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ABSTRACT 
Recent advances in programming environments have 
focused on improving programmer productivity by utilizing 
the inherent structure in computer programs. However, 
because these environments represent code as plain text, it 
is difficult and sometimes impossible to embed interactive 
tools, annotations, and alternative views in the code itself. 
Barista is an implementation framework that enables the 
creation of such user interfaces by simplifying the 
implementation of editors that represent code internally as 
an abstract syntax tree and maintain a corresponding, fully 
structured visual representation on-screen. Barista also 
provides designers of editors with a standard text-editing 
interaction technique that closely mimics that of 
conventional text editors, overcoming a central usability 
issue of previous structured code editors. 
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INTRODUCTION 
Programming environments are the primary user interfaces 
for millions of professional and end-user programmers’ 
work. In recent years, this observation has led to many 
efforts to improve programmer productivity with new tools. 
One tool that exemplifies this effort is the Eclipse 
environment: by incrementally compiling source files as the 
programmer edits them, it can offer semi-immediate 
feedback about errors, quick fixes for common problems, 
code refactoring tools, and improved searching and 
navigation support. 

However, many other potentially useful tools are difficult 
or impossible to implement in environments like Eclipse 
that visually represent code as rows of plain text. For 
example, consider the media-rich annotation portrayed in 
Figure 1; plain text editors would be forced to show such 
annotations as raw HTML source, hiding contextually 
relevant information. Other examples include alternative 
views of code: rather than just text, expressions could be 
pretty-printed to improve readability [1] and complex 
operations on data structures could be animated to improve 
understanding [7]. 

Although it is more feasible to implement these ideas in 
structured code editors, such as those developed in the 
1980’s [13, 16, 18] and more recently with powerful 
frameworks such as Harmonia [3] and Proxima [17], none 
of these have support for embedding such views in code, 
forcing any contextually relevant information about code to 
be placed out of context, in separate windows and dialogs. 

In this paper we present Barista1, an implementation 
framework that overcomes these limitations by offering 
data structures, algorithms, and interaction techniques for 
creating sophisticated code editors like the one in Figure 1. 
The goal of Barista is to make it possible to implement 
novel tools and interactions that improve the usability, user 
experience, and utility of code editors. In fact, the 
annotation support shown in Figure 1 was implemented in 
just a few lines of code using the Barista framework. This 

                                                                                       
 1 Basic Abstractions for Rapidly Implementing Structured Text-editing 
Applications. A barista is makes coffee; our example editor helps make Java code. 

 
Figure 1. A media-rich annotation of a Java method. 
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support was built on top of a basic Barista Java editor, 
which is written in Citrus [11]. Furthermore, unlike 
previous structured code editors, all Barista editors come 
with a standard text-editing interaction technique that is 
quite similar to the one used in conventional text editors. 
This is achieved by fluidly changing the code between 
structured and unstructured text, while presenting a 
consistent visual representation of code on-screen. 
Combined, these features result in an implementation 
framework that is simple and powerful for editor designers 
and may enable the creation of more usable and useful code 
editors for users. 

In the following sections, we provide an overview of related 
work on code editors that utilize structure. We then describe 
the Barista framework in detail and provide numerous 
examples of the types of tools that the framework enables. 
We conclude with a discussion of Barista’s design tradeoffs 
and limitations relative to other frameworks. 

RELATED WORK 
Since the Cornell Program Synthesizer [18] in the late 
1970’s, there have been many efforts to develop usable 
code editors that utilize the inherent structure in computer 
programs. While there are several instances of structured 
editors from the past 30 years [8, 13, 16], we will focus our 
discussion on implementation frameworks that have been 
designed for creating these editors, highlighting tradeoffs 
which have made it difficult to implement embedded tools 
and visualizations like the one portrayed in Figure 1. 

One of the first frameworks for developing structured code 
editors was the GNOME project [4]. Given a language 
grammar, most of a GNOME editor could be generated 
automatically. The editors were largely based on a model-
view-controller architecture, where the models were the 
abstract syntax trees representing the program and the 
views were textual.  However, the editors provided no 
support for editing a textual representation of the code; 
instead, they used a generic menu-based interaction 
technique for structurally modifying trees. The MacGnome 
project relaxed this by allowing small sections of code to be 
temporarily converted into plain text in a separate editing 
mode [11]. Although GNOME editors did support multiple 
views and languages, their visual representation of code 
was limited to text with little support for customization. 

