
Human Factors Affecting Dependability in
End-User Programming

Andrew J. Ko and Brad A. Myers
Human-Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave, Pittsburgh, PA 15213

ajko@cmu.edu, bam@cs.cmu.edu

ABSTRACT
Human factors affecting the dependability of end user’s programs
are discussed in the context of controlled and observational
studies of both professional and end-user programmers. These
factors include the influence of the types of behaviors that end
users wish to implement, end user’s fundamental cognitive biases,
barriers in the languages, environments, libraries, and other tools
used by end users, and end users’ difficulties with understanding
their code’s meaning and execution.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Integrated environments.

General Terms
Design, Human Factors.

Keywords
End-user programming, human factors.

1. INTRODUCTION
The goal of project Marmalade (www.cs.cmu.edu/~NatProg) is to
design innovative programming environments, tools, and
interaction techniques that significantly lower the barriers to
successful programming. An important part of achieving this goal
has been to better understand the barriers in programming systems
that make it difficult for both professional and end-user
programmers to be successful. This has involved several empirical
studies of programmers, both observational [3, 4] and controlled
[5, 6], using various programming systems including Alice [2],
Visual Basic.NET, and Macromedia Flash and Director.
In this paper we would like to share some of our more general
insights from these studies in the hopes of fostering discussion
about some of the central factors affecting the dependability of
end users’ programs. In summary, these factors include:

• What end users want their programs to do;

• Fundamental cognitive biases that can cause end users to
introduce errors into code;

• The languages, environments, libraries, and tools used by
end users to create their programs;

• The code that end users create; and,
• The errors in the code that end users create.

We will end our discussion with some insights on the implications
for the design of end-user programming environments.

2. What End Users Want Programs to Do
One factor that influenced end-user programmers’ success in our
studies was the behaviors that they wanted their programs to
perform.
In many cases, our participants found that the algorithm they
desired was in many ways more complicated than the code
required to implement it. For example, when participants were
required to implement their own sorting algorithm for a list of
names, it was the algorithm itself, and not the code that they had
to write to implement the algorithm, that caused them the most
difficulties and the most errors.

In other cases, end-user programmers’ expected a particular
behavior to be straightforward to implement, but found that
several other things had to be implemented in order to achieve the
behavior they desired. For example, in our study of Visual
Basic.NET [7], we observed one student try to create an alarm
clock that would play digital music. After a few hours of simply
trying to get a timer to count seconds, he decided to abandon the
digital music idea, and just focus on getting the alarm clock to
work.

We have also observed that end-user programmers sometimes
found that the behavior they desired was beyond the scope of the
programming system’s abstractions. When this occurred, they
were forced to either solve a problem in a very cumbersome and
unintuitive way, frequently leading to errors, or else find a
different programming system that offered more suitable
abstractions. For example, many of the participants in our study of
Visual Basic.NET wanted to create animations, but found that its
support for animations was minimal. Many programmers, rather
than move to a programming system tailored towards animation
such as Flash, instead tried to find workarounds for animation by
searching on the Internet. Programmers reported that they had
already invested so much into one programming system that
learning another would not be worth their time.

3. End User’s Cognitive Biases
End-user programmers, like all people, have several fundamental
cognitive biases that directly affect their ability to create correct
programs. We identified and discussed these biases in detail in an
article on the cognitive causes of software errors [6]. In summary,
these biases follow a simple pattern: when given the choice,
people tend to follow the path of least resistance. For example:

• We tend to collect only enough information needed to make
a decision, and not necessarily the best one. Consequently,
we frequently make misinformed decisions, simplifying
assumptions, and false hypotheses. For example, in all of our
studies of debugging, end-user programmers tested the first
hypothesis that came to mind, not necessarily the best
hypothesis, and certainly not all of the hypotheses.

• We tend to use the tools that let us reach our short-term goals
the quickest, regardless of their impact on our long-term
goals. For example, even when end users in our studies of
Alice had the long-term goal of creating well-parameterized,
extensible animations for use in many circumstances, they
avoided parameterizing the animations entirely because it
allowed them to implement the first animation more quickly.
This, in turn, made the animation code more difficult to reuse
for later projects.

• We tend to prefer more immediate, but less useful feedback
over more delayed, but more useful feedback. For example,
in our studies of debugging, programmers used print
statements because they would quickly get some data about
their program’s execution, even when using a breakpoint
would have given them more accurate and concrete data
about their particular debugging problem.

