
Six Learning Barriers in End-User Programming Systems

Andrew J. Ko, Brad A. Myers, and Htet Htet Aung
Human-Computer Interaction Institute

Carnegie Mellon University, Pittsburgh, PA 15213 USA
ajko@cmu.edu, bam+@cs.cmu.edu, hha@cs.cmu.edu

Abstract

As programming skills increase in demand and
utility, the learnability of end-user programming
systems is of utmost importance. However, research on
learning barriers in programming systems has
primarily focused on languages, overlooking potential
barriers in the environment and accompanying
libraries. To address this, a study of beginning
programmers learning Visual Basic.NET was
performed. This identified six types of barriers: design,
selection, coordination, use, understanding, and
information. These barriers inspire a new metaphor of
computation, which provides a more learner-centric
view of programming system design.

1. Introduction

According to the U.S. Department of Labor, by
2012 30% of new jobs and nearly 8% of all U.S. jobs
could require programming skills [1]. This is a
dramatic shift for a skill that less than a million people
had 10 years ago. Now, an increasing number of end-
user programmers control manufacturing robots, create
spreadsheets, and design interactive prototypes.

Yet, for such growth to occur, millions of aspiring
end-user programmers must overcome substantial
learning barriers in programming systems. Do we
know enough about these barriers to design systems
that help these individuals? We know much about the
learning barriers in programming languages [11], but
little about the rest of a programming system, which
includes its environment (the editor, debugger, help,
etc.) and accompanying libraries. What barriers do
these parts of a programming system pose, if any?

In this paper, we answer this question both
empirically and metaphorically. We begin by
describing a study of Visual Basic.NET (VB), which
identified six types of learning barriers. We then
discuss several implications and describe a new
metaphor of computation that facilitates a more
learner-centric view of programming system design.

2. Prior Research on Learning Barriers

One way to understand learning barriers is to study
the learner. For example, imagine Jill, a user interface
designer who just began learning VB. Shortly after
starting, she realizes that she must learn about event
handlers to proceed. This poses a potential learning
barrier. From an attention-investment perspective [2],
she will weigh the cost, risk, and reward of overcoming
the barrier, and if the risk of failure outweighs the
reward, she may abandon VB for other tools.

Jill may also decide that progress is worth the risk
of failure. We have proposed a framework that
suggests she will make several simplifying assumptions
about VB’s language, environment, and libraries in
trying to acquire the necessary knowledge [8]. If her
assumptions are valid with respect to the programming
system, she will make progress. If her assumptions are
invalid—what we call knowledge breakdowns—she is
likely to make an error. Within this framework, we
define learning barriers as aspects of a programming
system or problem that are prone to such invalid
assumptions. These concepts are depicted in Figure 1.

Given these definitions, what aspects of
programming systems might pose learning barriers?
Research has explicitly identified several aspects of
programming languages that are prone to invalid
assumptions, including conditionals, Boolean
operators, loops and data structures [12, 15]. Others
have found that the task-specificity of language
constructs influences learner’s assumptions [4].

Figure 1. In overcoming barriers, learners risk
making invalid assumptions that often lead to error.

However, our knowledge of potential barriers in the
rest of the programming system is still vague. For
example, Pane’s efforts to identify usability issues in
programming systems led to many heuristics [11]:
• Use signaling to highlight important information.
• Support incremental testing and feedback.
• Choose an appropriate computational metaphor.
• Help detect, diagnose, and recover from errors.
• Provide guiding knowledge through online help.
• Support recognition rather than recall.

Although these heuristics address importance
concerns such as visibility and feedback, they fail to
identify particular barriers in programming systems. If
we could identify and define these potential barriers,
we might discover when, why, and for what concerns
such as visibility and feedback are relevant. This is
precisely our goal in the remainder of this paper.

3. A Study of Visual Basic.NET 2003

To discover learning barriers in end-user
programming systems beyond just those in languages,
we observed 40 non-programmers learning to use
Visual Basic.NET in a course called Programming
Usable Interfaces (http://www.bam.hcii.cmu.edu/pui).
We chose to study VB because it is aimed at end-user
programmers and offers similar capabilities to other
end-user programming systems. It also has the added
complexities of a compiled language, the Visual Studio
environment and the object-oriented .NET framework.