Proxima is a more recent implementation framework for 
developing structured editors consisting of five “layers”: 
document, extended document, layout, arrangement, and 
rendering. The editor designer’s job is to define the 
document’s representation for each layer, and supply 
mappings between all layers that will be edited by the end 
user. For example, end users may edit the document at the 
“layout” level (which is equivalent to editing the text of a 
program), or they may edit at the document level (such as 
inserting a declaration into a list). While the framework 
provides a great deal of flexibility in the design of an editor 

and its interaction techniques, it does so by placing a great 
burden on the editor designer to implement all of these 
layers, as well as to carefully design custom interaction 
techniques for each editable layer. To complicate matters, 
implementing the mappings between layers requires the 
editor designer to learn multiple languages. 

Another example is Eclipse (www.eclipse.org), which has 
one goal of providing abstractions for implementing 
sophisticated code editors. Unlike GNOME and Proxima, 
Eclipse’s framework is largely text-based. Consequently, 
Eclipse editors provide little flexibility in defining novel 
views of code (which is one reason why few Eclipse plug-
ins actually do). Furthermore, while Eclipse provides 
several APIs for implementing the abstract syntax trees of 
the target language, the connections between these trees, the 
parser, and the textual representation of the trees is very 
weak. As a result, it requires considerable effort to write 
code to perform these mappings when implementing tools. 

The Harmonia [3] project, another recent effort to develop a 
framework for developing sophisticated programming 
environments, has its strengths in providing a general 
framework for incrementally lexing and parsing text using a 
language grammar. Editor designers can easily create text 
editors that utilize these services, but there is little support 
for defining custom views of code other than variations in 
font size and color. Harmonia’s predecessor, Ensemble, 
used Proteus [5], a flexible constraint-based layout 
presentation framework. However, it required the design of 
custom interaction techniques for each new view. Also, the 
language used to define views of code was different than 
the language used to implement the rest of an editor. 

Although all of the frameworks discussed in this section are 
limited in their ability to support the type of interactive 
tools and visualizations we have proposed, they do have 
several benefits that Barista does not emphasize. We will 
further discuss these tradeoffs in our discussion. 

THE BARISTA IMPLEMENTATION FRAMEWORK 
To simplify the implementation of code editors that enable 
novel visualizations and tools, Barista combines ideas from 
other editors and implementation frameworks, as well as 
many new ideas, and distills them into a small number of 
simple abstractions and implementation mechanisms. 

Throughout this paper, we will describe the framework in 
the context of the prototype Java editor seen in Figure 1 and 
Figure 2. This editor allows users to create code by either 
typing it with the keyboard, through drag and drop of code 
templates, or using auto-complete menus that contain the 
structures and as well as variable and method names that 
may be legally inserted at the caret. The editor provides 
immediate feedback about errors as well as several other 
features that we will describe below. All of these features 
were implemented in about 2000 lines of Citrus code, using 
the Barista framework and Citrus UI toolkit [11]. The 
framework itself is also about 3000 lines of Citrus code. 



An Overview 
Although more powerful architectures have been proposed, 
such as Proxima’s layered architecture [17], for simplicity’s 
sake, Barista is based on the model-view-controller 
architecture with which many programmers are already 
familiar. The model in a Barista editor consists of the 
abstract syntax tree that is modified during an editing 
session, which consists of structures and tokens. For 
example, Java’s structures include a variety of declarations, 
statements and expressions, and several kinds of tokens, 
including identifiers, separators, literals, and keywords. The 
view in a Barista editor is a tree of interactive views (just 
like the threes found in conventional user interfaces). This 
view tree mimics the structure of the model. Controllers are 
implemented using the event-handling constructs offered by 
the Citrus programming language [10]. 

To illustrate, the models and views used to represent a Java 
IfStatement are shown in Figure 3. Each of the structures 
in the model is represented by a container view, which is 
responsible for arranging and displaying the views of the 
structures contained in its model. For example, the 
IfStatementView contains a LessThanView and a 
ReturnStatementView, and views of the if-keyword and 
parentheses tokens. Each of these tokens consists of the 
token text and its trailing white space. These are visually 
represented with two text fields, which act as the interaction 
points for all textual edits. Because Barista uses a 
conventional view tree, designers have the same control 
over the layout, appearance and interaction techniques of 
views, as they do with any conventional user interface. 

Structures and Structure Views 
To create a Barista editor, the designer defines each of the 
structures in the target language as a subclass of Structure. 
This roughly corresponds to the non-terminals in the 
language’s grammar. For example, Figure 4 shows the 
Citrus class that we defined to represent Java’s grammar for 
an if-statement. The class declares that an IfStatement 
consists of seven properties; some are structures, like the 
Expression named condition, and others are tokens, like 
the LeftParen named left. 

To be able to parse each kind of structure in a language, 
each class must have a grammar. By using reflection to 
inspect the properties type, initial values, and order, Barista 
is often able to infer a suitable grammar for a Citrus class. 
However, because grammars must often be modified to be 
parsable, it is sometimes necessary for designers to 
explicitly provide one. 

