editors, such as those developed in the
1980’s [13, 16, 18] and more recently with powerful
frameworks such as Harmonia [3] and Proxima [17], none
of these have support for embedding such views in code,
forcing any contextually relevant information about code to
be placed out of context, in separate windows and dialogs.

In this paper we present Barista1, an implementation
framework that overcomes these limitations by offering
data structures, algorithms, and interaction techniques for
creating sophisticated code editors like the one in Figure 1.
The goal of Barista is to make it possible to implement
novel tools and interactions that improve the usability, user
experience, and utility of code editors. In fact, the
annotation support shown in Figure 1 was implemented in
just a few lines of code using the Barista framework. This

 1 Basic Abstractions for Rapidly Implementing Structured Text-editing
Applications. A barista is makes coffee; our example editor helps make Java code.

Figure 1. A media-rich annotation of a Java method.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2006, April 22-28, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

support was built on top of a basic Barista Java editor,
which is written in Citrus [11]. Furthermore, unlike
previous structured code editors, all Barista editors come
with a standard text-editing interaction technique that is
quite similar to the one used in conventional text editors.
This is achieved by fluidly changing the code between
structured and unstructured text, while presenting a
consistent visual representation of code on-screen.
Combined, these features result in an implementation
framework that is simple and powerful for editor designers
and may enable the creation of more usable and useful code
editors for users.

In the following sections, we provide an overview of related
work on code editors that utilize structure. We then describe
the Barista framework in detail and provide numerous
examples of the types of tools that the framework enables.
We conclude with a discussion of Barista’s design tradeoffs
and limitations relative to other frameworks.

RELATED WORK
Since the Cornell Program Synthesizer [18] in the late
1970’s, there have been many efforts to develop usable
code editors that utilize the inherent structure in computer
programs. While there are several instances of structured
editors from the past 30 years [8, 13, 16], we will focus our
discussion on implementation frameworks that have been
designed for creating these editors, highlighting tradeoffs
which have made it difficult to implement embedded tools
and visualizations like the one portrayed in Figure 1.

One of the first frameworks for developing structured code
editors was the GNOME project [4]. Given a language
grammar, most of a GNOME editor could be generated
automatically. The editors were largely based on a model-
view-controller architecture, where the models were the
abstract syntax trees representing the program and the
views were textual. However, the editors provided no
support for editing a textual representation of the code;
instead, they used a generic menu-based interaction
technique for structurally modifying trees. The MacGnome
project relaxed this by allowing small sections of code to be
temporarily converted into plain text in a separate editing
mode [11]. Although GNOME editors did support multiple
views and languages, their visual representation of code
was limited to text with little support for customization.

Proxima is a more recent implementation framework for
developing structured editors consisting of five “layers”:
document, extended document, layout, arrangement, and
rendering. The editor designer’s job is to define the
document’s representation for each layer, and supply
mappings between all layers that will be edited by the end
user. For example, end users may edit the document at the
“layout” level (which is equivalent to editing the text of a
program), or they may edit at the document level (such as
inserting a declaration into a list). While the framework
provides a great deal of flexibility in the design of an editor

and its interaction techniques, it does so by placing a great
burden on the editor designer to implement all of these
layers, as well as to carefully design custom interaction
techniques for each editable layer. To complicate matters,
implementing the mappings between layers requires the
editor designer to learn multiple languages.

Another example is Eclipse (www.eclipse.org), which has
one goal of providing abstractions for implementing
sophisticated code editors. Unlike GNOME and Proxima,
Eclipse’s framework is largely text-based. Consequently,
Eclipse editors provide little flexibility in defining novel
views of code (which is one reason why few Eclipse plug-
ins actually do). Furthermore, while Eclipse provides
several APIs for implementing the abstract syntax trees of
the target language, the connections between these trees, the
parser, and the textual representation of the trees is very
weak. As a result, it requires considerable effort to write
code to perform these mappings when implementing tools.

The Harmonia [3] project, another recent effort to develop a
framework for developing sophisticated programming
environments, has its strengths in providing a general
framework for incrementally lexing and parsing text using a
language grammar. Editor designers can easily create text
editors that utilize these services, but there is little support
for defining custom views of code other than variations in
font size and color. Harmonia’s predecessor, Ensemble,
used Proteus [5], a flexible constraint-based layout
presentation framework. However, it required the design of
custom interaction techniques for each new view. Also, the
language used to define views of code was different than
the language used to implement the rest of an editor.

Although all of the frameworks discussed in this section are
limited in their ability to support the type of interactive
tools and visualizations we have proposed, they do have
several benefits that Barista does not emphasize. We will
further discuss these tradeoffs in our discussion.