Our methodology sampled incidents of learners
reaching insurmountable barriers: properties of VB or
a programming problem that the learner could not
understand despite considerable effort. Learners were
told that if they were stuck they could consult an oracle
(the experimenters) for guidance. When learners
sought advice via e-mail or in a public lab, they were
asked to report (1) what they were stuck on, (2) how
they became stuck, and (3) how they tried to get
“unstuck.” The oracles then helped learners overcome
their barrier. Learners worked on the tasks in Table 1
over 5 weeks. None of the learners who sought advice
had taken more than one programming course.

We sampled 74 insurmountable barriers overall, but
found that many of these were reached as a result of

invalid assumptions that learners had made to
overcome earlier barriers (as shown in Figure 2). By
including these intermediate barriers, our final set
included 130 barriers. We analyzed each with respect
to learners’ activities and use of VB, identifying six
distinct categories. Two of the authors independently
classified each barrier, attaining 94% agreement.

4. Six Learning Barriers

The six barriers we identified are: design, selection,
coordination, use, understanding , and information
barriers. Our definitions of these barriers rely on the
concept of a programming interface: any element of a
programming system’s language or accompanying
libraries that can be used to achieve some behavior.
These include language constructs such as loops and
operators, and library calls such as animations and
math routines. Programming interfaces should not be
confused with the user interfaces in an environment
(compilers, editors, menus, etc). We will distinguish
the two in our discussions.

4.1 Design Barriers

Design barriers (4 of 130) are inherent cognitive
difficulties of a programming problem, separate from
the notation used to represent a solution (i.e., words,
diagrams, code). Several problems posed design
barriers, including sorting, communication between
forms, conditional logic, and event concurrency.

Half of the design barriers were insurmountable (2
of 4) because solutions to a problem were difficult to
visualize. For example, a learner working on task 2
(see Table 1) was unable to conceive of a systematic
way to sort names. Her best solution was “Just keep
moving the names until it looks right!” Learners who
were able to conceive of a sorting algorithm made
invalid assumptions about their solution. For example,
one learner successfully tested one cycle of her
algorithm on a single data set on paper, and believed it
to be correct. When her algorithm failed, she faced the
insurmountable understanding barrier of determining
what her algorithm did and did not do at runtime.

1. Create a form that computes the average of 3 numbers in text fields.
2. Fix a form so that it sorts the names in the list reverse-alphabetically.

3. Write a program that is impressive in its utility or entertainment value.
4. Create a form with a chain of interaction using all of the VB widgets.

5. Design an alarm clock that can be set to ring at a certain time.

6. Make a simulation that shows 3 elevators’ directions and floors.
7. Design a copy machine interface that supports collating and stapling.

Table 1. The seven VB learning tasks.

Figure 2. Learning barriers overcome with invalid
assumptions often led to insurmountable barriers
of a different type.

I don’t know what I want
the computer to do...

4.2 Selection Barriers

Selection barriers (13 of 130) are properties of an
environment’s facilities for finding what programming
interfaces are available and which can be used to
achieve a particular behavior. These emerged when
learners could not determine which programming
interfaces were capable of a particular behavior.

Half of the selection barriers were insurmountable
(6 of 13). Many learners faced selection barriers in task
5 in trying to get their program to keep time. Some
tried using the help system, but could not guess which
keywords to use. If they happened to find a relevant
article, they were unable to understand the description
of VB’s timing abilities. Many learners overcame
selection barriers by using their peers’ timing code as
examples, but faced insurmountable u s e and
coordination barriers in adapting them.

4.3 Coordination Barriers

C o o r d i n a t i o n b a r r i e r s (25 of 130) are a
programming system’s limits on how programming
interfaces in its language and libraries can be combined
to achieve complex behaviors—what one learner called
“the invisible rules.” Learners encountered these when
they knew what set of interfaces could achieve a
behavior, but did not know how to coordinating them.

