Posters: Supporting Design

CHI 2003: NEW HORIZONS

A Contextual Inquiry of Expert Programmers in an
Event-Based Programming Environment

Andrew Jensen Ko
Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA
ajko@cmu.edu

ABSTRACT

Event-based programming has been studied little, yet recent
work suggests that language paradigm can predict
programming strategies and performance. A contextual
inquiry of four expert programmers using the Alice 3D
programming environment was performed in order to
discover how event-based programming strategies might be
supported in programming environments. Various
programming, testing, and debugging breakdowns were
extracted from observations and possible programming
environment tools are suggested as aids to avoid these
breakdowns. Future analyses and studies are described.

Keywords
Programming environment, contextual inquiry, event-based

INTRODUCTION

Event-based programming, in which events drive the
majority of a program’s runtime behavior, is increasingly
common in modern programming languages. Visual Basic,
Java, Macromedia’s Director, as well as many recent
research prototype languages such as Alice [1] provide
event-based constructs and user interfaces, enabling
programmers to efficiently create highly interactive
environments. Yet very few studies of programming
environments and language usability [4] investigate event-
based programming languages. Since recent studies suggest
that language paradigm is a predictor of program
programming strategies and performance [2][5],
environments for event-based programming languages may
need special support for event-based programming.

This study investigates expert programmers using Alice
with the method of contextual inquiry (CI) [3] in order to
identify problems that programmers encounter when
creating interactive, event-based programs and to assess the
utility of CIs for extracting design requirements for
programming environments. From these observations, we
describe tools that could help programmers create, test, and
debug event-based programs more effectively.

Copyright is held by the author/owner(s).
CHI 2003, April 5-10, 2003, Ft. Lauderdale, Florida, USA.
ACM 1-58113-637-4/03/0004

1036

METHOD

Participating programmers were enrolled in the “Building
Virtual Worlds” course offered at Carnegie Mellon
University. The course requires collaborations among
programmers, modelers, sound engineers, and painters to
create a new interactive 3D world every two weeks using
Alice (see Figure 1). Alice provides a limited object model,
global event handlers, and a strictly enforced structured
editor, preventing all syntax errors.

Four expert programmers were recruited and observed
during the second half of the semester, after the
programmers were experienced with Alice. Other than
Alice, the least expert programmer had experience with 3
languages and 4 environments, and the most expert had
experience with 6 languages and 8 environments. The
experimenter met with each programmer and explained the
focus of the CI—to identify programming, testing, and
debugging difficulties Alice programmers experience. As
programmers worked on their programs, the experimenter
recorded observations on paper and video. The experimenter
formed hypotheses about the programmer’s actions in situ
and asked the programmers if the hypotheses were correct.
For example, the experimenter would say, “It looks like
you’re trying to align these two objects.” and the
programmer would reply, “Basically. I want them to be

Figure 1. An Alice user participating in a contextual
inquiry. This is a typical view of Alice, with code and
events at the lower and upper right, the worldview at
the top center, the object list at the top left and the
selected object’s properties at the bottom left.

Posters: Supporting Design

CHI 2003: NEW HORIZONS

Goal Fix a hand-copied animation.

Context A hand-copied animation was working, but
the rabbit’s head was moving off the body.

Strategy Moves the camera close to the rabbit, runs the
world, views the animation at varying speeds,
then inspects code.

Outcome While changing each parameter value of the

copied code, he forgot to change the
parameter for the head animation. Also
discovered that he accidentally changed the
distance parameter instead of duration.

Figure 2. An example of a breakdown scenario. A
copied animation was not behaving as expected
because a parameter was not changed properly.

aligned on this axis, but I don’t care about the other two.”
Participants were paid $10 per hour for their participation.

RESULTS AND DISCUSSION

Approximately 12 hours of observations were obtained
from the four programmers over 12 sessions. Each of the
sessions was reviewed for breakdown scenarios (see Figure
2 for an example), in which a programmer’s strategy was
difficult to perform or unsuccessful. Breakdowns scenarios
were consolidated into the problem types described below.