THE BARISTA IMPLEMENTATION FRAMEWORK
To simplify the implementation of code editors that enable
novel visualizations and tools, Barista combines ideas from
other editors and implementation frameworks, as well as
many new ideas, and distills them into a small number of
simple abstractions and implementation mechanisms.

Throughout this paper, we will describe the framework in
the context of the prototype Java editor seen in Figure 1 and
Figure 2. This editor allows users to create code by either
typing it with the keyboard, through drag and drop of code
templates, or using auto-complete menus that contain the
structures and as well as variable and method names that
may be legally inserted at the caret. The editor provides
immediate feedback about errors as well as several other
features that we will describe below. All of these features
were implemented in about 2000 lines of Citrus code, using
the Barista framework and Citrus UI toolkit [11]. The
framework itself is also about 3000 lines of Citrus code.

An Overview
Although more powerful architectures have been proposed,
such as Proxima’s layered architecture [17], for simplicity’s
sake, Barista is based on the model-view-controller
architecture with which many programmers are already
familiar. The model in a Barista editor consists of the
abstract syntax tree that is modified during an editing
session, which consists of structures and tokens. For
example, Java’s structures include a variety of declarations,
statements and expressions, and several kinds of tokens,
including identifiers, separators, literals, and keywords. The
view in a Barista editor is a tree of interactive views (just
like the threes found in conventional user interfaces). This
view tree mimics the structure of the model. Controllers are
implemented using the event-handling constructs offered by
the Citrus programming language [10].

To illustrate, the models and views used to represent a Java
IfStatement are shown in Figure 3. Each of the structures
in the model is represented by a container view, which is
responsible for arranging and displaying the views of the
structures contained in its model. For example, the
IfStatementView contains a LessThanView and a
ReturnStatementView, and views of the if-keyword and
parentheses tokens. Each of these tokens consists of the
token text and its trailing white space. These are visually
represented with two text fields, which act as the interaction
points for all textual edits. Because Barista uses a
conventional view tree, designers have the same control
over the layout, appearance and interaction techniques of
views, as they do with any conventional user interface.

Structures and Structure Views
To create a Barista editor, the designer defines each of the
structures in the target language as a subclass of Structure.
This roughly corresponds to the non-terminals in the
language’s grammar. For example, Figure 4 shows the
Citrus class that we defined to represent Java’s grammar for
an if-statement. The class declares that an IfStatement
consists of seven properties; some are structures, like the
Expression named condition, and others are tokens, like
the LeftParen named left.

To be able to parse each kind of structure in a language,
each class must have a grammar. By using reflection to
inspect the properties type, initial values, and order, Barista
is often able to infer a suitable grammar for a Citrus class.
However, because grammars must often be modified to be
parsable, it is sometimes necessary for designers to
explicitly provide one.

Once a Structure is defined, the designer subclasses
StructureView to represent it visually. To illustrate,
consider the IfStatementView class, shown in Figure 5.

Figure 2. A Java editor, created with Barista, supporting
textual editing, auto-completion and drag and drop.

Figure 3. The models and views represented in memory for
the structures and tokens in a Java if-statement. Each
structure has a set of properties that point to structures and
tokens. Each token has text and white space.

an IfStatement is a Structure that
 has IfKeyword if
 has LeftParen left
 has Expression condition
 has RightParen right
 has Statement thenStatement
 has ElseKeyword else
 has Statement elseStatement
.

Figure 4. The Citrus class for a Java if-statement,
representing if (Expression) Statement [else Statement].

an IfStatementView is a StructureView that

 refs IfStatement model = ?
 has Real width <- (this rightmostChildsRight)
 has Real height <- (this tallestChildsHeight)
 has List<View> children = [
 (model.@if toView)
 (model.@left toView)
 (model.@condition toView)
 (model.@right toView)
 (model.@thenStatement)
 (an ElseView)
]

 an ElseView is a View that

 has Bool hidden <-
 (model.elseStatement is nothing)
 has Bool scale <- (if hidden 0.0 1.0)
 has List<View> children = [
 (model.@else toView)
 (model.@elseStatement toView)]
 .
.

Figure 5. The Citrus class for a view of a Java if-statement.

The view declares a property named model, which is a
reference to the IfStatement that the view represents (the ?
declares that the model is required at the time of
instantiation, whereas the other properties have default
values). The next two lines use the <- operator to constrain
the view’s width and height to the expressions shown. The
next property, named children, is a list of all of the views
contained in the IfStatementView. For example, the 3rd
child is a view of the IfStatement’s condition. The
expression (model.@condition toView) results in a view
of the condition (for example, the LessThanView shown in
Figure 3). The @ in the toView expression gets the property
that points to the condition. This way, the view can listen
for changes to this property’s value, and upon a change,
automatically generate a view of the property’s new value,
freeing the designer from having to write code to keep
views up to date. Because the else statement is optional, we
define an inner class named ElseView that contains a view
of the else keyword and else statement. A constraint on
hidden hides the view when the IfStatement’s else
property statement is empty.

