
Eliciting Design Requirements for
Maintenance-Oriented IDEs: A Detailed Study of

Corrective and Perfective Maintenance Tasks
Andrew J. Ko, Htet Htet Aung, and Brad A. Myers

Human-Computer Interaction Institute
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA, 15213
ajko@cmu.edu, hha@zizawah.com, bam+@cs.cmu.edu

ABSTRACT
Recently, several innovative tools have found their way into
mainstream use in modern development environments. However,
most of these tools have focused on creating and modifying code,
despite evidence that most of programmers’ time is spent
understanding code as part of maintenance tasks. If new tools
were designed to directly support these maintenance tasks, what
types would be most helpful? To find out, a study of expert Java
programmers using Eclipse was performed. The study suggests
that maintenance work consists of three activities: (1) forming a
working set of task-relevant code fragments; (2) navigating the
dependencies within this working set; and (3) repairing or creating
the necessary code. The study identified several trends in these
activities, as well as many opportunities for new tools that could
save programmers up to 35% of the time they currently spend on
maintenance tasks.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Integrated environments.

General Terms
Design, Human Factors.

1. INTRODUCTION
In past decades, it has become increasingly clear that most
software undergoes a brief period of rapid development, followed
by a much longer period of maintenance, added features, and
adaptation to new contexts of use [4]. Thus, an important
challenge in software engineering research is to create new and
more useful tools for understanding and reshaping software as its
requirements change.

Several new tools have been widely adopted, but they typically
focused only on the creation of code. In particular, Java
developers have quickly adopted Eclipse, an integrated

development environment (IDE), for its incremental compiling,
refactoring support, and “quick fixes” for common errors. This is
despite evidence that 60-90% of software development costs
involve the reading and navigation of code as part of
programmers’ maintenance tasks [8]. While there have been
extensive efforts to study these activities, few have assessed the
impact of modern IDEs on these tasks.

In this paper, we describe a study of expert Java programmers
using the Eclipse IDE to work on five maintenance tasks. Our
goal was to discover fundamental activities in maintenance work
and use this understanding to elicit design requirements for new
tools to support maintenance tasks. The results of our study
suggest that maintenance work interleaves three fundamental
activities: (1) collecting a group of task-relevant code fragments,
which we call a working set; (2) navigating these code fragments’
dependencies (such as uses and declares relationships); and (3)
repairing or creating the necessary code. We identify many trends,
including that programmers spent an average of 35% of their time
simply navigating between dependencies, and an average of 46%
of their time inspecting task-irrelevant code. These observations
and many others motivate the design of several new tools.

In the next section, we briefly review prior research on
maintenance tasks. In Section 3 we describe the design of our
study. In Sections 4 and 5, we describe qualitative and empirical
assessments of our data, respectively. We end in Section 6 with a
set of design recommendations for maintenance-oriented tools,
and a conceptual sketch of a new IDE under development.

2. RELATED WORK
Maintenance work has been studied from many perspectives. For
example, many theories of software comprehension include the
notion that understanding results in part by the recognition of
“beacons,” or recurring patterns of code [3, 6]. Corritore and
Widenbeck studied the direction of programmers’ comprehension
strategies, finding that object-oriented programmers tend to start
top-down, but use an increasingly bottom-up approach as they
work [5]. Teasley studied the effects of naming-style [17], finding
that poorly named program elements can affect novice
comprehension, but have little impact on expert comprehension.
Green compared the impact of textual and visual languages,
finding that visual languages better facilitate the understanding of
dataflow, but incur more interactive overhead when editing [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

One limitation of all of these studies is that they have typically
had programmers study a program for some (often fixed) period
of time and only then have them work on a maintenance task. This
is despite evidence that programmers interleave reading and
modifying under more realistic conditions [7]. To our knowledge,
there have been no studies of the influence of IDEs on
maintenance tasks without such artificial constraints.

In addition to studies, there have been several tools designed to
support software maintenance. For example, Antoniol et al.
describe a system for detecting design patterns [1], which may
better help programmers understand the software architecture of
large systems. Other maintenance tools, such as the one described
by Beyer et al., support queries on specific structures in programs
[2]. Müller describes a class of reverse-engineering tools [14] that
are designed to help understand legacy systems. While all of these
tools have proven beneficial for forming a holistic understanding
of software architectures, to our knowledge, there are no tools that
directly support the actual work of maintaining code, other than
the tools offered by existing IDEs.

3. THE ECLIPSE STUDY
The goal of our study was to discover fundamental activities in
maintenance work in order to inspire new ideas for more helpful
tools. To this end, we employed a methodology [12] that involves
recording every detail of programmers’ work in full screen-
captured videos. The study required programmers to complete
five maintenance tasks over a 70-minute period while responding
to intermittent interruptions. We included interruptions to reduce
the study’s artificiality: there is considerable evidence that
interruptions are frequent in software engineering workplaces [10,
15] and we wanted to see if IDEs could help handle them.