Once a Structure is defined, the designer subclasses 
StructureView to represent it visually. To illustrate, 
consider the IfStatementView class, shown in Figure 5. 

 
Figure 2. A Java editor, created with Barista, supporting 
textual editing, auto-completion and drag and drop. 

 
Figure 3. The models and views represented in memory for 
the structures and tokens in a Java if-statement. Each 
structure has a set of properties that point to structures and 
tokens. Each token has text and white space. 

an IfStatement is a Structure that 
   has IfKeyword   if 
   has LeftParen   left 
   has Expression  condition 
   has RightParen  right 
   has Statement   thenStatement 
   has ElseKeyword else 
   has Statement   elseStatement 
. 

Figure 4. The Citrus class for a Java if-statement, 
representing if (Expression) Statement [else Statement]. 

an IfStatementView is a StructureView that 
 
 refs IfStatement model = ? 
 has Real width <- (this rightmostChildsRight) 
 has Real height <- (this tallestChildsHeight) 
 has List<View> children = [ 
   (model.@if toView) 
   (model.@left toView) 
   (model.@condition toView) 
   (model.@right toView) 
   (model.@thenStatement) 
   (an ElseView) 
 ] 
 
 an ElseView is a View that 
 
   has Bool hidden <-  
     (model.elseStatement is nothing) 
   has Bool scale <- (if hidden 0.0 1.0) 
   has List<View> children = [ 
     (model.@else toView) 
     (model.@elseStatement toView)] 
 . 
. 

Figure 5. The Citrus class for a view of a Java if-statement. 



The view declares a property named model, which is a 
reference to the IfStatement that the view represents (the ? 
declares that the model is required at the time of 
instantiation, whereas the other properties have default 
values). The next two lines use the <- operator to constrain 
the view’s width and height to the expressions shown. The 
next property, named children, is a list of all of the views 
contained in the IfStatementView. For example, the 3rd 
child is a view of the IfStatement’s condition. The 
expression (model.@condition toView) results in a view 
of the condition (for example, the LessThanView shown in 
Figure 3). The @ in the toView expression gets the property 
that points to the condition.  This way, the view can listen 
for changes to this property’s value, and upon a change, 
automatically generate a view of the property’s new value, 
freeing the designer from having to write code to keep 
views up to date. Because the else statement is optional, we 
define an inner class named ElseView that contains a view 
of the else keyword and else statement. A constraint on 
hidden hides the view when the IfStatement’s else 
property statement is empty. 

The default layout of the children in a StructureView is the 
same flow layout used by conventional text editors. This is 
implemented by constraining the position of a structure or 
token view to the position after the last character in the 
view of the previous token in the abstract syntax tree. This 
can easily be overridden by using any of the other standard 
layouts provided by the Citrus UI toolkit, or by defining 
new layouts or constraints. 

The view defined in Figure 5 is fairly basic, but several 
extensions can be added in just a few lines of code. For 
example, a “collapsed” flag could be added, and a property 
change listener could hide the body of the if-statement 
when true. To design an alternative view, such as a table of 
condition-action pairs, would take about the same number 
of lines of code as in Figure 5, but would use a different 
layout and would omit the if and else keywords. The 
designer could then provide a way to toggle between the 
two. We give an example of this later. 

Tokens and Token Views 
In addition to defining structures and corresponding 
structure views, editor designers must also specify each 
type of token in the target language as a subclass of Token 
and specify regular expressions that define its legal strings 
and white space. For example, instances of the IfKeyword 
class, used in Figure 4, must always match the string “if” 
and may have arbitrary whitespace.  

Barista provides the TokenView class, which represents a 
token as two text fields that contain the token’s text and 
whitespace. This class implements a conventional text 
editing interaction technique and provides auto-complete 
menus that are generated automatically using the Barista 
parser and designer-supplied grammars. Editor designers 
can subclass this view to customize its size, font, color, 
layout and behavior. For example, in our Java editor, each 

token of a particular type has a different font and color. 
Constraints are used to change the font depending on the 
structure that contains the identifier; for example, as seen in 
Figure 2, an identifier that appears as a name of a class has 
a larger font size than an identifier in an expression. 

The TokenView class’ text editing interaction uses a variant 
of incremental parsing algorithms [19]. When the user types 
a character into a token’s text or white space: 

1. If the modification to the token results in a string that 
complies with the token’s regular expression, the 
modification is allowed and we are done. 

2. Otherwise, the token and its immediately adjacent 
tokens need to be re-tokenized. This results in a 
sequence of one or more new tokens. If tokenization 
fails, the characters are placed in a special invalid 
token, which will be re-tokenized when it is modified. 