The default layout of the children in a StructureView is the
same flow layout used by conventional text editors. This is
implemented by constraining the position of a structure or
token view to the position after the last character in the
view of the previous token in the abstract syntax tree. This
can easily be overridden by using any of the other standard
layouts provided by the Citrus UI toolkit, or by defining
new layouts or constraints.

The view defined in Figure 5 is fairly basic, but several
extensions can be added in just a few lines of code. For
example, a “collapsed” flag could be added, and a property
change listener could hide the body of the if-statement
when true. To design an alternative view, such as a table of
condition-action pairs, would take about the same number
of lines of code as in Figure 5, but would use a different
layout and would omit the if and else keywords. The
designer could then provide a way to toggle between the
two. We give an example of this later.

Tokens and Token Views
In addition to defining structures and corresponding
structure views, editor designers must also specify each
type of token in the target language as a subclass of Token
and specify regular expressions that define its legal strings
and white space. For example, instances of the IfKeyword
class, used in Figure 4, must always match the string “if”
and may have arbitrary whitespace.

Barista provides the TokenView class, which represents a
token as two text fields that contain the token’s text and
whitespace. This class implements a conventional text
editing interaction technique and provides auto-complete
menus that are generated automatically using the Barista
parser and designer-supplied grammars. Editor designers
can subclass this view to customize its size, font, color,
layout and behavior. For example, in our Java editor, each

token of a particular type has a different font and color.
Constraints are used to change the font depending on the
structure that contains the identifier; for example, as seen in
Figure 2, an identifier that appears as a name of a class has
a larger font size than an identifier in an expression.

The TokenView class’ text editing interaction uses a variant
of incremental parsing algorithms [19]. When the user types
a character into a token’s text or white space:

1. If the modification to the token results in a string that
complies with the token’s regular expression, the
modification is allowed and we are done.

2. Otherwise, the token and its immediately adjacent
tokens need to be re-tokenized. This results in a
sequence of one or more new tokens. If tokenization
fails, the characters are placed in a special invalid
token, which will be re-tokenized when it is modified.

3. If the tokenization succeeds, the part of the abstract
syntax tree affected by this token modification is
converted into a list of tokens. Structures that were not
affected, but were part of an affected tree, remain
structured, and are inserted into the list of tokens as
“structural” tokens, and handled specially by the
parser. For example, if a Java block needed to be
parsed, none of the unaffected statements inside the
block would be reparsed.

4. The list of tokens is parsed, reusing any structural
tokens found in the process. The resulting structure
replaces the old structure in the tree, which
automatically updates the view in the editor.

To illustrate this process, consider the change illustrated in
Figure 6. When the user types the + into the text field
representing a123, the parser is invoked by the token view.
Because a+123 is an invalid Java identifier, it is
retokenized into the tokens [a, +, 123]. If the user had
instead changed a123 to ab123, it would still have been a

Figure 6. An example of Barista’s incremental parsing. The
grey boxes indicate data that was modified or created.

valid identifier and the token view would have allowed the
change. The affected structure—the common ancestor of
the structures to the left and right of the affected tokens in
the tree—is “unparsed” into a sequence of tokens. In this
case, the structures left and right are the parentheses, whose
common ancestor is the method invocation. The modified
token is replaced by the new tokens, and the list is then
parsed. While parsing, the parser determines that it can
reuse the existing invocation structure, and just replaces the
first expression in the invocation’s argument list with the
newly created infix expression. The rest of the program is
unaffected. The token view then replaces old invocation
with the new, automatically updating the view. This process
is transparent to both the user and the editor designer.

We can avoid incremental parsing in some cases by using
information encoded in the abstract syntax tree. For
example, in our Java editor, changing = to += only requires
a single token to be updated, because both tokens are
instances of the AssignmentOperator class. If the only
change to a structure is the insertion of a new structure into
a list, for example, when a statement is inserted into a
block, we avoid reparsing the list and instead just
structurally insert the new structure.

