
Preserving Non-Programmers’ Motivation with
Error-Prevention and Debugging Support Tools

Andrew Jensen Ko
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

ajko@cmu.edu

Abstract

A significant challenge in teaching programming to
disadvantaged populations is preserving learners’
motivation and confidence. Because programming
requires such a diverse set of skills and knowledge, the
first steps in learning to program can be highly error-
prone, and can quickly exhaust whatever attention
learners are willing to give to a programming task. Our
approach to preserving learners’ motivation is to design
highly integrated support tools to prevent the errors they
would otherwise make. In this paper, the results of a
recent study on programming errors are summarized,
and many novel error-preventing tools are proposed.

1. Introduction

In teaching programming, low motivation is a
significant challenge to overcome. Programming is an
inherently complex activity, requiring knowledge and
skills in architecture and algorithm design as well as
scientific debugging skills such as data collection and
hypothesis testing [1]. Because programming requires
such a diverse skill set, learners’ initial attempts at
programming can be highly error-prone—and errors can
cause a great deal of confusion and uncertainty, quickly
consuming their confidence and motivation. This
challenge is even greater for disadvantaged populations,
who tend to have less confidence to begin with.

Our approach to help overcome this motivational
barrier focuses on designing highly integrated tools to
prevent programming errors. In doing so, we hope to
prevent confusion and uncertainty and preserve learners’
motivation, curiosity, and confidence.

2. The Programming Domain

We are currently focused on the domain of event-based
programming, which is common in many systems such
as Macromedia Director and Microsoft Visual Basic. We
are studying Alice [2], a 3D programming system (Figure
1), which supports a concurrent, event-based
programming language. Alice prevents syntax and type

errors with a structured, drag-and-drop editing
environment, preventing all syntax and type errors. In
recent studies, teaching Alice instead of Java raised at-risk
students’ average grade from 1.3 to 2.8 on a 4.0 scale,
bringing them to parity with non-at-risk students, and
decreased at-risk student attrition from 90% to 10% [3].

Our current efforts are centered on the prevention of
common, higher-level errors that we have observed in a
series of observational studies.

3. Observations of Non-Programmers

Using the method of contextual inquiry, we have
studied the activities of at-risk children at a local middle
school and highly educated students (Carnegie Mellon
students with varying programming experience) [4]. Most
of the highly educated students lacked the knowledge and
skills required to succeed, but had the motivation to
complete their tasks. Nevertheless, the students still spent
an average of 50% percent of their time debugging errors
caused by premature design decisions and inadequate
programming strategies. The at-risk children were excited
by the domain content and spent half an hour at simple
programming tasks each week. However, they were
overwhelmed by errors caused by a lack of programming

Figure 1. Alice, providing (1) an object list, (2) a 3D
worldview, (3) an event list, (4) details about the
selected object, and (5) methods being edited.

knowledge and quickly lost the motivation to complete
even simple programming tasks. This was despite the fact
that all syntax and type errors were prevented.

In our observations, we identified many key concepts
and skills required to successfully create interactive
worlds with Alice, as well as the lack of concepts and
skills that tended to cause learners to commit errors. In
general, there were three programming activities that
required different types of knowledge and skills:

ü Design activities, which required participants to
have the foresight to understand the impact of
design decisions on later implementation tasks.

ü Implementation activities, which required
knowledge of algorithms and code construction,
modification, and reuse skills.

ü Debugging activities, which required the ability to
form hypotheses, gather data about the behavior of
their programs, and make deductions from these
observations to the potential causes of errors.

These observations resulted in a formal model of the
causes of programming errors [4], which supports the
design of error-preventing programming tools.

4. Opportunities to Prevent Errors

Using our observations and causal error model, we
have identified common error situations in creating Alice
programs that could be prevented with supportive,
integrated environmental tools.

For example, learners tended to make design decisions
about concurrency that were difficult to change and caused
unforeseen interactions with other decisions. One
approach to prevent these errors would be to embed
design strategies in a storyboarding tool to help learners
make concurrency decisions before implementation
activities. These tools could have knowledge of common
high-level design errors so that when learners make a
problematic design decision, the system could explain the
problem and suggest an alternative design. This would
teach learners better design skills, while decreasing the
likelihood of design errors and frustration.

Learners also tended to copy event handlers and
animations but neglect to edit references to match the new
context. This might be alleviated by visually highlighting
copied code, indicating its unreliability, much like the
testing and assertion systems in the Forms/3 end-user
software engineering spreadsheet environment [5]. The
learner could ask the system for an explanation, which
would describe possible reasons for the code’s
unreliability. The tool could also interactively change
references based on the new context and identify
interactions, prompting the learner for verification. This
would improve the correctness of learners’ code while
teaching them strategies for avoiding errors from
duplicating code.

Because of learners’ design and implementation errors,
debugging was also a significant difficulty. Furthermore,
though learners recognized when their programs failed,
they had error-prone strategies and knowledge for
determining which program statements had caused the
program state that caused the failure. In this case, we
could provide tools with embedded strategies and
knowledge. For example, one tool might allow learners to
tell the system when their program has failed, and in
response, the system could present a timeline
visualization of the concurrent threads of execution. The
visualization could highlight time ranges with operations
on shared data, and link these ranges to code. This could
enable learners to find the incorrect areas of their code.

Another tool could allow learners to ask the system
why and why not questions, and the system could provide
a set of reasonable explanations derived from analyzing
the program. For example, the learner could select a menu
item, “why did my object disappear?” and the system
could reply, “this method recently set the ball’s visible
flag to false.” Such a tool would teach learners which
questions to ask in a variety of debugging scenarios.

5. Conclusion

The tools described above are examples of highly
integrated environmental support aimed at preventing
common errors in event-based programming systems. In
addition to teaching strategies and knowledge for the
future, we expect such tools to directly support learners’
current tasks and remain useful as learners gain expertise.

Future work will involve the design and
implementation of these tools, and the empirical
validation of their ability to prevent errors and support
debugging activities. We believe that by preventing
errors, such tools will reduce learners’ confusion and
uncertainty, helping to preserve the motivation necessary
for learning programming skills.

6. References

[1] A. Blackwell, "First Steps in Programming: A Rationale
for Attention Investment Models," at IEEE Symposia on
Human-Centric Computing Languages and Environments,
Arlington, VA, pp. 2-10, 2002.

[2] M. Conway, et al., "Alice: Lessons Learned from Building
a 3D System For Novices," at Proceedings of CHI 2000, The
Hague, The Netherlands, pp. 486-493, 2000.

[3] S. Cooper, et al., "Teaching Objects-First in Introductory
Computer Science," at Proceedings of ACM SIGCSE 2003,
Reno, NV, pp., 2003.

[4] A. J. Ko and B. A. Myers, "Development and Evaluation of
a Model of Programming Errors," at Human Centric
Computing, Auckland, New Zealand (to appear), 2003.

[5] K. J. Rothermel, et al., "WYSIWYT testing in the
spreadsheet paradigm: an empirical evaluation," at
Proceedings of the 22nd international conference on
Software engineering, Limerick, Ireland, pp. 230 - 239, 2000.