3. If the tokenization succeeds, the part of the abstract 
syntax tree affected by this token modification is 
converted into a list of tokens. Structures that were not 
affected, but were part of an affected tree, remain 
structured, and are inserted into the list of tokens as 
“structural” tokens, and handled specially by the 
parser. For example, if a Java block needed to be 
parsed, none of the unaffected statements inside the 
block would be reparsed. 

4. The list of tokens is parsed, reusing any structural 
tokens found in the process. The resulting structure 
replaces the old structure in the tree, which 
automatically updates the view in the editor. 

To illustrate this process, consider the change illustrated in 
Figure 6. When the user types the + into the text field 
representing a123, the parser is invoked by the token view. 
Because a+123 is an invalid Java identifier, it is 
retokenized into the tokens [ a, +, 123 ]. If the user had 
instead changed a123 to ab123, it would still have been a 

 
Figure 6. An example of Barista’s incremental parsing. The 
grey boxes indicate data that was modified or created.  



valid identifier and the token view would have allowed the 
change. The affected structure—the common ancestor of 
the structures to the left and right of the affected tokens in 
the tree—is “unparsed” into a sequence of tokens. In this 
case, the structures left and right are the parentheses, whose 
common ancestor is the method invocation. The modified 
token is replaced by the new tokens, and the list is then 
parsed. While parsing, the parser determines that it can 
reuse the existing invocation structure, and just replaces the 
first expression in the invocation’s argument list with the 
newly created infix expression. The rest of the program is 
unaffected. The token view then replaces old invocation 
with the new, automatically updating the view. This process 
is transparent to both the user and the editor designer. 

We can avoid incremental parsing in some cases by using 
information encoded in the abstract syntax tree. For 
example, in our Java editor, changing = to += only requires 
a single token to be updated, because both tokens are 
instances of the AssignmentOperator class. If the only 
change to a structure is the insertion of a new structure into 
a list, for example, when a statement is inserted into a 
block, we avoid reparsing the list and instead just 
structurally insert the new structure. 

Barista provides several other mechanisms by which 
incremental parsing may be invoked. By default it is 
invoked after every character typed. Another approach is to 
reject any modification to a token that fails to parse. This is 
equivalent to what traditional structured editors do, which 
only allow valid transformations to the tree. The 
implication for the end user however is that many desired 
edits would only be possible through a series of structural 
edits, which typically require far more operations than 
would be needed in textual editors. Another choice is to 
convert the modified tokens to a single invalid token (as 
mentioned in step 3 above). The token view can then later 
tokenize and incrementally parse upon one of several 
events: for example, after the programmer has been idle for 
a certain amount of time or after the user leaves the focus of 
the token view’s text field. Yet another approach is to add 
error productions to the language grammar (a standard 
strategy in implementing parsers), which places the 
unparsable tokens into a special structure. An example of 
this in our Java editor is shown in Figure 7. The advantage 
of this is that this interactive flexibility may be added to 
structures that are modified frequently (such as expressions 
and statements), and not added for high-level structures 
such as class declarations. We offer all of these options, not 
only for performance reasons, but because the appropriate 
immediacy of feedback differs between languages, 
language constructs, user populations, and individuals. Our 

Java editor uses different strategies for different structures. 
For example, error productions were added for expressions 
and statements, whereas syntax errors are disallowed on 
class declarations, which are usually created via drag and 
drop or menus. 

Barista’s parser is language independent and is executed by 
interpreting the grammar supplied by the editor designer or 
automatically generated from the Citrus classes. The parser 
can determine what tokens and structures may follow a 
token, which is used to implement the auto-completion 
shown in Figure 2. For example, if the parser encounters the 
tokens [ if, ( ], it knows it can safely auto-complete the list 
to [ if, (, expression, ), statement ]. These options are 
exposed to the designer as simple flags.  

Text Caret Navigation  
Evidence from a study of programmers’ low-level text 
editing strategies [9] suggests that programmers rely 
heavily on the keyboard for code navigation. Therefore, 
Barista’s TokenView class provides built-in navigations that 
directly mimic those in text-editors. Pressing left or right at 
the edge of a token navigates the text caret to the previous 
or next token’s white space, and navigating at the edge of 
white space similarly navigates to the previous or next 
token in the model. These are implemented in two lines of 
code using Token’s support for determining adjacent tokens 
in the tree. Pressing up or down finds the horizontally 
nearest token view in the row above or below the token 
view that currently has focus, where a row is defined as the 
sequence of tokens delimited by line breaks. 

Copy and Paste 
In addition to allowing for structural selection (for example, 
choosing a whole block, method, or statement), Barista also 
provides built-in support for selecting an arbitrary sequence 
of tokens, just like conventional text editors. When a 
selection is copied and pasted into a token view, Barista 
attempts to copy as much structure as possible, and then 
reparses as necessary. Barista also provides interaction 
techniques for making structural selections with the 
keyboard, by using shift with the cursor keys. For example, 
when the caret is in the view of var in the expression 
print("" + var), the user can type shift-up-up to select 
the whole expression, and then shift-down-down to change 
the selection back to var. 