• We tend to prefer simple explanations for phenomena to
more complex ones; in particular, we often believe that there
is only a single cause behind some phenomena, when in fact
there may be multiple. In our studies of debugging, users
generally only considered one possible cause of a program
failure at a time, even if there were in fact multiple.
Furthermore, when one cause was repaired but the other
causes still resulted in some failure, users assumed that the
repair must not have been necessary and often undid it.

• We tend to believe that events that are correlated also have
some causal relationship. For example, several times in our
studies, users’ programs exhibited some failure shortly after
they made some change, and the user believed that their
recent change was the cause of the failure. It many cases,
however, the recent change had nothing to do with the
failure; it was actually due to some other error that was
coincidentally manifested at the same time.

• Hypotheses that we form with impoverished data tend to
interfere with our interpretation of new and more accurate
data, leading to oversimplified or faulty models of a problem
space. For example, when users in our studies copied and
pasted code, they often tested it with a single test case, and
later, when seeing their program fail, overlooked the copied
code as a potential cause of the failure due to the earlier
assumption of its correctness.

In our studies, the effects of these cognitive biases were not
limited to any particular part of programming activity: we have
seen them cause problems when end-user programmers are
writing, changing, testing, understanding and debugging code.

4. Languages, Libraries, and Tools
Another factor that affected end-user programmers’ success in our
studies were the programming languages, environments, libraries,
debuggers, and other tools used by end users. When we studied
Visual Basic and Macromedia Flash [7], we found that each part
of a programming system has a user interface like any other
software tool—even the languages and libraries—and that each
one posed specific barriers to end users’ success:

• Language syntax was a significant problem, despite each
environment’s attempt to offer support for repairing syntax
errors. This was largely because users did not know the
syntax or how to learn it. Many of the participants in our
study of Visual Basic.NET admitted that, were they not
required to learn the language for a class, they would have
stopped trying within the first week because of their trouble
with syntax. This suggests that end-user programming
systems need new, more learnable interaction techniques for
constructing code. We are currently working on this problem,
designing new approaches to structured editing [8].

• If users were comfortable with a language construct, method
call or other tool, they often tried to use it in inappropriate
ways when they perceived a high cost in finding and learning
to use a new and more appropriate tool, or when they did not
know such a tool existed. For example, many users in our
study of Visual Basic.NET became accustomed to using for
loops and avoided learning how to use other loops, even
when they had trouble using the for loop for a particular task.

• Oftentimes, the sheer number of ways to implement a
behavior in Visual Basic and Flash was a problem. For
example, when using Visual Basic, users found two ways to
obtain the current date, three ways in which the dates and
times could be stored, and nearly a dozen ways to keep time.
Consequently, choosing an approach to implementing a
behavior was often more difficult than implementing any one
of the approaches, because they did not know which would
actually suit their needs.

• In many cases, users could only accomplish a task through
the coordinated use of two or more language constructs, API
calls, or other tools, but figuring out how to use the them
together—or how not to use them together—was never
straightforward. For example, nearly all of the students in our
study of Visual Basic spent hours determining how to pass
data from one Visual Basic form to another.

In all of our studies, a common way that end-user programmers
overcame these barriers was through informal apprenticeships:
less experienced programmers consulted with more experienced
programmers in order to solve or better understand a problem.
One idea is that end-user programming systems could offer ways
of helping less experienced users find more expert users [11].
Another way that end users overcame these barriers was to find
example code on the Internet and adapt it for their purposes.
While this frequently helped them make progress, it almost
always led to the introduction of errors. The example code often
contained errors itself, or adapting the code was not
straightforward because important context was missing. We are
interested in investigating ways that end-user programming
systems could help find example code based on the type of
behavior that users want to implement, and provide support for
integrating the example into their code.

5. The Code
One thing that makes programming unique is that it involves the
creation of an artifact that will be interpreted by a machine [1].
Consequently, end-user programmers, as with anybody who
programs, must have some sense of how this machine will
interpret what they have created. In our studies, however, after
end-user programmers created code, they often did not know what
it meant or how it worked, let alone how a computer might
interpret it; this was often because they had only succeeded with
the help of others, through face-to-face help or example code.
Many participants said, “I don’t know why this works, but I’m not
going to change it...” or “I don’t remember how I did this, and I’m
not eager to find out.” When asked to describe a particularly
complicated block of code, one said, “Oh, that’s some magic I
found on the web. It does what I need it to, but I have no idea
how.” Because of this lack of understanding of their own code,
end users frequently introduced errors when they had to modify it.