Most coordination barriers were overcome with
invalid assumptions (20 of 25). For example, learners
correctly assumed that inter-form communication
involved creating a new form programmatically and
accessing its data (in VB a “form” is a window).
However, most made invalid assumptions about how to
access data and tried to “pull” values from the new
form instead of “pushing” values to the old form.
Because form controls are inaccessible if their form is
not visible, “pulling” led to runtime exceptions.

Learners also overcame coordination barriers by
finding examples that revealed VB’s invisible rules.
However, as with selection barriers, they faced use and
coordination barriers adapting them to their needs.

4.4 Use Barriers

U s e barriers (36 of 130) are properties of a
programming interface that obscure (1) in what ways it
can be used, (2) how to use it, and (3) what effect such
uses will have. These arose when learners knew what
interface to use, but were misled by these obscurities.

Half of the use barriers were insurmountable (17 of
36), often because a programming interface did not
indicate in what ways it could be used. For example,

task 4 required learners to make a Label interactive,
but many did not know that a Label could respond to
mouse events. Some overcame these use barriers by
using VB’s facilities for obtaining a list of an object’s
methods. However, learners made invalid assumptions
about how to use the methods or what effects they
would have, passing syntactically correct but
semantically incorrect parameters (also use barriers).

Use barriers were also insurmountable when they
involved syntax. For example, learners could not
determine how to declare or initialize arrays; when
they guessed, they made invalid assumptions, and
encountered insurmountable understanding barriers in
determining the meaning of the resulting syntax errors.

4.5 Understanding Barriers

Understanding barriers (38 of 130) are properties
of a program’s external behavior (including compile-
and run-time errors) that obscure what a program did
or did not do at compile or runtime. These emerged
when learners could not evaluate their program’s
behavior relative to their expectations.

Most understanding barriers were insurmountable
(34 of 38). Compile-time errors were insurmountable
when learners could not determine what parts of their
code were deemed right or wrong by the compiler,
based on its error message. For example, when learners
wrote a function call without a ‘=’, they received the
error message “expected: =”. Learners faced an
understanding barrier of determining if and where the
‘=’ should be placed, and why it was “expected.”

Runtime-errors and other unexpected behavior
were insurmountable when they obscured what did or
did not happen at runtime. For example, some learners
wanted to pass data between forms, but did not know
how to create references to each. To overcome this use
barrier, they assumed that they could instantiate a form
of the appropriate type in the Form_Load event of each
form, not knowing this would cause infinite recursion
and a stack overflow exception. Most learners did not
associate the exception with their earlier assumption,
because it did not suggest a relationship to their code.

In other cases, learners expected a behavior that did
not occur. For example, many learners created a Timer
object, assuming that it would start counting at
runtime, when it was in fact disabled by default. When
their label’s text did not update as expected, they
overlooked their assumption, and as a result, could not
imagine what prevented the label from updating. Most
assumed that their update code was incorrect, and
rewrote it. Of course, this led directly to the same
understanding barrier.

I think I know what I want the
computer to do, but I don’t

know what to use...

I thought I knew how to
use this, but it didn’t do

what I expected...

I think I know what things to
use, but I don't know how to
make them work together...

I think I know what to use, but I
don't know how to use it...

4.6 Information Barriers

Information barriers (14 of 130) are properties of
an environment that make it difficult to acquire
information about a program’s internal behavior (i.e., a
variable’s value, what calls what). These arose when
learners had a hypothesis about their program’s
internal behavior, but were unable to find or use the
environment’s facilities to test their hypothesis.

Many information barriers were insurmountable
(10 of 14) because the places to search for appropriate
tools were numerous, or it was unclear how to use a
tool. For example, many learners accidentally closed
VB’s property panel and could not determine how to
redisplay it. Some learners caused null pointer
exceptions, but did not notice that the exception dialog
contained a link to the code responsible.

Some learners overcame information barriers by
assuming something about their program’s behavior.
For example, when learners could not find the code
that caused a null pointer exception, they deleted all of
their recently modified code, confident that part of it
must be guilty. When learners encountered barriers in
using VB’s debugger, rather than overcome them, they
abandoned the debugger and simply guessed which
statement was to blame.