Barista provides several other mechanisms by which
incremental parsing may be invoked. By default it is
invoked after every character typed. Another approach is to
reject any modification to a token that fails to parse. This is
equivalent to what traditional structured editors do, which
only allow valid transformations to the tree. The
implication for the end user however is that many desired
edits would only be possible through a series of structural
edits, which typically require far more operations than
would be needed in textual editors. Another choice is to
convert the modified tokens to a single invalid token (as
mentioned in step 3 above). The token view can then later
tokenize and incrementally parse upon one of several
events: for example, after the programmer has been idle for
a certain amount of time or after the user leaves the focus of
the token view’s text field. Yet another approach is to add
error productions to the language grammar (a standard
strategy in implementing parsers), which places the
unparsable tokens into a special structure. An example of
this in our Java editor is shown in Figure 7. The advantage
of this is that this interactive flexibility may be added to
structures that are modified frequently (such as expressions
and statements), and not added for high-level structures
such as class declarations. We offer all of these options, not
only for performance reasons, but because the appropriate
immediacy of feedback differs between languages,
language constructs, user populations, and individuals. Our

Java editor uses different strategies for different structures.
For example, error productions were added for expressions
and statements, whereas syntax errors are disallowed on
class declarations, which are usually created via drag and
drop or menus.

Barista’s parser is language independent and is executed by
interpreting the grammar supplied by the editor designer or
automatically generated from the Citrus classes. The parser
can determine what tokens and structures may follow a
token, which is used to implement the auto-completion
shown in Figure 2. For example, if the parser encounters the
tokens [if, (], it knows it can safely auto-complete the list
to [if, (, expression,), statement]. These options are
exposed to the designer as simple flags.

Text Caret Navigation
Evidence from a study of programmers’ low-level text
editing strategies [9] suggests that programmers rely
heavily on the keyboard for code navigation. Therefore,
Barista’s TokenView class provides built-in navigations that
directly mimic those in text-editors. Pressing left or right at
the edge of a token navigates the text caret to the previous
or next token’s white space, and navigating at the edge of
white space similarly navigates to the previous or next
token in the model. These are implemented in two lines of
code using Token’s support for determining adjacent tokens
in the tree. Pressing up or down finds the horizontally
nearest token view in the row above or below the token
view that currently has focus, where a row is defined as the
sequence of tokens delimited by line breaks.

Copy and Paste
In addition to allowing for structural selection (for example,
choosing a whole block, method, or statement), Barista also
provides built-in support for selecting an arbitrary sequence
of tokens, just like conventional text editors. When a
selection is copied and pasted into a token view, Barista
attempts to copy as much structure as possible, and then
reparses as necessary. Barista also provides interaction
techniques for making structural selections with the
keyboard, by using shift with the cursor keys. For example,
when the caret is in the view of var in the expression
print("" + var), the user can type shift-up-up to select
the whole expression, and then shift-down-down to change
the selection back to var.

Serialization
By default, Barista saves code and its associated metadata
(such as the method header in Figure 1) as XML. Barista
can also use the target language’s grammar to generate
syntactically formatted plain text. In this case, any
information associated with the code and any unparsable
code, such as that in Figure 7, is stored as XML inside the
target language’s comment syntax. This allows Barista to
recover the information later, while providing backwards-
compatibility with widely used text processing tools.

Figure 7. A list of unparsable tokens in a Java class.

EXAMPLES
In this section we describe the implementation of several
tools and interaction techniques, in order to demonstrate
Barista’s simplicity and expressiveness.

Live, Embedded Meta-Data
There are a myriad of ways in which programmers have
used textual comments in programs to store information
about code. For example, JavaDocs encode specifications,
“TODO” tags encode reminders, and programmers even
draw diagrams in comments using “ASCII art”, where lines,
shapes and arrows are approximated with ASCII characters.
Also, Latoza et al. have found that developers often take
pictures of whiteboard diagrams that explain the rationale
behind code, but they are unable to put them in places
where others can find them [12]. Unfortunately, text is a
very restricted medium in which to author and represent
such information.

In Figure 1 we portray a more structured, visual alternative
to displaying such metadata, which allows for many kinds
of rich annotation. This includes a prose description of the
method that includes a hyperlink to the declaration of the
Image class, as well as a diagram portraying an example of
the operation. The example code in the annotation is
editable and included in searches and refactoring
operations, keeping the example code up to date.
Implementing this view required adding a property to our
MethodDeclaration class to point to a block of HTML
(supported by the Citrus UI toolkit) and modifying our
MethodDeclarationView to show the HTML above its
header. We are not aware of any other code editors that
provide such a capability.

Highlighting Name Resolution Errors
One obvious requirement for a code editor is to give the
user immediate feedback about errors in the code. For
example, each identifier token in a Java program (other than
those in a declaration), must resolve to a declaration in the
token’s scope; if it does not, the user should be notified so
that they may correct the problem. The feedback in our
editor, seen in Figure 8, places red underlines beneath
identifiers that cannot be resolved. To provide this feedback
required just a few lines of code. We added a binding
property to each identifier token, which is constrained to the
result of a function that resolves a name based on Java’s
name resolution rules. Then we added a LinePaint to the
foreground of the IdentifierView:

has List<Paint> foreground = [(a LinePaint
 y1=1.0 y2=1.0 alpha<-
 (if (model.binding is nothing) 1.0 0.0))]

The y1 and y2 parameters specify that the line appears at
the bottom of the identifier (the x-positions are at the left
and right of the view by default). When changes happen in
the properties on which the binding property depends, the
binding is updated, automatically updating the alpha
transparency of identifier view’s line if on-screen.