When end users executed their code, their lack of understanding
about how the computer interpreted their code led directly to
difficulties understanding why their program behaved as it did. In
all of our studies, when end-user programmers observed their
program fail, they always reacted with a “Why did...” or “Why
didn’t...” question about their program’s behavior. For example,
in our studies of Alice [5], they asked, “Why didn’t Pac-Man
resize?” or “Why didn’t the big dot disappear?” The program’s
output, often the most familiar part of the program to the end-user
programmer, was the most salient thing to ask about, but also the
most difficult thing to answer. Users had to:
• Think of a question to ask;
• Think of a possible answer;
• Think of a way to verify their hypothesis; and
• Think of an alternative explanation after finding out the first

was wrong.
Not only were each of these steps prone to the cognitive biases
discussed in Section 3 (such as choosing false hypotheses based
on a limited understanding of how the machine interpreted their
program), but also the programming environments provided no
support for accomplishing these steps. Furthermore, when
thinking of a way to verify their hypothesis, most end users chose
to modify their code in some way instead of collecting data to test
their hypothesis.

End-user programmers would benefit from tools to help consider
various hypotheses, helping to remove any bias toward any one
particular hypothesis, as well as tools to help test a hypothesis by
collecting information related to the hypothesis. Our Whyline
debugging tool addresses all of these problems [5].

6. The Errors
In our studies, we found that all of the factors discussed thus far—
the programs that end-user programmers want to write, their
inherent cognitive biases, the tools they use, and the code that
they create—were in some way responsible for the introduction of
errors in their code. But in many cases, errors were also indirectly
responsible for further errors. For example,

• When trying to debug one error, many users mistakenly
attributed the cause of a failure to a correct fragment of code,
only to modify the correct code in an attempt to repair the
error, introducing new errors.

• Many users, after long periods of fruitless debugging,
decided to delete all of the code that they thought was
erroneous, and start over. This was particularly problematic
when the code that they deleted was not broken, since none
of the end users kept version histories of their code.

• End users frequently introduced errors because of some false
assumption, and after testing their program and believing it
had succeeded, also believed that their false assumption was
confirmed, leading to further errors due to the same
assumption. For example, when using Flash, end users
frequently had animations that looked quite similar. When
they created code to go from one animation to another, but
using incorrect parameters, when testing, they often believed
that the code worked because the animation looked similar.
They then continued to use the incorrect parameters in other
code.

These situations, being quite common, suggest that if end-user
programming systems can prevent a single type of error, they may
actually be preventing a whole class of potential errors. Further
research is necessary to determine what types these might be.

7. What To Do?
All of our studies’ findings, combined with the decades of
research on the psychology of programming [9], suggest that
programming requires an acute attention to detail—something
which is in direct opposition to decades of research on human
error [10] that suggests that people are optimized for making
decisions that are merely “good enough” for the current situation.

As programming system designers, what can we do about this?
We certainly cannot change human nature. While software
engineers are trained to suppress their human nature by being
thorough, planning ahead, and using process and methodology to
their advantage, we can make no such assumptions about end user
programmers. Most end users will learn just enough about a tool
to support their primary task, and would not even think to use a
process—they have their own processes in their primary work
activities to worry about.
We can, however, change the programming systems that end users
interact with. To start, we can design programming systems that
help end-user programmers attend to “important” details.
Otherwise, they will be solely responsible for deciding what is
important to attend to, and we know from extensive research on
human error that people make biased, short-term assessments of
importance. We can also minimize the time that end users have to
spend on “unimportant” details by having the programming
system do any work that the programmer need not be involved in.
For example, if at some point the programmer will have to find all
of the valid method calls for an object, have the computer do the
searching for them, since it is much more objective and thorough
than the end user.

The next obvious question is, what are the “important” details? In
some sense, only the end-user programmer knows what is
important, since they are the only ones who understand what they
want their program to do. As programming system designers,
then, one way to assess the “importance” of some detail is to
determine the degree to which it minimizes the influence of end-
user programmers’ own biases on their decisions. By minimizing
this influence, we may maximize end-user programmers’ ability
to achieve the goals they intend to achieve, were it not for their
inherent subjectivity.

Under this definition, we can make several design suggestions:

• Instead of having users generate their own hypotheses about
the cause of a runtime failure, have the programming system
provide a more objective and exhaustive list of possible
explanations and have end users choose from them.