Serialization 
By default, Barista saves code and its associated metadata 
(such as the method header in Figure 1) as XML. Barista 
can also use the target language’s grammar to generate 
syntactically formatted plain text. In this case, any 
information associated with the code and any unparsable 
code, such as that in Figure 7, is stored as XML inside the 
target language’s comment syntax. This allows Barista to 
recover the information later, while providing backwards-
compatibility with widely used text processing tools.  

Figure 7. A list of unparsable tokens in a Java class. 



EXAMPLES 
In this section we describe the implementation of several 
tools and interaction techniques, in order to demonstrate 
Barista’s simplicity and expressiveness. 

Live, Embedded Meta-Data 
There are a myriad of ways in which programmers have 
used textual comments in programs to store information 
about code. For example, JavaDocs encode specifications, 
“TODO” tags encode reminders, and programmers even 
draw diagrams in comments using “ASCII art”, where lines, 
shapes and arrows are approximated with ASCII characters. 
Also, Latoza et al. have found that developers often take 
pictures of whiteboard diagrams that explain the rationale 
behind code, but they are unable to put them in places 
where others can find them [12]. Unfortunately, text is a 
very restricted medium in which to author and represent 
such information. 

In Figure 1 we portray a more structured, visual alternative 
to displaying such metadata, which allows for many kinds 
of rich annotation. This includes a prose description of the 
method that includes a hyperlink to the declaration of the 
Image class, as well as a diagram portraying an example of 
the operation. The example code in the annotation is 
editable and included in searches and refactoring 
operations, keeping the example code up to date. 
Implementing this view required adding a property to our 
MethodDeclaration class to point to a block of HTML 
(supported by the Citrus UI toolkit) and modifying our 
MethodDeclarationView to show the HTML above its 
header. We are not aware of any other code editors that 
provide such a capability. 

Highlighting Name Resolution Errors 
One obvious requirement for a code editor is to give the 
user immediate feedback about errors in the code. For 
example, each identifier token in a Java program (other than 
those in a declaration), must resolve to a declaration in the 
token’s scope; if it does not, the user should be notified so 
that they may correct the problem. The feedback in our 
editor, seen in Figure 8, places red underlines beneath 
identifiers that cannot be resolved. To provide this feedback 
required just a few lines of code. We added a binding 
property to each identifier token, which is constrained to the 
result of a function that resolves a name based on Java’s 
name resolution rules. Then we added a LinePaint to the 
foreground of the IdentifierView: 

has List<Paint> foreground = [(a LinePaint  
  y1=1.0 y2=1.0 alpha<- 
    (if (model.binding is nothing) 1.0 0.0))] 

The y1 and y2 parameters specify that the line appears at 
the bottom of the identifier (the x-positions are at the left 
and right of the view by default). When changes happen in 
the properties on which the binding property depends, the 
binding is updated, automatically updating the alpha 
transparency of identifier view’s line if on-screen. 

Balancing Delimiters 
Balancing parentheses, braces, and brackets is a standard 
feature of modern code editors, and it was very easy to 
implement in our Java editor. Our implementation, 
portrayed in Figure 8, involved adding the following code 
to our PairedDelimiterView class, which is the base class 
of the views of Java parentheses, braces, and brackets: 

has List<Behavior> behaviors = [ 
  (a Behavior event=(a View.ReceivesFocus)  
     action=’(do 
       (if ((model. pair is nothing) not) 

  ((model.pair getView).foreground append 
JavaStyle.tokenFocusPaint)) 

    )] 

This code states that when this delimiter receives focus, the 
focus paint, JavaStyle.tokenFocusPaint, should be added 
to the view of the other delimiter in the pair. Each paired 
token keeps a pointer to its matching token in the property 
named pair. If pair points to something, its view is 
retrieved, and the focus paint is appended to its foreground 
paint list. A similar event handler is added to remove the 
focus paint when the focus is lost. 

Dragging Code with the Keyboard 
The results of an in-depth study of programmers’ code 
editing strategies led to many design ideas for novel 
“micro-level” refactorings of code [9], which may help 
programmers make low-level modifications to code more 
efficiently. For example, programmers frequently moved a 
statement out of a block into the containing block by 
moving the statement or the delimiter, sometimes using 
Eclipse’s support for swapping lines of text. Unfortunately, 
when performed textually, these modifications involved a 
cumbersome number of selections, cuts, pastes, and caret 
movements, and when statements or expressions broke 
across lines, were often performed incorrectly. 