Our decision to study programmers in the lab instead of “in the
large” was driven by our need to compare programmers’
strategies. Had we studied programmers working on different
code, as would be the case in industry, we would not know if
differences in programmers’ work were due to variations in
strategy or in code. Because this was a lab study, programmers
worked alone, had no long-term deadlines, and were motivated
only by the monetary incentive that we provided. This places
obvious limitations on the study’s generality. We will address
these issues throughout this section and at the end of this paper.

3.1 The Participants
We recruited 10 programmers. In a pre-test survey, 7 claimed to
be “Java experts” and 3 claimed “above-average” Java expertise.
All claimed to use either Eclipse or Visual Studio “regularly,” and
reported programming a mean of 24 (±20) hours a week. The
group was all male with a mean age of 23 (±3) years, and was
comprised of 6 senior and 2 doctoral computer science students, 1
MS in computer engineering, and 1 MS in information systems.

3.2 The Paint Program
The Paint program (shown in Figure 1) was a 503-line Java
Swing application with 9 Java classes (in 9 files), which allowed
users to draw, erase, clear and undo colored strokes on a white
canvas. It was based on the concept of a PaintObjectConstructor,
which created strokes from mouse locations accumulated between
mouse down and up events. Because participants were unfamiliar
with the code, our results may not generalize to situations in
which programmers are closely familiar with the code they
maintain. It is also possible that some of our observations are a
consequence of the program’s size, rather than aspects of
maintenance work. Finally, because the code was written without
time-constraints, the quality of its design may not be
representative of code that is maintained in industry.

3.3 Tasks and Tools
Participants were given the user complaints and requests
described in 2nd and 3rd columns in Table 1 and 70 minutes to
complete as many of the tasks as they could, in any order.

Figure 1. Paint, debugged and improved over 70 minutes.

Table 1. The five maintenance tasks and their solutions. Participants were not shown the solutions or task names.
Task Name Complaint or Request Task Solution
SCROLL Users complained that scroll bars

don’t always appear after painting
outside the canvas, but when
they do appear, the canvas
doesn’t look right.

Fix Paint so that (1) the scroll bars appear
immediately when painting outside the visible
canvas and (2) the canvas is correctly
rendered when using the scroll bars to
navigate the canvas.

The “preferred size” of the canvas inside of the scroll
pane was not being updated as strokes were created,
preventing the scroll bars from appearing when painting
outside the window. This also caused the scroll pane to
only repaint a fixed region.

YELLOW Users complained that they can’t
select yellow.

Fix Paint so that users can paint with the color
yellow.

The green slider’s value was used twice in the
colorChangeListener, but the blue slider’s not at all.

UNDO Users complained that the “Undo
my last stroke” button doesn’t
always work.

Fix Paint so that the Undo my last stroke
button undoes the last stroke or clear of the
canvas.

There was no repaint call after the undo operation,
causing the window to repaint only after some other
operation that caused a repaint.

LINE Users requested a line tool.
There’s a radio button for it, but it
doesn’t work yet.

Create a line tool that allows users to draw a
line between two points. Users should be able
to see the line while dragging.

A simple solution involved copying the PencilPaint class
and revising its paint algorithm to draw a single line
between the first and most recent points.

THICKNESS Users requested control over the
stroke thickness of the pencil,
eraser, and line tools.

Create a thickness slider with values from
values 1 to 50, which controls the thickness of
the stroke for all tools.

A simple solution involved copying the initialization and
event listener code for one of the color sliders, and
calling setThickness() instead of setColor().

Interruptions came from a server on the experimenter’s machine
and appeared on the participant's machine as a flashing taskbar
item with an audible alert. The interruptions were designed to
require programmers’ full attention, mimicking real interruptions
[15] such as requests from coworkers for help on unrelated
projects. Thus, when clicked, a full-screen dialog appeared with a
2-digit multiplication question and text box for the answer. The
server sent interruptions randomly, approximately every three
minutes. The order of interruptions was fixed and identical. Each
question was unique and did not contain 1 and 0 digits.

Participants were given the Eclipse 2.1.2 IDE (released March
2004) and a project with the 9 source files. Participants were
allowed to use any resource they desired, including the Internet.
The browser’s default page was the Java 1.4 API documentation.
Participants used a PC and 17” 1024 x 768 LCD. Screen capture
videos were recorded at 12 frames per second in 24-bit color and
had no discernable impact on the PC’s performance.

3.4 The Procedure
Participants worked individually in a private lab. Participants
completed a survey on their programming expertise and were then
told that they would be given five user requests for an application
and would have 70 minutes to complete them. Participants were
told they would be paid $10 for each request completed.
Participants were then told that a flashing taskbar item would
occasionally interrupt them and that they should click it as soon as
possible and answer the arithmetic problem presented.
Participants were told they would lose $2 for each problem
ignored or answered incorrectly. This was used to give the
interruptions some cost, but was not actually enforced.
Participants were told that their work would be recorded with
screen capturing software. Participants were then given the user
complaints and requests and told to address as many as possible in
the next 70 minutes. Afterwards, the experimenter evaluated the
participants’ code and paid participants accordingly.