Programming Problems

In many breakdowns, code was reused to perform similar
operations such as animations or calculations, but the code
was not properly adapted for its new location (as seen in
Figure 2). These bugs were particularly difficult to isolate
because they propagated through complex animations,
which depended on events. These breakdowns highlight the
need for a smart copy and paste mechanism that could
automatically coerce parameters from method to method.

In other scenarios, programmers needed to create finely
tuned sequences of animations and events by tweaking
existing code. However, programmers often reverted to a
previous version of code manually, to avoid undoing
intermediary changes to unrelated code. One way to
alleviate this difficulty would be a multi-level intelligent
undo, which could keep an extensive modification history
for each object’s methods and global event handlers.

Testing Problems

The programmers used visual cues extensively in order to
aid testing tasks. For example, one programmer assigned
the color of an object to the triggering of an event handler
in order to verify the event occurred at the proper time.
This suggests a need for a way of saying “watch this
variable by mapping it’s value to this” where this could be
a visual cue such as an object’s color, size, or visibility.

A difficulty testing code in isolation was the most
prevalent breakdown. As one example, programmers were
forced to wait for long animation sequences to complete in
order to test the end of the sequence. To tweak an
animation, programmers made a small modification, wrote
an event to run the animation when a key was pressed
during runtime, ran the world, viewed the animation, and

1037

repeated. Also, to test a program’s response to an event in a
specific world state, the programmer had to manually
recreate the world state, and cause the event to occur. One
possible solution to these problems would be a timeline
visualization of events and methods in the world with the
ability to click and zoom on objects, events, and time
periods. Programmers could then recreate problems and
directly associate a world state with specific code.

Debugging Problems

Debugging breakdowns occurred when programmers had
difficulty answering debugging questions of the form
“when,” “why,” and “why not.” Questions such as “when
was the last time this object moved?” were difficult to
answer; the timeline visualization discussed earlier could
provide immediate access to this information. Answering
other questions of the form “why” and “why not,” were
highly involved debugging tasks. The system could use
simple heuristics to answer these. For example, in reply to
“why did this object move?” the system could show the
code that last moved the object; in response to “why did
this disappear?” the system could highlight common causes
in the code (resized to zero, moved out of view, etc.).

FUTURE WORK

Future work will involve further analyses of the data
obtained in these CI, as well as CIs with novice and expert
programmers new to Alice. Using these observations as
user interface design guidelines, the tools proposed here
and those that arise from future observations will be built
into Alice and tested empirically. The expected results from
this work are new techniques and user interfaces applicable
to all programming environments supporting event-based
languages.

ACKNOWLEDGMENTS
I thank Brad Myers for his guidance and the Building
Virtual World students for their permission to observe.

REFERENCES

1. Conway, M. et al. Alice: Lessons Learned From
Building a 3D System For Novices. Proceedings on
CHI: Human Factors in Computing Systems, The
Hague, The Netherlands, Apr 1-6, 2000, 486-493.

. Corritore, C. and Wiedenbeck, S. An Exploratory
Study of Program Comprehension Strategies of
Procedural and Object-Oriented Programmiers, Intl. J. of
Human-Computer Studies, 2001, 54, 1-23.

. Holtzblatt K. and Beyer, H. Contextual Design:
Defining Customer-Centered Systems. Morgan
Kaufmann, San Francisco, CA, 1998.

. Pane, J. and Myers, J. Usability Issues in the Design of
Novice Programming Systems, Carnegie Mellon
University, School of Computer Science Technical
Report CMU-CS-96-132, 1996, Pittsburgh, PA.

. Navarro-Prieto, R. and Canas, J. Are Visual
Programming Languages Better? The Role of Imagery
in Program Comprehension. [ntl. J. of Human-
Computer Studies, 2001, 54, 799-829.