• Instead of having users collect information about their
program’s runtime execution manually via print statements
and other facilities, have the system collect it for them, and
then allow them to evaluate it relative to the behavior they
expected.

• Instead of having users guess what values a variable had
during the last execution of the program, show them a
complete list of the values so that they can verify them
relative to what they expected.

• Instead of having users conceive of their own design patterns
for using an API, give them reusable templates that have
been thoroughly tested and carefully designed to support
common tasks.

• Instead of expecting users to recall a language syntax, design
interaction techniques for editing code that allow them to
simply recognize the syntax. This might involve the drag and
drop interactions in Alice [2], or new types of structured
keyboard-based interactions that mimic interactions with
freeform text [8]. This would also free users from having to
manage the layout of text in order to keep it readable.

• Instead of expecting users to remember their remaining
development tasks, remember their tasks for them by
supporting to-do lists that are both embedded in context and
aggregated globally in the environment. Better yet,
programming systems could generate to-do list items
automatically by, for example, identifying unhandled cases
in a set of conditionals, noting procedures that have yet to be
called, and finding variables that were assigned some value
that was never used.

• Instead of requiring users to manage copies of code
manually, offer facilities that identify copied code
automatically and either help users generalize their copied
code, or simply maintain the relationships between the
original and copied code. In the latter case, when the original
code changes, users could be reminded and asked what
action to take, if any.

The common theme underlying all of these examples is that both
parties in the interaction do what they do best: programming
systems are responsible for being objective, deterministic, and
thorough, and end-user are responsible for being creative and
judging whether program’s behavior is what they expect.

8. Conclusion
We have summarized a number of human factors issues that affect
the dependability of end user’s programs, based on several
observational and controlled studies of both professional and end-
user programmers. We are currently working on several new
tools, based on our findings:

• The Whyline [5], a debugging tool that lets end users ask
questions about their program’s failures in terms of its output
and behavior.

• New structured editing interaction techniques that avoid the
major usability problems with previous structured editors [8].

• A new toolkit for creating end-user programming systems
that dramatically reduces the amount of work required to
implement new tools and languages.

9. ACKNOWLEDGMENTS
This work was funded in part by the National Science Foundation,
under NSF grant IIS-0329090, and as part of the EUSES
consortium (End Users Shaping Effective Software) under NSF
grant ITR CCR-0324770. The first author is also supported under
a National Defense Science and Engineering Graduate
Fellowship. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of the National
Science Foundation.

10. REFERENCES
[1] Blackwell, A., First Steps in Programming: A Rationale for

Attention Investment Models, IEEE Symposia on Human-
Centric Computing Languages and Environments, Arlington,
VA, 2-10, 2002.

[2] Dann, W., Cooper, S., and Pausch, R., Learning to Program
with Alice: Prentice-Hall, 2003.

[3] Ko, A. J., A Contextual Inquiry of Expert Programmers in an
Event-Based Programming Environment, Human Factors in
Computing Systems, Fort Lauderdale, FL, 1036-1037, 2003.

[4] Ko, A. J. and Myers, B. A., Development and Evaluation of a
Model of Programming Errors, IEEE Symposia on Human-
Centric Computing Languages and Environments, Auckland,
New Zealand, 7-14, 2003.

[5] Ko, A. J. and Myers, B. A., Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Behavior, CHI 2004, Vienna, Austria, 151-158, 2004.

[6] Ko, A. J. and Myers, B. A., A Framework and Methodology
for Studying the Causes of Software Errors in Programming
Systems, To appear in the Journal of Visual Languages and
Computing, 2004.

[7] Ko, A. J., Myers, B. A., and Aung, H., Six Learning Barriers
in End-User Programming Systems, IEEE Symposium on
Visual Languages and Human-Centric Computing, Rome,
Italy, 199-206, 2004.

[8] Ko, A. J., Aung, H., and Myers, B. A., Design Requirements
for More Flexible Structured Editors from a Study of
Programmers' Text Editing, CHI '05: Human Factors in
Computing, Portland, OR, USA, (to appear), 2005.

[9] Pane, J. F. and Myers, B. A., "Usability Issues in the Design
of Novice Programming Systems," Carnegie Mellon
University, Pittsburgh, PA, School of Computer Science
Technical Report CMU-CS-96-132, August 1996.

[10] Reason, J., Human Error. Cambridge, England: Cambridge
University Press, 1990.

[11] Vivacqua, A. and Lieberman, H., Agents to Assist in Finding
Help, Conference on Human Factors in Computing, 65-72,
2000.