Balancing Delimiters
Balancing parentheses, braces, and brackets is a standard
feature of modern code editors, and it was very easy to
implement in our Java editor. Our implementation,
portrayed in Figure 8, involved adding the following code
to our PairedDelimiterView class, which is the base class
of the views of Java parentheses, braces, and brackets:

has List<Behavior> behaviors = [
 (a Behavior event=(a View.ReceivesFocus)
 action=’(do
 (if ((model. pair is nothing) not)

 ((model.pair getView).foreground append
JavaStyle.tokenFocusPaint))

)]

This code states that when this delimiter receives focus, the
focus paint, JavaStyle.tokenFocusPaint, should be added
to the view of the other delimiter in the pair. Each paired
token keeps a pointer to its matching token in the property
named pair. If pair points to something, its view is
retrieved, and the focus paint is appended to its foreground
paint list. A similar event handler is added to remove the
focus paint when the focus is lost.

Dragging Code with the Keyboard
The results of an in-depth study of programmers’ code
editing strategies led to many design ideas for novel
“micro-level” refactorings of code [9], which may help
programmers make low-level modifications to code more
efficiently. For example, programmers frequently moved a
statement out of a block into the containing block by
moving the statement or the delimiter, sometimes using
Eclipse’s support for swapping lines of text. Unfortunately,
when performed textually, these modifications involved a
cumbersome number of selections, cuts, pastes, and caret
movements, and when statements or expressions broke
across lines, were often performed incorrectly.

As an alternative, we implemented interaction techniques
for “dragging” statements and delimiters with the keyboard
by holding down a modifier key and using the arrow keys.
To implement these, we added keyboard event handlers to
the left and right braces and to the base statement view
class to respond to control-up and control-down. Because
all of the statement views in our editor inherit their event
handlers from our StatementView class, the user can invoke
this command from any token in a statement and the event
will passed up the view hierarchy until it is handled by the
statement view. To handle the down event, it evaluates
(model getNext Statement), which traverses the abstract
syntax tree in search for the next structure of type

Figure 8. Visual feedback about name resolution errors and
delimiter pairs, both implemented in just a few lines of code.

Statement. If it finds one, the event handler removes its
model from the block that contains it with the method call
(model.owner.statements remove model) and then
inserts its model into the block that contains the subsequent
statement using the expression (next.owner.statements
insertAfter next model). The Citrus UI toolkit then
automatically handles the necessary updates to the views.

Situated, Task-Appropriate Views
It has long been known that “pretty-printing” computer
programs can improve the readability and comprehension
of code [1, 14], but traditionally such rendering has been
done separate from a programmer’s code editor. Even in
editors that are capable of rendering such views embedded
in code, the users must learn entirely new interaction
techniques for editing text that is laid out in unique ways.

Barista enables editors to situate more readable views in the
code and switch to more editable versions when users need
to edit them. For example, consider the pretty-printed
expression shown in Figure 9 and the “match forms” design
shown in Figure 10 (a less error-prone alternative to textual
representations of logical expressions [15]). When viewed,
both of these types of expressions appear pretty-printed, but
when the user moves the text caret into any of the tokens of
the expression, it changes to a more editable, textual
representation. The user can also optionally toggle between
views using a keyboard shortcut. Both of these alternative
views were implemented just like any other view, but with
custom layouts and appearance. To implement these
interactions, a readable flag was added to all expression
views, and each expression view has two children: its
readable view and its editable view. The hidden flag of
each is constrained such that it is shown when readable has
the appropriate value, and hidden otherwise. The keyboard
shortcut simply toggles readable.

A Focus + Context View of Statement Blocks
Most modern code editors allow programmers to “fold” or
collapse blocks of code to ease navigation and improve
programmer’s awareness of the surrounding context in a
file. One problem with this interaction is that when a
programmer wants to view part of the surrounding context,
they either have to hover over the collapsed code to show a
tool tip, possible occluding relevant code, or expand the
collapsed code, possibly moving relevant code off-screen.

An alternative, portrayed in Figure 11, allows the user to
double-click in the white space of any block in the code to
scale the contents of the block to half their normal size.
This way, the surrounding context is still legible, but uses
less space. To implement this, each block simply responds
to a double-click by toggling a collapsed flag. Each
block’s scale is then constrained to the expression (if
collapsed 0.5 1.0). A simple extension could allow users
to control-drag in the white space to scale the code to any
size. This would be implemented by responding to the drag
event, and instead of constraining the scale of the block,
just modifying it based on the user’s initial drag position.