As an alternative, we implemented interaction techniques 
for “dragging” statements and delimiters with the keyboard 
by holding down a modifier key and using the arrow keys. 
To implement these, we added keyboard event handlers to 
the left and right braces and to the base statement view 
class to respond to control-up and control-down. Because 
all of the statement views in our editor inherit their event 
handlers from our StatementView class, the user can invoke 
this command from any token in a statement and the event 
will passed up the view hierarchy until it is handled by the 
statement view. To handle the down event, it evaluates 
(model getNext Statement), which traverses the abstract 
syntax tree in search for the next structure of type 

 
Figure 8. Visual feedback about name resolution errors and 
delimiter pairs, both implemented in just a few lines of code. 



Statement. If it finds one, the event handler removes its 
model from the block that contains it with the method call 
(model.owner.statements remove model) and then 
inserts its model into the block that contains the subsequent 
statement using the expression (next.owner.statements 
insertAfter next model). The Citrus UI toolkit then 
automatically handles the necessary updates to the views. 

Situated, Task-Appropriate Views 
It has long been known that “pretty-printing” computer 
programs can improve the readability and comprehension 
of code [1, 14], but traditionally such rendering has been 
done separate from a programmer’s code editor. Even in 
editors that are capable of rendering such views embedded 
in code, the users must learn entirely new interaction 
techniques for editing text that is laid out in unique ways. 

Barista enables editors to situate more readable views in the 
code and switch to more editable versions when users need 
to edit them. For example, consider the pretty-printed 
expression shown in Figure 9 and the “match forms” design 
shown in Figure 10 (a less error-prone alternative to textual 
representations of logical expressions [15]). When viewed, 
both of these types of expressions appear pretty-printed, but 
when the user moves the text caret into any of the tokens of 
the expression, it changes to a more editable, textual 
representation. The user can also optionally toggle between 
views using a keyboard shortcut. Both of these alternative 
views were implemented just like any other view, but with 
custom layouts and appearance. To implement these 
interactions, a readable flag was added to all expression 
views, and each expression view has two children: its 
readable view and its editable view. The hidden flag of 
each is constrained such that it is shown when readable has 
the appropriate value, and hidden otherwise. The keyboard 
shortcut simply toggles readable. 

A Focus + Context View of Statement Blocks 
Most modern code editors allow programmers to “fold” or 
collapse blocks of code to ease navigation and improve 
programmer’s awareness of the surrounding context in a 
file. One problem with this interaction is that when a 
programmer wants to view part of the surrounding context, 
they either have to hover over the collapsed code to show a 
tool tip, possible occluding relevant code, or expand the 
collapsed code, possibly moving relevant code off-screen.  

An alternative, portrayed in Figure 11, allows the user to 
double-click in the white space of any block in the code to 
scale the contents of the block to half their normal size. 
This way, the surrounding context is still legible, but uses 
less space. To implement this, each block simply responds 
to a double-click by toggling a collapsed flag. Each 
block’s scale is then constrained to the expression (if 
collapsed 0.5 1.0). A simple extension could allow users 
to control-drag in the white space to scale the code to any 
size. This would be implemented by responding to the drag 
event, and instead of constraining the scale of the block, 
just modifying it based on the user’s initial drag position. 

Another interaction could elide code by replacing it with 
“...”, revealing the surrounding context. This would be 
implemented in the same way as the views in Figures 
Figure 9 and Figure 10. Another alternative view of code 
could summarize a user’s location in a file by showing the 
structure surrounding the text caret’s location. For example, 
if the caret was in an if-statement’s block, the view might 
show the file, method, and if-statement condition that the 
caret is in, hiding the rest of the surrounding code.  

 

 
Figure 9. On top, a more readable pretty-printed view of the 
distance formula. On bottom is the more editable view that is 
shown when the caret is in the expression. 

 

 
Figure 10. On top, a “match form” representation of a 
Boolean expression [15]; on bottom is the more editable view 
that is shown when the caret is in the expression. 

 
Figure 11. A focus + context interaction that allows users to 
partially collapse blocks of Java code. 



Tracking Alternative Expressions 
Languages such as Lisp and Python are frequently noted for 
their support for exploratory programming, the notion that 
programmers should be able to rapidly test alternatives. 
While many languages today would claim to support 
exploratory programming, no language or environment has 
made it easy to keep track of alternatives that have been 
explored in the code. Instead, programmers must comment 
out code they want to temporarily remove, potentially 
losing any useful information stored in the structure, 
cluttering the text, and often causing errors [10]. 