4. A QUALITATIVE ASSESSMENT
Our resulting data set consisted of approximately 12 hours of
screen-captured video. The first phase of our analysis focused on
uncovering fundamental activities in programmers’ work. Our
examination of the videos involved several steps:

1. Looking ahead in the video to determine which task the
programmer was working on.

2. Returning to the beginning of the task to determine the
goal of each of the programmer’s individual actions.

3. Generalizing from the goals of programmers’ individual
actions to more general activities.

The first two authors performed these analyses together over
about 40 hours, finding several trends in programmers’ work. We
give an overview of these trends in this section, and discuss them
with empirical evidence in Section 5.

The most apparent trend in programmers’ work was their
interleaving of three activities: (1) collecting a small working set
of task-relevant code fragments; (2) navigating dependencies
within the working set; and (3) editing and creating the code
necessary to complete the maintenance task. The dark gray
regions in Figure 2 portrays one such working set.

We noticed many patterns in programmers’ formation of working
sets. For example, when starting a task, they tended to ask one of
two questions:

1. How does X work? Programmers asked this when they
wanted to integrate new and existing code (as in LINE and
THICKNESS in Table 1).

2. Why did(n’t) X happen? These were asked when
programmers sought the cause of Paint’s output (as in
SCROLL, YELLOW, and UNDO).

Following these questions, programmers began a process of
forming their working set. Because programmers started with no
knowledge of Paint’s implementation, they were initially biased
by what it seemed to be doing at runtime. Once they were more
familiar with the code, they were biased by seemingly task-
relevant names of files, methods, and variables.

Once programmers found task-relevant code, they tended to
explore the code’s dependencies. During this exploration,
programmers looked for answers to questions such as “What
defines this variable’s value?” and “What uses this variable’s
definition?” Programmers’ efficiency in answering these questions
seemed to be influenced by which tools they used. Some tools
seemed to slow programmers’ progress by imposing significant
interactive overhead (e.g., extra clicking and visual searches),
while others provided hidden or inconsistent feedback that caused
programmers to overlook important code.

Several things impeded the creation and repair of code. For
example, Eclipse often provided hidden or inconsistent error
highlighting, causing programmers to act on misinformation.
Programmers also made errors when duplicating code via copy
and paste, sometimes leaving copied references unchanged, or
only copying part of a pattern of code.

Figure 2. The 503 lines of the Paint program. Each box
represents a single Java class file. The white regions portray
the code that one programmer scrolled through, but did not
stop to read, while working on the THICKNESS task. The light
gray regions portray the code that he navigated to and read.
The dark gray regions portray the code that he included in his
working set, as indicated by his frequent navigation of
dependencies between these regions.

5. AN EMPIRICAL ASSESSMENT
In order to empirically assess the trends described in the previous
section, the first two authors transcribed the events listed in Table
2 from participants’ videos, along with the start and stop times for
each. They also recorded switches between the 5 maintenance
tasks, situations in which programmers asked how and why
questions, and any errors that programmers introduced. The first
two authors enumerated Paint’s static and dynamic dependencies
prior to transcription so that they could detect navigations of these
dependencies in the videos. The first two authors transcribed each
participant’s video together, taking about 3 hours per programmer.

In this section, we provide empirical evidence for the trends
described in the previous section. We report per programmer
averages as average (± standard deviation) (space prohibits a
thorough discussion of any skew, and/or floor or ceiling effects in
this distributions). All time proportions we report exclude any
time spent on handling interruptions, which accounted for an
average of 22% (±6) of programmers’ time.

5.1 Division of Labor
Table 3 lists the number of programmers completing each task
and the average time spent on each task (independent of whether
the task was completed). Overall, each programmer finished an
average of 3.5 (±0.8) tasks in 70 minutes. The pie chart shown in
Figure 3 portrays programmers’ average division of labor in terms
of the events in Table 2 (read counter-clockwise).

5.2 Forming a Working Set
Based on our qualitative assessments, the programmers’ central
goal for each maintenance task was to collect a working set of
task-relevant code fragments. We considered any code fragment
that a programmer modified or followed static or dynamic
dependencies on to be part of the programmer’s working set for a
task. These code fragments were individual statements or
expressions, lists of statements, or complete methods, and
consisted of an average of 18 (±11) lines of Java code per task.

Programmers began each task by searching for task-relevant code.
Of the 48 instances of a programmer beginning work on a task, 40
began with a search for a task-relevant name of a program
element. For example, when beginning the LINE task,
programmers often searched for the text string “line,” “drag,” or
“pencil.” Among these searches, only 1/2 led to task-relevant code;
in the other instances, the name led to task irrelevant code.
Programmers used Eclipse’s find and replace dialog for only 6 of
these searches; in all other instances, they scrolled through the
code, visually searching for the task-relevant names. In the 8
instances where programmers did not search for a name, they
navigated to code that they were familiar with from previous
tasks; only 2 such navigations led to relevant code.

Surface features of Paint’s output influenced programmers’
choice of names to search for or familiar code to inspect. For
example, 8 of the 9 programmers who attempted the SCROLL task
first resized the Paint window and noticed that the canvas was
only partially painted; thus, they decided to find a method name
with the name “paint” in it, which typically led them to the
paintComponent() method of the canvas, which was irrelevant.
Overall, an average of 88% (±11) of programmers’ hypotheses
about the cause of runtime failures were false, causing each
programmer to spend an average of 25 (±9) minutes of their time
inspecting task-irrelevant code. This data is comparable to our
prior studies of false hypotheses in novice programming [13].