Another interaction could elide code by replacing it with
“...”, revealing the surrounding context. This would be
implemented in the same way as the views in Figures
Figure 9 and Figure 10. Another alternative view of code
could summarize a user’s location in a file by showing the
structure surrounding the text caret’s location. For example,
if the caret was in an if-statement’s block, the view might
show the file, method, and if-statement condition that the
caret is in, hiding the rest of the surrounding code.

Figure 9. On top, a more readable pretty-printed view of the
distance formula. On bottom is the more editable view that is
shown when the caret is in the expression.

Figure 10. On top, a “match form” representation of a
Boolean expression [15]; on bottom is the more editable view
that is shown when the caret is in the expression.

Figure 11. A focus + context interaction that allows users to
partially collapse blocks of Java code.

Tracking Alternative Expressions
Languages such as Lisp and Python are frequently noted for
their support for exploratory programming, the notion that
programmers should be able to rapidly test alternatives.
While many languages today would claim to support
exploratory programming, no language or environment has
made it easy to keep track of alternatives that have been
explored in the code. Instead, programmers must comment
out code they want to temporarily remove, potentially
losing any useful information stored in the structure,
cluttering the text, and often causing errors [10].

The novel tool in Figure 12 offers a place to keep track of
alternative expressions. Unlike code that is excluded with
comments, the code in these structures can still be edited,
still has support for auto-completion, can still be searched
for, and can still be changed by refactoring tools. To
implement this, we simply added an optional list of
alternative expressions to each Expression structure, and
defined a draggable, closeable view for this list, seen in
Figure 12, to display these alternatives when the expression
receives focus. The user can create an alternative
expression by typing a keyboard shortcut in an expression,
which replaces the expression with an empty expression,
and places the old expression in the alternatives list. The
user can swap in alternatives in this list by selecting them
from the list, and can remove them by backspacing.

DISCUSSION
All code editors must aid users in manipulating the abstract
syntax tree that represents a program written in a particular
language. Beyond this basic requirement, there are a
number of dimensions in which we can compare code
editor implementation frameworks and the editors that they
help to implement.

Implementation Effort
A central contribution of Barista is the simplicity of
implementing editors and the novel tools and interaction
techniques that we have described. Obviously, the small
examples we presented in the previous section cannot
demonstrate the complexity of implementing more refined
and robust tools like those found in commercial systems.
Such comparisons are warranted, but difficult to perform
without extensive use of both implementation frameworks.

Nevertheless, there are several inherent differences between
the Barista and other frameworks that suggest some
advantages. For example, because Barista’s implementation
language is Citrus, a dynamic language with language-level
support for constraints, reflection, and event handling,
many common behaviors such as updating views and
manipulating abstract syntax trees are more easily
expressed and require less code. Furthermore, many
systems, such as Proxima [17], require designers to learn
different languages for defining models and views of code
in different layers, whereas Barista only requires one. While
multiple languages may have the advantage of specific
notations and syntax for specific tasks, this additional
requirement raises issues about how the different languages
may interact to affect the document. As seen in many of the
examples in this paper, in Barista editors, it is
straightforward to manipulate the model from the view.

Language Independence
There are generally two ways that code editor
implementation frameworks can be language independent.
One is by providing universal interaction techniques, which
users can learn once and use for in any editor, for any
language. Plain text code editors do exactly this, and
structured code editors should do the same. Barista
succeeds in this regard by offering a standard text-editing
interaction technique and even standard menu-based and
drag-and-drop interactions. Other structured code editors
have either provided universal, but inflexible interactions
(such as menus and drag-and-drop interactions exclusively),
or no standard interaction techniques at all.

The second way in which code editor implementation
frameworks can be language independent is by supporting
the creation of editors for any type of language. For
example, Harmonia [3] provides powerful support for
generating efficient and flexible parsers and lexers for any
textual language, but it does not support visual languages
such as LabView [6], which are also widely used. Barista
can support both because of its flexible presentation model.
We have begun to implement editors for a variety of other
languages including Lisp, Citrus, and Python.

Flexibility of Interaction Techniques
Another important dimension of editor frameworks is the
flexibility of the interaction techniques that they support.
This can be characterized in terms of two extremes. The
first extreme is the approach of purely parsing editors,
which derive structure from presentation (the presentation
in this case being the text). All textual code editors use this
approach. One benefit of this approach is that the
interaction techniques for editing sequences of characters
(text carets, selections, copy and paste, etc.) is a
prerequisite for basic computer use, so every computer user
has mastered them. In purely textual editors, however, users
must learn a considerable number of syntactic rules to type
correct code so that the compiler will be able to parse it (a
long-standing and well-understood problem).

