
Designing a Flexible and Supportive Direct-Manipulation

Programming Environment

Andrew Jensen Ko

Human-Computer Interaction Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213 USA
ajko@cmu.edu

Abstract

An important part of helping learners detect, repair

and avoid software errors is providing semantic

support for learners while they manipulate their code.

Unfortunately, usability aspects of both textual and

direct-manipulation environments limit their ability to

provide such support. Preliminary findings from

exploratory studies are discussed, and several design

requirements for a more flexible and supportive

programming environment are identified.

1. Introduction

Software errors are a significant learning barrier for

novice and end-user programmers [2]. As part of

project Marmalade (http://www.cs.cmu.edu/~NatProg),

the Whyline [3] has proven highly effective at helping

learners find and repair their errors once they already

exist. However, an equally important part of lowering

barriers to programming is helping learners avoid

errors by providing an interactively flexible, but

semantically supportive authoring environment.

Learners need the freedom to write code in whatever

order is the most natural, while still getting clear,

consistent, and immediate feedback about the effect of

their actions on a program’s semantics.

Figure 1. Programming environments in terms of
interactive flexibility and semantic support.

Unfortunately, modern programming environments

are rarely both flexible and supportive (as seen in

Figure 1). Textual environments, at one extreme, allow

learners to type code in whatever order is most natural.

However, not only must learners memorize an

awkward language syntax, but textual environments

provide little support for helping learners remember it.

Worse yet, textual environments fail to provide

learners with immediate, consistent feedback on the

effects of their actions on their program’s semantics.

Instead, learners are forced to decipher vague and

misleading errors messages.

At the other extreme are direct-manipulation

environments such as Alice [1]. These environments

prevent all syntax and type errors, but require that

programs always be in an executable state. This

requirement has many implications: learners must

create code in a strictly top-down manner, forcing

awkward and premature decisions about their

program’s behavior; then, to modify code, they must

translate the changes they want to make into a

cumbersome series of state-preserving modifications.

The current goal of project Marmalade is to design

an environment that is both flexible and supportive,

while avoiding the downsides of these two extremes.

2. Approach

Our approach is to first study how people create,

modify, and understand code. Specifically,

• At what granularity do learners manipulate code

(character, token, statement, block, etc.)?

• What types of local modifications do learners

perform (semantic, formatting, etc.)?

• What types of global manipulations do learners

perform on code (changing method signatures,

renaming variables, merging functionality, etc.)?

• How do learners navigate their code (by file, what

calls what, what defines what, etc.)?

For each of these, it is important to compare what

do learners currently do, what they want to do, as well

as what their instructors would want them to do.

3. Preliminary Observations

We have observed several learners using Alice,

VB.NET, Flash, and Eclipse, and have found many

trends. For example, when learners worked with text,

their code was almost always littered with compile-

time errors. Because parsers are fundamentally limited

in their ability to fully determine a syntactically

ambiguous program’s semantics, learners were often

unable to get semantic support for even the

unambiguous parts of their code. In Alice, which

requires that programs always be executable, learners

tended to rewrite code, since modifying it required first

manually removing code that depended on it. This was

more work, as well as considerably more error-prone.

In all environments, learners tended to leave

uncoerced references in copied code, suggesting the

need to explicitly mark copied code “suspect” until

otherwise noted. Learners also tended to navigate

semantic relationships rather than syntactic ones, such

as method call to method definition and variable use to

variable declaration. This suggests that these semantic

relationships be quickly and explicitly navigable.

We have also found patterns in the compile-time

and runtime correctness of learners’ programs over

time (portrayed in Figure 2). With text, delays in

feedback due to compile-time errors caused debugging

difficulties since learners falsely assumed that their

most recent changes contained errors. This resulted in a

pattern like that in Figure 2a. In Alice, there were no

compile-time errors, but because of frequent rewriting,

learners’ programs had frequent drops in correctness

(as in Figure 2b). We hope the pattern of correctness

for our new environment to look like that in Figure 2c.

Figure 2. Mockups of patterns of correctness over
time for (a) text and (b) direct-manipulation

environments; (c) portrays one possible ideal.

4. Where is the Middle Ground?

The problems with textual and direct-manipulation

environments suggest two overall requirements for a

more helpful environment: (1) learners need semantic

support for all of their code at edit-time, and a few

compile-time errors should not affect this support; and

(2) learners need the freedom to write code in any

order and worry about compile-time errors later.

One possible solution would be an environment

that (1) represents code visually as text, allowing for

conventional text editing operations, (2) but represents

code internally as higher-level semantic elements such

as control and data flow graphs, and definitions and

uses of data. This approach would preserve the

interactive benefits of text editing that we have

observed, but also enable more predictable and

consistent semantic support than even the most

sophisticated of textual environments, such as Eclipse.

This is also significantly different from syntax-directed

editors, which only manipulate a textual program’s

abstract syntax tree.

By separating the visual representation of code

from its semantic elements, this environment could

visualize programs as hierarchically indented text, flow

charts, stacks of “tiles,” or other forms depending on

the context of use. For example, learners could see a

view of an expression’s dataflow with a single key;

learners could hover over a variable to highlight the

variable’s definition, declaration, and other uses; the

environment could even search for static definitions of

variables that do not seem to be used by later code, and

annotate such definitions in-context. We are not aware

of any previous systems with such semantic support.

5. Conclusions

We are continuing to analyze our observations for

design requirements, as well as consider possible

software architectures for a more flexible and

supportive programming environment. Although our

current efforts will likely focus on helping novice Java

programmers, we expect the new environment to

support any type of end-user or expert language.

6. References

[1] Dann, W., Cooper, S., and Pausch, R. (2003). Learning

to Program With Alice: Prentice-Hall.

[2] Ko, A. J. Myers, B. A., and Aung, H. (2004). Six

Learning Barriers in End-User Programming Systems.
Submitted to VL/HCC 2004.

[3] Ko, A. J. and Myers, B. A. (2004). Designing the

Whyline: A Debugging Interface for Asking Questions

About Program Failures. CHI 2004, Vienna, Austria,
April 24-29, 151-158.