Five programmers temporarily abandoned the more difficult tasks
(LINE and SCROLL) to work on easier tasks. Because part of their
working sets were represented by the open file tabs (as in Figure
4) and the state of the package explorer (as in Figure 5), they often
lost their working sets when closing tabs or package explorer
nodes. When programmers returned to these tasks, they spent an
average of 60 seconds (±28) recovering their working sets.

Table 2. The types of events transcribed from the screen-
captured videos of programmers’ work and what details were
recorded for each.

Reading a segment of code, identified by the movement of the text
caret through a code fragment or the hovering of the mouse over code.

Editing code, and the tool that was used (keyboard, copy and paste,
refactoring, quick fixes, etc.).

Navigating between dependencies, the tool that was used to perform
the navigation, and whether the navigation returned to code recently
navigated from.

Searching for names, and the Eclipse tool that was used.

Testing Paint. The duration of testing was recorded from the time of
execution to the time of returning to Eclipse.

Reading the Java API documentation and whether Eclipse or a web
browser was used to view it.

Switching environments (between Eclipse, Paint and the web browser).

Reading the task descriptions.

Table 3. The number of programmers completing each task
and the average time spent on each.

Task # of Programmers that
Completing the Task

Average Time Spent on
Task

SCROLL 1 of 10 17 (±13) min.

YELLOW 10 of 10 10 (±8) min.

UNDO 9 of 10 6 (±5) min.

LINE 6 of 10 22 (±12) min.

THICKNESS 10 of 10 17 (±8) min.

Figure 3. Programmers’ division of labor (excluding

interruptions) in terms of the events in listed in Table 2.

5.3 Navigating the Working Set
Each programmer navigated an average of 65 (±18) dependencies
over their 70-minutes. A close inspection of these navigations
revealed two types. Some were of direct dependencies, such as
going from a variable’s use to its declaration, or from a method’s
signature to a call on the method. The other type of navigation
was of indirect dependencies, such as going from a variable’s use
to the method that computed its most recent value. Programmers
tended to make these indirect navigations once they understood
the intermediate direct dependencies. The proportions of each
type of navigation are given in Table 4.

5.3.1 Navigations of Direct Dependencies
An average of 58% (±20) of programmers’ navigations were of
direct dependencies. Though every programmer used Eclipse’s
support for navigating these direct dependencies at least once
(when available), only 2 programmers used the tools more than
once, and only then for an average of 4 (±2) navigations. Instead,
they used less sophisticated tools such as the find and replace
dialog. There are several reasons why they may have preferred
other tools. For example, programmers had to set up the Java
Search dialog and then iterate through its results. Then, in using
both the Java Search and Open Declaration tools, new tabs were
often opened, incurring the future cost of searching through and
eventually closing the new tabs if the files they represented were
not relevant.

Programmers used the find and replace dialog for an average of 8
(±6) of their navigations of direct relationships. Programmers
spent an average of 9 (±5) seconds iterating through matches
before finding a relevant reference and frequently had to
reposition the dialog to uncover concealed code. Also, in 5
instances of using the dialog, programmers did not notice that
“wrap search” was unchecked, and as a result, were led to believe
that the file had no occurrences of the string. One programmer
spent as much as 6 minutes searching for a name elsewhere before
discovering that there were in fact several uses in the original file.

Overall, an average of 27% (±13) of programmers’ navigations of
direct dependencies returned to code just navigated from. This
suggests that over half of programmers’ navigations of direct
relationships were part of “glances” (there and back).
Programmers searched for an average of 9 (±7) seconds before
finding their previous location, costing an average of over 2 (±1)
minutes per programmer over all of their direct navigations.

5.3.2 Navigations of Indirect Dependencies
An average of 42% (±20) of programmers’ navigations were of
indirect dependencies. Because Eclipse’s support for navigating
direct dependencies was unhelpful for these navigations,
programmers had to use the scroll bars, page up and down keys,
the package explorer and the file tabs instead.

Figure 4. The file tabs, which represented part of a programmer’s working set of task-relevant code. Because file names were
truncated and many had identical prefixes, programmers spent considerable time searching through the tabs for a particular file.

Figure 5. The package explorer, which represented part of

programmers’ working sets.

Table 4. Types of dependencies that programmers navigated,
the percent of each type among all programmers’ navigations,
and the Eclipse tool that directly supported the navigation.

Type of Dependency % of All Eclipse Tool

Indirect 42% (±20) -

This class’s declaration 10% (±4) Open declaration

Uses of this variable 10% (±5) Java search

Calls to this method 8% (±8) Java search

This variable’s type 8% (±4) Open declaration

Uses of this variable’s new value 7% (±4) -

This method’s declaration 6% (±4) Open declaration

Statement that set this variable 5% (±5) -

Uses of this class 4% (±3) Java search

When navigating within a file using the scroll bars or page up and
down keys, programmers had to perform lengthy visual searches
for their targets, costing each programmer, on average, a total of
10 (±4) minutes. Three programmers tried to avoid this overhead
by using Eclipse’s bookmarks to mark task-relevant code but then
always ended up having more than two bookmarks to choose from
and could not recall what code each one represented. This
required clicking on each bookmark, which was no faster than
their average scrolling time. Bookmarks also incurred the
“cleanup” costs of their later removal when starting a new task.