5. Discussion

5.1 The Gulfs of Execution and Evaluation

The barriers share characteristics of Norman’s gulf
of execution (the difference between users’ intentions
and the available actions) and gulf of evaluation (the
effort of deciding if expectations have been met) [10].
Three barriers pose gulfs of execution exclusively:
• Design: mapping a desired program behavior to an

abstract description of a solution.
• Coordination: mapping a desired behavior to a

computational pattern that obeys “invisible rules.”
• U s e : mapping a desired behavior to a

programming interface’s available parameters.
Two pose gulfs of execution and evaluation:
• Selection: mapping a behavior to appropriate

search terms for use in help or web search engines,
and interpreting the relevance of the results.

• Information : mapping a hypothesis about a
program to the environment’s available tools, and
interpreting the tool’s feedback.

Understanding barriers pose gulfs of evaluation
exclusively, in interpreting the external behavior of a
program to determine what it accomplished at runtime.

We can adapt Norman’s recommendations on
bridging gulfs of execution and evaluation to
programming system design. For example, Norman
recommends bridging gulfs of execution by
establishing visible constraints on what actions are
possible. For coordination barriers, this might involve a
more explicit representation of a system’s “invisible
rules.” To overcome gulfs of evaluation, Norman
recommends that a system’s state be accessible and
understandable relative to users’ expectations. For
understanding barriers, this suggest a tool such as the
Whyline [7], which provides explains what behaviors a
program did and did not do at runtime.

5.2 How Are the Learning Barriers Related?

The graph in Figure 3 reveals common paths of
failure in learning VB. The edges show the percent of
each type of barrier that was overcome with invalid
assumptions and the type of barrier to which the
assumptions led. (Since we only show edges greater
than 10% and we exclude insurmountable barriers, the
outgoing edges’ of each node do not add up to 100%).

Selection barriers tended to lead to use barriers,
suggesting that preventing invalid assumptions about
programming interfaces’ capabilities might avoid
assumptions about their use. Furthermore, selection,
coordination and use barriers—half of all
observed—often led to understanding and information
barriers. This implies that while debugging is a
problem, a bigger concern is how prone VB’s
programming interfaces are to invalid assumptions
prior to their use.

Figure 3. For surmountable barriers, the percent of
each type overcome with invalid assumptions, and
the type of barrier to which the assumptions led.

5.3 Are The Barriers Relevant to Experts?

Because experts are defined by their programming
system experience, they tend to easily overcome
selection, coordination, and use barriers. However,
they do face design barriers because of the difficulty of
their problems. This reflects the increasing importance
of software architecture. Also, because professional
programming systems often lack effective debugging
tools [9], experts face substantial understanding and
information barriers for which they must try to develop
workarounds. This is evident in the use of print
statements as all-purpose debugging tools.

I think I know why it didn’t do
what I expected, but I don’t

know how to check...

5.4 Were There Data or Debugging Barriers?

Visualization tools assume difficulties in imagining
the structure of data [14]. In our observations, learners
did not face barriers in understanding data itself, but in
trying to act on data (such as how to create or modify
it). Because acting on data always involved a
programming interface, such as a numerical operator or
declaration, these barriers were categorized as
selection, coordination, and use barriers. We do not
know if more complex tasks would reveal barriers in
understanding data.

“Debugging barriers” involved evaluating a
program’s external behavior relative to expectations
(understanding barriers) and inspecting its internal
behavior (information barriers). Because each task
required different skills and tools to overcome, it was
natural to distinguish the two.

5.5 Are The Barriers General?

We have used the six barriers to classify
observations from studies of several end-user
programming systems. For example, one common
information barrier in the Alice programming system
[3] is that variables’ values are inaccessible at runtime
because the output window is modal. This is in contrast
to VB’s information barriers, where the most common
information barrier is determining where to insert print
statements. This also in contrast to our ongoing
observations of Macromedia Flash, where the most
common information barrier is finding a particular line
of code among hundreds of frames. Thus, in our
experiences, the barriers are general enough to capture
subtle but profound differences between the learning
barriers of at least three diverse programming systems.