The novel tool in Figure 12 offers a place to keep track of 
alternative expressions. Unlike code that is excluded with 
comments, the code in these structures can still be edited, 
still has support for auto-completion, can still be searched 
for, and can still be changed by refactoring tools. To 
implement this, we simply added an optional list of 
alternative expressions to each Expression structure, and 
defined a draggable, closeable view for this list, seen in 
Figure 12, to display these alternatives when the expression 
receives focus. The user can create an alternative 
expression by typing a keyboard shortcut in an expression, 
which replaces the expression with an empty expression, 
and places the old expression in the alternatives list. The 
user can swap in alternatives in this list by selecting them 
from the list, and can remove them by backspacing. 

DISCUSSION 
All code editors must aid users in manipulating the abstract 
syntax tree that represents a program written in a particular 
language. Beyond this basic requirement, there are a 
number of dimensions in which we can compare code 
editor implementation frameworks and the editors that they 
help to implement. 

Implementation Effort 
A central contribution of Barista is the simplicity of 
implementing editors and the novel tools and interaction 
techniques that we have described. Obviously, the small 
examples we presented in the previous section cannot 
demonstrate the complexity of implementing more refined 
and robust tools like those found in commercial systems. 
Such comparisons are warranted, but difficult to perform 
without extensive use of both implementation frameworks.  

Nevertheless, there are several inherent differences between 
the Barista and other frameworks that suggest some 
advantages. For example, because Barista’s implementation 
language is Citrus, a dynamic language with language-level 
support for constraints, reflection, and event handling, 
many common behaviors such as updating views and 
manipulating abstract syntax trees are more easily 
expressed and require less code. Furthermore, many 
systems, such as Proxima [17], require designers to learn 
different languages for defining models and views of code 
in different layers, whereas Barista only requires one. While 
multiple languages may have the advantage of specific 
notations and syntax for specific tasks, this additional 
requirement raises issues about how the different languages 
may interact to affect the document. As seen in many of the 
examples in this paper, in Barista editors, it is 
straightforward to manipulate the model from the view. 

Language Independence 
There are generally two ways that code editor 
implementation frameworks can be language independent.  
One is by providing universal interaction techniques, which 
users can learn once and use for in any editor, for any 
language. Plain text code editors do exactly this, and 
structured code editors should do the same. Barista 
succeeds in this regard by offering a standard text-editing 
interaction technique and even standard menu-based and 
drag-and-drop interactions. Other structured code editors 
have either provided universal, but inflexible interactions 
(such as menus and drag-and-drop interactions exclusively), 
or no standard interaction techniques at all. 

The second way in which code editor implementation 
frameworks can be language independent is by supporting 
the creation of editors for any type of language. For 
example, Harmonia [3] provides powerful support for 
generating efficient and flexible parsers and lexers for any 
textual language, but it does not support visual languages 
such as LabView [6], which are also widely used. Barista 
can support both because of its flexible presentation model. 
We have begun to implement editors for a variety of other 
languages including Lisp, Citrus, and Python. 

Flexibility of Interaction Techniques 
Another important dimension of editor frameworks is the 
flexibility of the interaction techniques that they support. 
This can be characterized in terms of two extremes. The 
first extreme is the approach of purely parsing editors, 
which derive structure from presentation (the presentation 
in this case being the text). All textual code editors use this 
approach. One benefit of this approach is that the 
interaction techniques for editing sequences of characters 
(text carets, selections, copy and paste, etc.) is a 
prerequisite for basic computer use, so every computer user 
has mastered them. In purely textual editors, however, users 
must learn a considerable number of syntactic rules to type 
correct code so that the compiler will be able to parse it (a 
long-standing and well-understood problem). 

 
Figure 12. A tool for managing alternative expressions, 
helping users track and explore different solutions. 



The opposite extreme is that of a pure structured editor, 
which involves deriving presentation from structure 
(generating text from structure). Although pure structured 
editors can prevent syntax errors entirely, they require users 
to learn far more operations than those in a text editor. 
Furthermore, structured editing interaction techniques have 
traditionally been less efficient and more inflexible than 
keyboard-based interaction techniques, requiring a mouse 
to navigate through lengthy menus of valid structures and to 
drag and drop structures from toolbars. Although Barista 
does derive its presentation from structure, it overcomes 
these limitations by including parsing techniques that treat 
the structure as if it were textual, while at the same time 
also supporting menu and drag and drop techniques. 

Most existing editors fall somewhere between these two 
extremes. For example, several systems such as the Cornell 
Program Synthesizer [18], MacGnome [13], and Pecan [16] 
were mostly structured, but allowed users to enter a textual 
mode. When entered, the editor generated textual code from 
the structures, and users could then edit the text. When 
leaving the mode, the text was parsed, and users would 
have to correct any syntax errors before returning to the 
structured editing mode. Barista differs in that all of these 
interaction techniques are available in a single mode. 