Figure 12. A tool for managing alternative expressions,
helping users track and explore different solutions.

The opposite extreme is that of a pure structured editor,
which involves deriving presentation from structure
(generating text from structure). Although pure structured
editors can prevent syntax errors entirely, they require users
to learn far more operations than those in a text editor.
Furthermore, structured editing interaction techniques have
traditionally been less efficient and more inflexible than
keyboard-based interaction techniques, requiring a mouse
to navigate through lengthy menus of valid structures and to
drag and drop structures from toolbars. Although Barista
does derive its presentation from structure, it overcomes
these limitations by including parsing techniques that treat
the structure as if it were textual, while at the same time
also supporting menu and drag and drop techniques.

Most existing editors fall somewhere between these two
extremes. For example, several systems such as the Cornell
Program Synthesizer [18], MacGnome [13], and Pecan [16]
were mostly structured, but allowed users to enter a textual
mode. When entered, the editor generated textual code from
the structures, and users could then edit the text. When
leaving the mode, the text was parsed, and users would
have to correct any syntax errors before returning to the
structured editing mode. Barista differs in that all of these
interaction techniques are available in a single mode.

Several text-based editors, such as those in Eclipse and
Visual Studio, and the editors from Harmonia, Ensemble
and Pan [3], incrementally generate structure from the text
when necessary, and use these structures to provide
immediate feedback about errors, automatic formatting, and
other tools. Barista takes the opposite approach by using
structure as its primary representation and incrementally
generating text when necessary.

The Proxima framework [17] is unique in that its editors
can support edits on the visual structure of code. However,
many of the edits can result in unexpected results. For
example, in a Proxima editor, modifying a pretty-printed
expression like that in Figure 9 requires the user to learn
special rules for what will happen when backspace is typed
at the boundaries of the view. Barista editors can overcome
this by offering separate views of code for editing and
reading, as in Figure 9 and Figure 10. Another recent hybrid
editor, JPie [2], attempts to achieve flexibility by creating
an edit-time grammar that adds support for “empty”
expressions and “empty” operators. This is a more specific
instance of Barista’s support for adding error non-terminals
and defining special classes of invalid tokens.

Flexibility of Presentation
We can also compare code editor implementation
frameworks by the degree of control that they give
designers to design the layout, appearance and structure of
the visual presentation of code. Although these may seem
like minor concerns, studies of programmers’ maintenance
task strategies suggests that users spend up to a third of
their time just on the interaction techniques used to navigate
and view code [10]. The study also suggested that helping

programmers gather working sets of arbitrary fragments of
code in a single workspace could remove many of these
navigational bottlenecks; such views are difficult to
implement with raw text, but would be easy with Barista
because of its flexible presentation model.

Therefore, we believe that it is important that editors
provide more structured views of code, enabling more
direct manipulation, annotation and multiple views of
individual structures in abstract syntax trees. A key design
choice in Barista was to use a standard tree of interactive
views like those found in any graphical user interface.
Although many systems have used such trees of views to
render code for viewing (for example, the use of HTML to
represent JavaDocs), none of them have been fully
interactive and editable. The use of interactive views also
allows editor designers to take advantage of prior
experience with GUI programming and they provide a hook
for exploring the advantages of alternative sources of input
that have been developed for regular GUIs, such as speech,
gestures, and pens.

Other frameworks that provide a structured visual
representation have only support a few conventional types
of layouts. For example, the Proxima [17] and Ensemble
[19] editors generally only use box and flow layouts to
arrange text. Because Barista is based on a generic tree of
interactive views, it can support these layouts and even
free-form layouts, allowing editor designers to create
editors in which users can organize code into visual groups.

Barista’s presentation model, while allowing for more
flexibility in the layout and appearance, does sacrifice the
ability to have views whose structures differ substantially
from the structure of their models. For example, Proxima
[17] provides support for creating page layouts for word
processors by creating extended versions of purely textual
documents that add information about pages, headers and
footers. Although this would be possible in Barista, it is not
as well supported, because there is less correspondence
between the models and the views. Nevertheless, this type
of support is arguably less important for code editors.

Persistence of Structure
For many of the ideas that we illustrated that associate
information with code (such as Figure 1 and Figure 12), the
persistence of structure is an absolute requirement:
modifications to code should preserve nearby structures and
associated metadata whenever possible. For example, the
method header information in Figure 1 should be preserved
by the parser even if the left curly brace of the method
declaration were removed, causing the parser to fail.