5.6 Are They Fundamental?

Because we have not applied the six barriers
extensively, we cannot claim that these six describe all
possible categories of learning barriers. With more data
and more experience with the barriers, other categories
may be apparent. For now, it seems more important to
consider how well the six barriers support the design of
more learnable end-user programming systems with
respect to learning. In particular, do they help:

1. Evaluate existing programming systems?
2. Explore new areas in the design space?
3. Evaluate specific design choices?

The barriers have great potential in this regard: they
identify important issues for existing systems, while
providing usability guidelines for future systems.

6. A Learner-Centric Design Metaphor

Although the barriers seem helpful, we face the
same challenge in using them for design as with any
list of categories. For instance, one way to use them is
to derive six design heuristics:
• Provide solutions to a domain’s difficult problems.
• Offer facilities for finding programming interfaces

that achieve particular behaviors.
• Show how to coordinate programming interfaces

to achieve common behaviors.
• Programming interfaces should suggest for what

they can be used and how to use them.
• Reveal what a program did or did not do.
• Help inspect a program’s internal behavior.

However, these appear too vague to be helpful. We
propose a design metaphor as an alternative.
Metaphors are powerful because they can account for
well-known properties of a design space, while
supporting concrete analogical reasoning from a source
to target domain. Ideal metaphors for end-user
programming systems would (1) have a rich, human-
centric source domain, (2) account for the six learning
barriers, (3) be abstract and computer-centric enough
to describe a variety of programming systems, and (4)
be concrete enough to support analogical reasoning.

In Figure 4 we plot several existing computational
metaphors against concreteness and human-centricity.
Most are unsatisfactory; for example, “programs are
objects” is too abstract to support rich analogical
reasoning. Metaphors from end-user programming
systems such as spreadsheets are too concrete to
describe a variety of programming systems. Worse yet,
all of the metaphors in Figure 4 lack even the slightest
mention of human involvement.

Figure 4. Ideal metaphors (the dashed box) would
be abstract enough to describe many systems, but
concrete enough for analogical reasoning.

6.1 The Factory Metaphor

Here we describe a metaphor that seems to satisfy
our criteria. As a reminder, this is intended to help
programming system designers think about learning
barriers, and is not necessarily intended for end users.

A program is a factory and the learner is a factory’s
creator. Factories are made of machines (programming
interfaces), which are coordinated to systematically
receive, manipulate, and produce products (program
output and behavior). In general, learners have many
tools to help create, run, and inspect their factory (the
programming environment).

Design barriers. Some products are difficult to
produce, so designing “experimentally” can lead to
unreliable factories (spaghetti code). Thus, it is often
better to design a factory before building it (software
engineering), but it is even easier to copy an existing
factory that has been designed for such products.

Selection barriers. There are many different
machine suppliers (programming systems) that may be
used to design a factory, each offering a basic set of
general purpose machines (language constructs) and a
larger set of special-purpose machines (libraries).
Machines may have a variety of levers, switches, and
buttons (parameters), or they may have no controls at
all (i.e., no-op). Some suppliers’ machines have nearly
identical affordances (i.e., Lisp syntax), while others’
have entirely different affordances, but nearly identical
behavior (i.e., switch statements vs. an if-else-if
blocks). Suppliers offer catalogs to help learners select
and use machines (help), but they tend to only explain
what machines do, rather than how they might be used.

Use barriers. Because each machine has unique
semantics, constraints, and feedback, it is difficult to
know for what each can be used, how to use them, and
what behaviors to expect. This is complicated by the
diversity of machines: some pass products to other
machines (procedure calls), some repeat a process
(loops), and some transform a set of products into new
products (expressions). Worse, most machines must be
assembled (a character at a time), and how a machine
fits together has little to do with what it does (syntax).
Some suppliers offer manuals (documentation), but
they seldom describe how to assemble machines.