Several text-based editors, such as those in Eclipse and 
Visual Studio, and the editors from Harmonia, Ensemble 
and Pan [3], incrementally generate structure from the text 
when necessary, and use these structures to provide 
immediate feedback about errors, automatic formatting, and 
other tools. Barista takes the opposite approach by using 
structure as its primary representation and incrementally 
generating text when necessary. 

The Proxima framework [17] is unique in that its editors 
can support edits on the visual structure of code. However, 
many of the edits can result in unexpected results. For 
example, in a Proxima editor, modifying a pretty-printed 
expression like that in Figure 9 requires the user to learn 
special rules for what will happen when backspace is typed 
at the boundaries of the view. Barista editors can overcome 
this by offering separate views of code for editing and 
reading, as in Figure 9 and Figure 10. Another recent hybrid 
editor, JPie [2], attempts to achieve flexibility by creating 
an edit-time grammar that adds support for “empty” 
expressions and “empty” operators. This is a more specific 
instance of Barista’s support for adding error non-terminals 
and defining special classes of invalid tokens.  

Flexibility of Presentation 
We can also compare code editor implementation 
frameworks by the degree of control that they give 
designers to design the layout, appearance and structure of 
the visual presentation of code. Although these may seem 
like minor concerns, studies of programmers’ maintenance 
task strategies suggests that users spend up to a third of 
their time just on the interaction techniques used to navigate 
and view code [10]. The study also suggested that helping 

programmers gather working sets of arbitrary fragments of 
code in a single workspace could remove many of these 
navigational bottlenecks; such views are difficult to 
implement with raw text, but would be easy with Barista 
because of its flexible presentation model. 

Therefore, we believe that it is important that editors 
provide more structured views of code, enabling more 
direct manipulation, annotation and multiple views of 
individual structures in abstract syntax trees. A key design 
choice in Barista was to use a standard tree of interactive 
views like those found in any graphical user interface. 
Although many systems have used such trees of views to 
render code for viewing (for example, the use of HTML to 
represent JavaDocs), none of them have been fully 
interactive and editable. The use of interactive views also 
allows editor designers to take advantage of prior 
experience with GUI programming and they provide a hook 
for exploring the advantages of alternative sources of input 
that have been developed for regular GUIs, such as speech, 
gestures, and pens. 

Other frameworks that provide a structured visual 
representation have only support a few conventional types 
of layouts. For example, the Proxima [17] and Ensemble 
[19] editors generally only use box and flow layouts to 
arrange text. Because Barista is based on a generic tree of 
interactive views, it can support these layouts and even 
free-form layouts, allowing editor designers to create 
editors in which users can organize code into visual groups. 

Barista’s presentation model, while allowing for more 
flexibility in the layout and appearance, does sacrifice the 
ability to have views whose structures differ substantially 
from the structure of their models. For example, Proxima 
[17] provides support for creating page layouts for word 
processors by creating extended versions of purely textual 
documents that add information about pages, headers and 
footers. Although this would be possible in Barista, it is not 
as well supported, because there is less correspondence 
between the models and the views. Nevertheless, this type 
of support is arguably less important for code editors. 

Persistence of Structure 
For many of the ideas that we illustrated that associate 
information with code (such as Figure 1 and Figure 12), the 
persistence of structure is an absolute requirement: 
modifications to code should preserve nearby structures and 
associated metadata whenever possible. For example, the 
method header information in Figure 1 should be preserved 
by the parser even if the left curly brace of the method 
declaration were removed, causing the parser to fail. 

Commercial environments such as Eclipse do not preserve 
structure, making it difficult to associate information with 
code at all; instead, Eclipse generates structure from the text 
on demand and caches it. The Harmonia framework [3] 
makes many important contributions in ensuring persistent 
structure, by providing new kinds of parsers that can treat 



parse trees as versioned documents. Barista does not 
currently have the same level of support for such parsers. 
One important concern that Harmonia does not seem to 
address, however, is warning users when a structure and its 
associated information will be lost. The token views used in 
Barista editors provide special notification mechanisms 
when a structure will be lost, so that the editor designer may 
warn the user before such operations are performed. 
Furthermore, Barista was designed to enable more usable 
structural edits (such as dragging statements and 
delimiters), which inherently preserve structure. Therefore, 
Barista can prevent such information losses by enabling the 
design of more usable, more efficient, and thus more 
enticing interaction techniques for editing and managing 
code structurally. 

CONCLUSION 
Relative to existing code editor implementation 
frameworks, Barista makes a number of contributions, 
providing editor designers with a standard, usable text-
editing interaction technique and granting considerable 
freedom over the interactivity and visual representation of 
code and its associated information. We believe there is a 
bright future ahead for innovations in programming 
environments, and we hope that implementation 
frameworks like Barista will make such innovations more 
feasible, more usable, and more useful. 
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