Programmers had to use the package explorer and the file tabs to
navigate indirect relationships that were between files. When
several tabs were open (as in Figure 4), programmers could not
read the file names. If the package explorer had several expanded
nodes (as in Figure 5), programmers had to scroll to find their
targets. Overall, this overhead cost each programmer an average
of 5 (±1) minutes.

An average of 34% (±23) of programmers’ navigations of indirect
relationships returned to a code fragment that was recently
inspected. Programmers were likely performing these navigations
in order to juxtapose and compare a set of code fragments. In each
of these navigations, programmers searched for an average of 10
seconds (±14) before finding their target, costing an average of
about 2 (±1) minutes per programmer overall. Although Eclipse
supports viewing multiple files side-by-side, placing any more
than two files side-by-side would have incurred the interactive
overhead of horizontal scrolling within each of the views since so
little code would have been visible.

5.4 Hidden and Inconsistent Feedback
After programmers sufficiently understood their working set of
code, they began to create or repair the code necessary to
complete their task. They faced several obstacles in obtaining
reliable feedback from Eclipse in the process.

Many obstacles were simple compiler errors. Eclipse is different
from other modern IDEs because it incrementally compiles code
while it is being edited, allowing more immediate feedback about
compiler errors. While this was frequently helpful for identifying
common errors, there were 24 instances across the 10
programmers’ sessions where Eclipse marked valid syntax as
invalid. For example, when programmers forgot syntactic
delimiters such as semi-colons or curly braces, Eclipse marked the
valid syntax just after the missing delimiter as incorrect (as in
Figure 6). In these situations, programmers knew that the
highlighted code was valid, but they had to spend time searching
for the invalid code. Also, because Eclipse’s incremental compiler
was often invoked only after a file was save, code that
programmers thought they had repaired, and in fact did repair,
often remained marked as invalid (as in Figure 7). If programmers
were interrupted before they had saved, they often returned from
interruptions, not realizing they had not saved, and tried to repair
their already valid code. Overall, each instance where Eclipse
inconsistently marked code cost an average of 38 seconds (and at
least 10 seconds) before programmers realized the inconsistency.

Three programmers overlooked the off-screen error in Figure 8 an
average of 3 times before noticing it. This cost each of these
programmers an average of 6 (±1) minutes of unnecessary
debugging. In many situations, programmers quickly scrolled to
right to glance at the code off-screen, and quickly scrolled back.

Figure 6. Eclipse frequently marked syntactically valid code
as invalid because of syntax errors above.

Figure 7. Eclipse frequently marked valid code as invalid
because programmers had not invoked the incremental
compiler by saving the file. As a result, programmers spent
time trying to repair valid syntax.

Figure 8. The off-screen duplication of a reference to gSlider
(the solution to the YELLOW task), which was frequently
overlooked because programmers only glanced at it.

Figure 9. Two copy and paste errors caused by an
interruption. At (1), tSlider’s listener should be changed from
colorChangeListener to thicknessChangeListener. In (2), the
programmer neglected to add tPanel to the colorPanel.

5.5 Copy and Paste Errors
Every programmer used copy and paste for the LINE and
THICKNESS tasks to copy code and then modify it to perform a
similar function. Programmers copied code an average of 4 (±3)
times during their work. This behavior was previously
documented by Rosson and Carroll in a study of Smalltalk [16].

In 10% of the copies, the programmer left one or more visually
indistinct or off-screen references unchanged (one such error is
portrayed in point 1 of Figure 9). Because these references were
syntactically valid, the compiler did not complain, and because
programmers believed that their copied code was correct, it was
the last place they looked for errors. Programmers spent an
average of 3 (±1) minutes testing false hypotheses before finding
these errors, except in one case (not included in the average),
where a programmer worked for over 18 minutes.

In 12% of the copies, the programmer only copied part of a
pattern of code that had to be distributed within and/or between
files. These partially copied patterns often led to dead-end data:
variables that were assigned some value that was not subsequently
used (one such error is shown in 2 of Figure 9, where the new
tPanel was supposed to be added to the colorPanel). When these
errors led to runtime failures, programmers did not think to look
for these unused definitions, because they did not know they were
unused. Programmers spent an average of 4 (±1) minutes testing
false hypotheses before finding such dead end data.

5.6 Overall Navigational Overhead
While no single problem in the previous sections incurred
dramatic overhead, overall, navigation was a significant
bottleneck. Adding the navigational costs of recovering working
sets, iterating through search results, returning from navigations,
and navigating between indirect dependencies within and between
files, programmers spent an average of 19 minutes, or 35% of
their time not spent answering interruptions, simply navigating.