Coordination barriers. In addition to choosing and
using machines, learners must coordinate them in
purposeful ways. Because it is not always clear which
machines can fit together (syntax) and how they might
interact (semantics), learners may visit other factories
to find groups of machines that perform the desired
behavior (example code). Learners then replicate the
design and reconfigure the machines to match their
own needs. Learners also consult manuals for hints on
how to coordinate various machines.

Understanding barriers. Learners check their
progress by running their factory before it is complete
(testing). Sometimes a factory does not start because a
machine is misassembled (syntax error): the challenge
is to find the misassembled machine and find out what
was right and wrong. Even if the factory starts,
machines may fail. Some screech loudly when failing
(exceptions); others fail silently, causing problems
down the line. As a result, it is often difficult to know
what a factory did or did not do, let alone why.

Information barriers. Once learners have an idea
of what went wrong, they try to confirm it by making
measurements and observations (debugging). This
involves inspecting machines’ interactions and probing
those that are not open for inspection (code from
compiled libraries). Some machines’ behavior can be
seen from a distance (e.g., which branch of a
conditional is taken), but others require close
inspection (e.g., an expression’s dataflow). Suppliers
offer tools to run factories step-by-step (debuggers),
but most learners find it easier to install probes in just
the right places (print statements). Finding a particular
machine can be tricky (code navigation), but finding a
faulty product is often much trickier (dataflow).

Variations in products. Some machines require
products to have IDs (names). Although most
machines are designed to manipulate only nearby
products (static scope), many can retrieve products
remotely with a product’s ID (referencing). Some
machines are picky about a product’s type (strong
typing); others can manipulate a variety of types in
similar ways (polymorphism). Many suppliers offer
machines that store and manipulate complex products
such as documents, lists, images, and databases
(abstract data types). These complex products are made
out of simpler products (primitive data types).

Most suppliers make a sharp distinction between
products and machines, though some offer machines
that contain products (objects). Others offer machines
that are products themselves (lambda functions).
Machines handle products in a variety of ways: some
pass products from machine to machine (dataflow),
some take turns manipulating a sizeable collection of
products (imperative), whereas some ship and receive
products to and from the outside world (input/output).

Variations in control. Suppliers offer different
ways of coordinating machines. Some require
machines to run one at a time (single-threaded); others
allow machines to run concurrently (multi-threaded).
Some machines pass and return products to each other
(functional); others broadcast and respond to events
from in and outside of the factory (event-based). Some
machines monitor the factory, ensuring compliance to
rules (rule- and constraint-based). Others manage the
flow of products in and out of factories (dataflow).

6.2 Using the Factory Metaphor for Design

If we regard the factory metaphor as a reasonably
valid interpretation of modern computation, there are
many ways that it can be used to support design.

For example, because factories, machines,
products, and suppliers offer such rich source domains,
the factory metaphor is an ideal foundation for
analogical reasoning about the design space of end-
user programming systems. In Table 2, we describe
several criticisms of modern programming systems in
terms of the factory metaphor, and offer design
suggestions analogically derived from the source
domain (i.e., catalogs, machine assembly, learning kits,
and controls). As a result, many observations are far
more concrete than anything that could have been
derived just from design heuristics.

Another way to use the factory metaphor is to
identify places where it breaks down. This reveals
significant conceptual differences between the
computational and physical worlds:

• Factories operate at a factor of the speed of light.
• Products can be made at runtime, requiring

learners to reason about them before they exist.
• A product’s type severely limits what it can be

used for and what can use it.
• Machines can affect products remotely with IDs.
• Machines can themselves be used as products.
• Factories are made of many smaller factories and

may be part of much larger factories.
Many of these properties have been shown to be

difficult for learners to comprehend [5].

6.3 Actualizing the Metaphor

There are several systems that actualize
interpretations of the factory metaphor. For example, in
Tanimoto’s Data Factory [16], data flows along
conveyor belts, and is manipulated by machines along
the way. In The Incredible Machine [6], players place
physical artifacts in order to influence physical objects’

Design Barriers Possible Solution for Programming System Designers

• Learners must recreate factories for
difficult-to-produce products.

Offer these factories pre-built to learners, so that they do not have to solve hard problems. To find out which
factories to provide, track the types of factories that are commonly built using the machines.