Commercial environments such as Eclipse do not preserve
structure, making it difficult to associate information with
code at all; instead, Eclipse generates structure from the text
on demand and caches it. The Harmonia framework [3]
makes many important contributions in ensuring persistent
structure, by providing new kinds of parsers that can treat

parse trees as versioned documents. Barista does not
currently have the same level of support for such parsers.
One important concern that Harmonia does not seem to
address, however, is warning users when a structure and its
associated information will be lost. The token views used in
Barista editors provide special notification mechanisms
when a structure will be lost, so that the editor designer may
warn the user before such operations are performed.
Furthermore, Barista was designed to enable more usable
structural edits (such as dragging statements and
delimiters), which inherently preserve structure. Therefore,
Barista can prevent such information losses by enabling the
design of more usable, more efficient, and thus more
enticing interaction techniques for editing and managing
code structurally.

CONCLUSION
Relative to existing code editor implementation
frameworks, Barista makes a number of contributions,
providing editor designers with a standard, usable text-
editing interaction technique and granting considerable
freedom over the interactivity and visual representation of
code and its associated information. We believe there is a
bright future ahead for innovations in programming
environments, and we hope that implementation
frameworks like Barista will make such innovations more
feasible, more usable, and more useful.

ACKNOWLEDGEMENTS
We thank the reviewers for their extensive feedback and
Jeff Stylos, Jeff Nichols, Jacob Wobbrock, Michael
Coblenz and Htet Htet Aung for their insights. This work
was supported by the National Science Foundation under
NSF grant IIS-0329090 and as part of the EUSES
consortium under NSF grant ITR CCR-0324770. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect those of the National Science
Foundation. The first author was supported by an NDSEG
fellowship.

REFERENCES
1. Baecker, R. and Marcus, A., Design Principles for the

Enhanced Presentation of Computer Program Source
Text, CHI (1986), 51-58.

2. Birnbaum, B. E. and Goldman, K. J., Achieving
Flexibility in Direct-Manipulation Programming
Environments by Relaxing the Edit-Time Grammar,
VL/HCC (2005), 259-266.

3. Boshernitsan, M., Harmonia: A Flexible Framework
for Constructing Interactive Language-Based
Programming Tools, University of California,
Berkeley, Technical Report CSD-01-1149, 2001.

4. Garlan, D. B. and Miller, P. L., Gnome: An
Introductory Programming Environment Based on a
Family of Structure Editors, SESPSDE (1984), 65-72.

5. Graham, S. L., Harrison, M. A., and Munson, E. V.,
The Proteus Presentation System, SESPSDE (1992),
130-138.

6. Green, T. R. G. and Petre, M., Usability Analysis of
Visual Programming Environments: A 'Cognitive
Dimensions' Framework, JVLC, 7, (1996), 131-174.

7. Kehoe, C., Stasko, J., and Taylor, A., Rethinking the
Evaluation of Algorithm Animations as Learning Aids:
An Observational Study, IJHCS, 54, 2, (2001), 265-
284.

8. Kelleher, C., Cosgrove, D., Culyba, D., Forlines, C.,
Pratt, J., and Pausch, R., Alice2: Programming without
Syntax Errors, UIST (2002).

9. Ko, A. J., Aung, H., and Myers, B. A., Design
Requirements for More Flexible Structured Editors
from a Study of Programmers' Text Editing, CHI
(2005), 1557-1560.

10. Ko, A. J., Aung, H., and Myers, B. A., Eliciting Design
Requirements for Maintenance-Oriented IDEs: A
Detailed Study of Corrective and Perfective
Maintenance Tasks, ICSE (2005), 126-135.

11. Ko, A. J. and Myers, B. A., Citrus: A Language and
Toolkit for Simplifying the Creation of Structured
Editors for Code and Data, UIST (2005), 3-12.

12. LaToza, T., Venolia, G., and DeLine, R., Maintaining
Mental Models: A Study of Developer Work Habits,
ICSE (2005), to appear.

13. Miller, P., Pane, J., Meter, G., and Vorthmann, S.,
Evolution of Novice Programming Environments: The
Structure Editors of Carnegie Mellon University, ILE,
4, 2, (1994), 140-158.

14. Oman, P. and Cook, C. R., Typographic Style Is More
Than Cosmetic, CACM, 33, 1990, 506-520.

15. Pane, J. F., Myers, B. A., and Miller, L. B., Using HCI
Techniques to Design a More Usable Programming
System, HCC (2002), 198- 206.

16. Reiss, S. P., Graphical Program Development with
Pecan Program Development Systems, SESPSDE
(1984), 30-41.

17. Schrage, M. M., Proxima - a Presentation-Oriented
Editor for Structured Documents, Utrecht University
2004.

18. Teitelbaum, T. and Reps, T., The Cornell Program
Synthesizer: A Syntax-Directed Programming
Environment, CACM, 24, 9, (1981), 563-573.

19. Wagner, T. A. and Graham, S. L., Efficient and
Flexible Incremental Parsing, TOPLAS, 20, 2, (1998),
980-1013.