6. DESIGN REQUIREMENTS AND IDEAS
The central goal of our study was to elicit design requirements for
tools to help with maintenance tasks. To this end, we present a
summary of our empirical findings and corresponding design
requirements in Table 5. It is important to note that the
requirements listed in Table 5 do not include requirements from
our study already satisfied by Eclipse. For example, the results of
our study suggest that Eclipse’s “open declaration” and other Java
search tools are essential features for every maintenance-oriented
IDE. Here, we limit our discussion to requirements that have yet
to be satisfied by a modern IDE.

Given these requirements, what type of environment would best
satisfy them? There are several possibilities. For example, since
many of the bottlenecks identified in our study were partially due
to a lack of screen real estate, it is possible that simply giving
programmers a larger screen, but the same environment, might
mitigate many of these inefficiencies. However, while more space
would, for example, leave more room for file tabs and result in
fewer off-screen code fragments, it would not make direct or
indirect dependencies easier to identify or navigate, nor would it
help any of the other fundamental difficulties discussed in Table
5. Furthermore, more space might even introduce issues with
screen real estate management, removing one interactive
bottleneck, while introducing another.

Rather than further discuss incremental improvements to Eclipse,
in the rest of this section we discuss several new ideas for
maintenance-oriented IDEs. We will describe these ideas relative
to the conceptual sketch of a new kind of maintenance-oriented
IDE shown in Figure 10. We will discuss the features of the IDE
by the requirements in Table 5 that the features satisfy, and use
one programmer’s working set for the THICKNESS task, which is
portrayed in Figure 2, to illustrate our points.

Table 5. Design requirements for maintenance-oriented tools, elicited from the empirical trends in the study.

Empirical Result Design Requirement for Maintenance-Oriented Tools

R1 Programmers formed working sets of task-relevant methods and
statements.

Provide a working set interface that supports the quick addition and
removal of task-relevant code fragments.

R2 Because programmers had to store their working sets in the interactive
state of file tabs and package explorer, when they changed tasks, they
lost their working set.

Automatically save and recover of working sets of task-relevant code
fragments, ensuring that the tools used to navigate working sets are
distinct from the tools used to represent working sets.

R3 When programmers found task-relevant code, they tended to glance at
its dependencies. Also, more than 60% of navigations of indirect
relationships were for the purpose of comparison. All of these incurred
significant visual search costs.

When programmers add code to a working set interface, automatically
add its direct and indirect dependencies. Then, directly or indirectly
related code could be placed side-by-side, avoiding the interactive
overhead of opening and closing file tabs.

R4 When copying code, programmers often left indistinct or off-screen
references unchanged. Because they believed the copied code was
correct, it was the last place they checked for errors.

Copied code should maintain a dependency with its “original” so that
unchanged references can be marked as “suspect” until verified. These
markers should be apparent even when off-screen.

R5 When copying a pattern of code that was distributed within or between
files, programmers often duplicated only part of the pattern, leading to
dead-end data.

When programmers copy code, the IDE should check if the programmer
is neglecting any dependencies in the copied code and offer to help
collect them.

R6 Programmers searched for task-relevant names, but only half of such
searches led to task-relevant code. Programmers also used surface
features of Paint’s output to deduce the cause of failures, but only a 1/4
of such features correlated with the cause.

Let programmers ask about program output of interest and have the IDE
gather all of the code that was directly responsible for the output in
question. This way, the correct working set can be built automatically by
the IDE.

6.1 Fragments Instead of Files
Programmers’ working sets consisted of code fragments
containing individual statements and methods, as opposed to
whole files (R1 in Table 5). Thus, IDEs should allow
programmers to organize and view their work in terms of these
fragments. For example, the tool in Figure 10 portrays all of the
code fragments that were part of one programmers’ final working
set for the THICKNESS task on a single screen. Compare this view
of the code to the extent of his navigations portrayed in Figure 2.

To add code fragments, programmers could simply select a region
of code in a traditional editor and drag it to the environment
shown in Figure 10. When doing so, the IDE could automatically
add all of the direct and indirect dependencies in the code.
Programmers could then “prune away” the task-irrelevant
dependencies by simply dragging them out. Having the system
automatically include dependencies, rather than having the
programmer collect them manually, would ensure that no
dependencies were overlooked, possibly preventing future errors.

6.2 Sets of Working Sets
Because programmers’ working sets were represented by the
interactive state of the package explorer and file tabs,
programmers frequently lost their working sets when changing
tasks (R2) because they had to close tabs and collapse nodes to
make room for others. Instead, programming environments could
allow programmers to save explicit representations of their
working sets and help maintain a list of unfinished maintenance
tasks, as in point (1) in Figure 10. This way, if a programmer was
working on several independent maintenance tasks, all of the
relevant state could be preserved and recovered by the

environment, rather than manually by the programmer. In
collaborative software development situations, the iconic
representations of a working set could become highlighted when
other programmers modify code fragments that are part of the
working set. Not only would this give programmers a notification
about a potentially important changes in their tasks, but it would
also create the opportunity for collaboration on the task, or help
avoid the overhead of a duplicated effort.