Selection Barriers

• Some suppliers don’t offer catalogs. If
they do, the catalogs rarely say for what
machine can be used.

Offer catalogs that are easy to flip through and that can be bookmarked. It should be easy to compare machines’
roles in achieving particular behaviors. Catalogs should suggest for what types of behavior a machine might be
used, what other machines might be required, and how to coordinate them.

• Some suppliers offer too many types of
machines with similar functionality.

Standardize and simplify machines, only including machines that your target market would want to use. Track
which machines are used and stop offering unused machines. Improving the usability of commonly used machines.

Coordination Barriers

• Fitting machines together is difficult,
unpredictable and error-prone.

Design machines to have simple and standardized interconnects, so that it is obvious whether two machines may
be connected. Give feedback when learners are about to put machines in invalid places and explain the problem.

• It is difficult to imagine all of the ways
that machines might be coordinated.

Provide example schematics to learners, so that they may know how machines might be coordinated. Look at the
ways learners have been using your machines to get a sense for which schematics to provide. In addition to
schematics, you might provide starter kits that learners can use directly in their factories.

• It is difficult to know how machines will
interact when running.

Design machines so that they may be tested stand-alone or in small groups. They might even give some simple
indicators of what they will do when turned on (such as indicating to which machine it will pass a product).

Use Barriers

• Because machines require assembly, it
is hard to tell where one machine ends
and another begins. Also, machines
don’t always stay together when moved.

If learners must assemble the machines, at the very least provide good diagrams and mechanisms for doing so. It
would be more ideal if machines came preassembled and encased, just like any other consumer product. Learners
could simply take machines off a truck and set it down. It would be easier to place feedback on the exterior of the
machine, because there would be less clutter on the outside of it, and machines wouldn’t fall apart when moved.

• Most machines look the same and have
similar interfaces. As a result, they tend
to have very poor usability.

Carefully design machines’ constraints and feedback to suggest their available actions, how to perform them, and
what their effect will be. Use appropriate controls for each parameter (e.g., if a machine has a yes/no parameter,
make it a switch instead of a dial). Arrange the controls to convey internal semantics of the machine.

Understanding Barriers

• Learners can only see what goes in and
out of a factory while it’s running. With
work, the factory can be run in steps.

Allow learners to watch their entire factory run. It would be easier to know what a factory did or didn’t do if learners
could walk from machine to machine and watch them operate, opening up individual machines for inspection.
Provide ambient cues about what is happening while a factory is running (as when machines grind when failing).

Information Barriers

• Finding a broken machine or products is
difficult and time consuming.

Suppliers should offer facilities that inventory a learner’s machines and the products that are generated and used,
and provide interfaces to help a learner quickly and easily search the inventory to locate a machine or product.

• Inspecting relationships between
machines and products is difficult.

Machines should record with which machines they interact and what data they use or create, so that learners can
ask questions such as “Where did this product come from?” or “which machine ran before this one?”

Table 2. Barriers in today's programming systems and possible solutions, in terms of the factory metaphor.

trajectories. In ToonTa lk [6], learners directly
manipulate computational objects to create animations.
These are examples of systems that avoid significant
barriers while preserving computational features.

Of course, programming systems that do not
actualize the factory metaphor can also benefit from a
careful consideration of the factory metaphor. For
example, by mapping the properties and concepts in
VB to factory metaphor equivalents, we can apply all
of the suggestions in Table 2.

7. Conclusions

With a greater understanding of the learning
barriers in programming systems, we have a clearer
notion of the central challenges in designing more
learnable end-user programming systems:
• Design is inherently difficult. To overcome design

barriers, learners need creativity. Programming
systems should help scaffold creativity with salient
examples and other forms of inspiration [13].

• Finding behaviors is difficult. To overcome
selection barriers, learners need help searching for
behaviors. Also, as more behaviors are offered,
current tools will be increasingly ineffective.

• Invisible rules are difficult to show. To overcome
coordination barriers, learners must know a
programming system’s invisible rules. Today’s
systems lack explicit support for revealing such
rules, merely implying them in error messages.

• Textual programming interfaces are limited. To
avoid use barriers, the feedback and interactive
constraints of every programming interface must
be carefully designed to match its semantics. The
textual, syntactic representations of today’s
systems make this goal difficult to achieve.

• Behavior is difficult to explain. Overcoming
understanding and information barriers requires
some explanation of what a program did or did not
do. We have made progress with the Whyline [7],
but significant challenges remain.

We believe that these challenges are tractable, and
hope that the six learning barriers and factory metaphor
will help designers explore new ideas more efficiently
and with more success.

8. Acknowledgements

We thank the students of Programming Usable Interfaces
for sharing. This work was partially supported by NSF grant
IIS-0329090 and the EUSES Consortium via NSF grant ITR-
0325273. Opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of the NSF.

9. References

[1] "Occupational Outlook Handbook," U.S. Dept. of Labor,
Bureau of Labor Statistics 2004, http://stats.bls.gov/oco.

[2] A. Blackwell, "First Steps in Programming: A Rationale
for Attention Investment Models," IEEE Symposia on
Human-Centric Computing Languages and
Environments, Arlington, VA, Sept. 3-6, 2002, 2-10.

[3] W. Dann, S. Cooper, and R. Pausch, Learning to
Program with Alice: Prentice-Hall, 2003.

[4] A. Engebretson and S. Wiedenbeck, "Novice
Comprehension of Programs Using Task-Specific and
Non-Task-Specific Constructs," IEEE Symposia on
Human-Centric Computing Languages and
Environments, Arlington, VA, Sept 3-6, 2002, 11- 18.

[5] J.-M. Hoc and A. Nguyen-Xuan, "Language Semantics,
Mental Models and Analogy," in Psychology of
Programming, Computers and People Series, J.-M. Hoc,
T. R. G. Green, R. Samurçay, and D. J. Gilmore, Eds.
London: Academic Press, 1990, 139-156.

[6] K. Kahn, "Drawings on Napkins, Video-Game
Animation, and Other Ways to Program Computers,"
Communications of the ACM, 39(8), 1996, 49-59.

[7] A. J. Ko and B. A. Myers, "Designing the Whyline: A
Debugging Interface for Asking Questions About
Program Behavior," CHI 2004, Vienna, Austria, April
24-29, 2004, 151-158.

[8] A. J. Ko and B. A. Myers, "A Framework and
Methodology for Studying the Causes of Software Errors
in Programming Systems," Submitted for publication.

[9] H. Lieberman, "The Debugging Scandal and What to Do
About It," Communications of the ACM, 40(4), 1997, 26-
78.

[10] D. A. Norman, The Design of Everyday Things. New
York, NY: Doubleday, 1988.

[11] J. F. Pane and B. A. Myers, "Usability Issues in the
Design of Novice Programming Systems," Carnegie
Mellon University, Pittsburgh, PA CMU-CS-96-132,
August 1996, http://www.cs.cmu.edu/~pane/cmu-cs-96-
132.html.

[12] J. F. Pane, C. A. Ratanamahatana, and B. A. Myers,
"Studying the Language and Structure in Non-
Programmers' Solutions to Programming Problems,"
International Journal of Human-Computer Studies,
54(2), 2001, 237-264.

[13] C. Quintana, J. Krajcik, and E. Soloway, "A Case Study
to Distill Structural Scaffolding Guidelines for
Scaffolded Software Environments," CHI 2004,
Minneapolis, MN, 2002, 81-88.

[14] P. Romero, R. Cox, B. d. Boulay, and R. Lutz, "A
Survey of External Representations Employed in Object-
Oriented Programming Environments," Journal of
Visual Languages and Computing, 14(5), 2003, 387-419.

[15] J. G. Spohrer and E. Soloway, "Analyzing the High
Frequency Bugs in Novice Programs," Empirical Studies
of Programmers, 1st Workshop, Washington, DC, June
5-6, 1986, 230-251.

[16] S. Tanimoto, "Programming in a Data Factory," Human-
Centric Computing Languages and Environments,
Auckland, New Zealand, Oct. 28-31, 2003, 100-107.