6.3 Supporting Reading
Nearly 1/5th of programmers’ time was spent reading code within
a fixed view in the Eclipse editor (as in Figure 3). This reading
likely consisted of visual searches for local dependencies in the
code, by looking for similar names. Thus, it could be very helpful
to highlight dependencies in the code automatically (points 2, 3
and 4) based on the current text caret position or text selection
(point 5). This way, programmers could inspect a program
element’s dependencies by simply clicking and moving the text
caret, as opposed to using Eclipse’s cumbersome commands and
dialogs. This would incur virtually no interactive overhead, but
would reveal nearly all of the important relationships for which
programmers in our study had to carefully read (and re-read) to
discover, even those that would have been off-screen.

In addition to reducing the interactive cost of finding
dependencies, this selection-based dependency highlighting could
also help prevent and find errors. For example, as soon as the text
caret moves over the reference to bSlider at point (5) on the right
in Figure 10, the invalid reference to bSlider at point (4) on the
left becomes immediately obvious, especially given its relative
distance from the other valid references.

Figure 10. A conceptual sketch of one possible maintenance-oriented development environment that could satisfy the requirements
listed in Table 5. Each of the circled numbers is discussed throughout Section 6.

6.4 Visualizing Dependencies
Programmers spent considerable time glancing at dependencies as
well as navigating between indirect dependencies for the purposes
of comparison (R3). Instead of requiring programmers to navigate
such relationships, programming environments could explicitly
visualize these dependencies side-by-side, as in point (6) in Figure
10. If all of the dependencies were on a single screen, there would
be virtually no interactive overhead to compare a set of code
fragments, since both direct and indirect relationships could be
viewed without navigating. This would have saved each
programmer an average of 9.2 minutes in our 70-minute study.

In addition to more traditional relationships such as “uses” and
“declares,” “copy of” relationships could also be shown, as in
point (7), to help programmers compare copied code to its
original. Unchanged references in the copied code could be
highlighted, as shown in point (8), which would have prevented
the costly errors in our study (R4). Also, to help avoid errors when
copying code that is distributed within a file (R5), the IDE could
hide unrelated code in order to bring the indirectly dependent code
closer, as in point (9).

6.5 Context In-Place
One potential tradeoff of the view in Figure 10 would be that
programmers would not see the code surrounding each code
fragments. While our study suggests that such context is mainly
useful only for navigation, there may be other situations context is
important. One way to support this would be to show the
surrounding code in-place. For example, programmers could hold
a meta key in order to temporarily see the surrounding code
around the text caret, without having to navigate to it. This could
serve as a quick reminder of the purpose of the surrounding code,
but would incur very little interactive overhead to invoke.

6.6 Working Sets From Questions
When starting a task, programmers typically asked a how or why
question about the program’s output (R6). To answer these
questions, programmers essentially had to guess an answer to the
question and then verify it by inspecting the code. Not only did
this cost time, but programmers also frequently made risky
assumptions about the program’s runtime behavior in the process,
often leading to errors. Therefore, instead of requiring
programmers to answer these why and how questions themselves,
programming environments could provide an interface for asking
directly about program output and have the system automatically
build a working set of task-relevant code with a precise dynamic
slice [18] on the output in question. This is in fact precisely what
the Whyline [13] does for why did and why didn’t questions,
which was shown to reduce novices’ debugging time by a factor
of 8, and help them complete 40% more tasks compared to
novices without the Whyline.

When using a Whyline-like tool to ask “why” questions (point
10), programmers questions could be checked for invalid
assumptions about the program’s runtime behavior, and the
interface could reveal such assumptions by comparing the
question against what actually happened in the program’s runtime
history. For example, the programmers in our study could have
asked, “Why wasn’t undoButton’s action executed?” and the tool
could have replied, “undoButton’s action was executed; maybe its
execution didn’t change anything on-screen?” This would prevent
programmers from acting on false assumptions about a program’s

behavior, saving time, and potentially preventing errors from
being introduced due to these false assumptions. Furthermore, the
tool could automatically build a working set of the code executed
as a result of the action being executed, helping the programmer
to find out whether and why nothing changed on-screen. We are
currently developing a Whyline prototype for Java.

To use the “What happens when...?” tool to answer how questions
(point 10), programmers could execute a program, click the
“What happens when...?” button, and then perform some action
on a user interface in the program to show the tool what dynamic
behavior to analyze. For example, to determine what happens
when a button is pressed in a program with a graphical user
interface, rather than manually inspect a program’s code for code
that seems related, the programmer could ask the environment to
automatically collect all of the static and dynamic dependencies
related to the click event on the button of interest by simpling
clicking on the button. The environment would then build a
working set of code that was executed as a result of clicking the
button, determine all of the direct and indirect static and dynamic
dependencies, and present them to the programmer.

7. CONCLUSIONS
We have presented a study that suggests that maintenance work
consists of three fundamental activities focused on forming,
navigating, and manipulating a working set of task-relevant code
fragments. Our findings are largely consistent with previous
studies of program comprehension: programmers’ understanding
is facilitated by recognizable patterns in code [3, 6]; expert
programmers often start understanding code top-down, but finish
bottom-up [5]; and programmers follow an as-needed strategy for
navigating dependencies [9]. Our study augments these findings
with a higher-level account of maintenance work, and specific
data on the impact of the Eclipse IDE on programmers’
maintenance task performance. In particular, our study found that
on average, programmers spent about 35% of their time with the
mechanics of navigating between dependencies.

Of course, our study also suffers from several limitations. The 10
programmers in our study are not likely to be representative of
programmers in industry. The size of the Paint program is
certainly not representative of heavily maintained software
systems. Programmers that work on teams may have different
strategies for maintaining code that do not involve forming
working sets of task-relevant code; for example, they may be
given a set of code to maintain and have to collaborate with other
maintainers if their tasks take them outside of this set. Further
studies of maintenance work are required to verify the
generalizability of our findings.

Despite such limitations, our study’s findings have directly
inspired several novel ideas for maintenance-oriented IDEs that
deserve further elaboration and development. We are currently
building an environment like the one portrayed in Figure 10 to
support Java programs that we hope will both eliminate the
interactive overhead identified by our study, as well as come
closer to solving some of the fundamental difficulties of
maintenance activity that we observed. We intend to evaluate its
utility both in the lab and in the large to see how well the findings
in our study generalize in practice. We hope that others will find
the results presented in this paper useful for similar inspirations.

8. ACKNOWLEDGEMENTS
We would like to thank Scott Hudson, James Fogarty, Elsabeth
Golden, Santosh Mathan, and Karen Tang for helping with the
experiment design and execution, and we also thank the study
participants for their efforts.

This work was funded in part by the National Science Foundation,
under NSF grant IIS-0329090, and as part of the EUSES
consortium (End Users Shaping Effective Software) under NSF
grant ITR CCR-0324770. The first author is also supported under
a National Defense Science and Engineering Graduate
Fellowship. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of the National
Science Foundation.

9. REFERENCES
[1] Antoniol, G., Fiutem, R., and Cristoforetti, L., Design Pattern

Recovery in Object-Oriented Software, 6th IEEE
International Workshop on Program Understanding, 153–
160, 1998.

[2] Beyer, D., Noack, A., and Lewerentz, C., Simple and
Efficient Relational Querying of Software Structures, 10th
IEEE Working Conference on Reverse Engineering, 2003.

[3] Boehm-Davis, D. A., Fox, J. E., and Philips, B. H.,
Techniques for Exploring Program Comprehension,
Empirical Studies of Programmers, Washington D.C., 3-37,
1996.

[4] Brooks, F. P., The Mythical Man-Month: Essays on Software
Engineering, 20th anniversary edition ed: Addison-Wesley,
1995.

[5] Corritore, C. L. and Wiedenbeck, S., An Exploratory Study
of Program Comprehension Strategies of Procedural and
Object-Oriented Programmers, International Journal of
Human-Computer Studies, 54, 1-23, 2001.

[6] Crosby, M. E., Scholtz, J., and Widenbeck, S., The Roles
Beacons Play in Comprehension for Novice and Expert
Programmers, 14th Workshop of the Psychology of
Programming Interest Group, Brunel University, 58-73,
2002.

[7] Davies, S. P., Models and Theories of Programming
Strategy, International Journal of Man-Machine Studies, 39,
236-267, 1993.

[8] Erlikh, L., "Leveraging Legacy System Dollars for E-
Business," in IT Pro, vol. May/June, 2000, pp. 17-23.

[9] Fry, C., Programming on an Already Full Brain,
Communications of the ACM, 40, 4, 55-64, 1997.

[10] Gonzalez, V. M. and Mark, G., "Constant, Constant, Multi-
Tasking Craziness": Managing Multiple Working Spheres,
CHI 2004, Vienna, Austria, 113-120, 2004.

[11] Green, T. R. G., Petre, M., and Bellamy, R. K. E.,
Comprehensibility of Visual and Textual Programs: A Test
of Superlativism against the 'Match-Mismatch' Conjecture,
Empirical Studies of Programmers, 4th Workshop, 121-146,
1991.

[12] Ko, A. J. and Myers, B. A., A Framework and Methodology
for Studying the Causes of Software Errors in Programming
Systems, To appear in the Journal of Visual Languages and
Computing, 2004.

[13] Ko, A. J. and Myers, B. A., Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Behavior, CHI 2004, Vienna, Austria, 151-158, 2004.

[14] Müller, H. A., Orgun, M. A., Tilley, S. R., and Uhl, J. S., A
Reverse Engineering Approach to Subsystem Structure
Identification, Journal of Software Maintenance: Research
and Practice, 5, 4, 181-204, 1993.

[15] Perlow, L., The Time Famine: Toward a Sociology of Work
Time, Administrative Science Quarterly, 44, 57-81, 1999.

[16] Rosson, M. B. and Carroll, J. M., The Reuses of Uses in
Smalltalk Programming, ACM Transactions on Computer-
Human Interaction, 3, 3, 219-253, 1996.

[17] Teasley, B. E., The Effects of Naming Style and Expertise on
Program Comprehension, International Journal of Human-
Computer Studies, 40, 757-770, 1994.

[18] Zhang, X. and Zhang, Y., Precise Dynamic Slicing
Algorithms, International Conference on Software
Engineering, Portland, OR, 319-329, 2003.

