
Examining Task Engagement in
Sensor-Based Statistical Models of Human Interruptibility

James Fogarty, Andrew J. Ko, Htet Htet Aung,
Elspeth Golden, Karen P. Tang, and Scott E. Hudson

Human Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
{ jfogarty, ajko, hha, egolden, kptang, scott.hudson }@cs.cmu.edu

ABSTRACT
The computer and communication systems that office
workers currently use tend to interrupt at inappropriate
times or unduly demand attention because they have no
way to determine when an interruption is appropriate.
Sensor-based statistical models of human interruptibility
offer a potential solution to this problem. Prior work to
examine such models has primarily reported results related
to social engagement, but it seems that task engagement is
also important. Using an approach developed in our prior
work on sensor-based statistical models of human
interruptibility, we examine task engagement by studying
programmers working on a realistic programming task.
After examining many potential sensors, we implement a
system to log low-level input events in a development
environment. We then automatically extract features from
these low-level event logs and build a statistical model of
interruptibility. By correctly identifying situations in which
programmers are non-interruptible and minimizing cases
where the model incorrectly estimates that a programmer is
non-interruptible, we can support a reduction in costly
interruptions while still allowing systems to convey
notifications in a timely manner.

Author Keywords
Situationally appropriate interaction, managing human
attention, sensor-based interfaces, context-aware computing,
machine learning, interruptibility.

ACM Classification Keywords
H5.2. Information interfaces and presentation: User Interfaces;
H1.2. Models and Principles: User/Machine Systems.

INTRODUCTION
Modern office workers increasingly find computing and
communication systems at the core of their everyday work
experience. At any given point in time, a person might be
notified of the arrival of a new email, receive an instant
message from a colleague, be reminded by a handheld
computer of an upcoming appointment, receive a phone call
on their office or mobile phone, and be involved in a
face-to-face interaction with a colleague. Any one of these
demands for attention can be addressed relatively easily,
but simultaneous or repeated demands can quickly become
disruptive. In a study of the perceptions of interruptions
held by managers in a research organization, Hudson et al.
found that some managers consider interruptions to be such
a problem that they physically move away from their
computers or even away from their offices in order to
obtain uninterrupted working time [14]. The systems that
office workers currently use tend to interrupt at
inappropriate times or unduly demand attention in part
because they have no way to determine when an
interruption is appropriate. A colleague preparing to call a
person cannot tell that the person is in the middle of
debugging a complex program, and an email client about to
announce the arrival of a new message cannot determine
whether an obvious or subtle notification is currently more
appropriate.

Sensor-based statistical models of human interruptibility
offer a potential solution to this problem [8, 9, 11, 15]. For
example, a phone system might automatically inform a
caller that the callee appears to be busy, giving the caller
the opportunity to consider the importance of the call and
either leave a message or interrupt the callee. Prior work
has explored a similar system that used a manually set
do-not-disturb flag, but found that people often forgot to
clear the flag when they became available, to the point that
people considered the flag unreliable and ignored it [22].
Email clients and other systems could consider the
importance of a notification relative to a person’s current
interruptibility, perhaps deferring or adjusting the salience
of the notification when a person is busy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

Prior studies of the reliability of sensor-based statistical
models of human interruptibility have primarily yielded
results related to social engagement. Our own prior work
used an experience sampling technique to collect
self-reports of interruptibility from office workers in their
normal work environments and built statistical models of
their interruptibility based on sensors deployed in their
offices. One of our primary findings was that a sensor to
detect whether somebody in an office is talking is highly
predictive of non-interruptibility [8, 9, 15]. Prior work by
Horvitz and Apacible had office workers review recordings
of themselves in their offices and provide labels of their
own interruptibility. They found that electronic calendars,
which capture planned social engagement, and perceptual
systems capable of detecting ongoing social situations were
both predictive [11].

While social engagement is clearly important and these
results play an important role in deploying models, both our
intuition and the literature suggest that task engagement is
also important [14, 23, 25]. This paper presents work that
more carefully examines task engagement in sensor-based
statistical models of human interruptibility. Using an
approach that we developed for our original studies of
predicting human interruptibility, we examine how
programmers respond to interruptions while they are
programming and how statistical models can be used to
predict their interruptibility. Within our approach, we
develop a statistical model of the interruptibility of
programmers that is based on low-level input events in a
development environment. This model offers the potential
to reduce costly interruptions at inappropriate times while
still allowing appropriate notifications to be delivered in a
timely manner. Furthermore, its performance is
significantly better than the base performance typical of
current systems that generally assume people are always
interruptible.

Our approach is based on the fact that sensor development
can be costly and time-consuming, regardless of whether a
physical sensor is created in the real world or a software
sensor is created in a digital world. Instead of a bottom-up
approach to sensor development, wherein hardware and
software sensing systems are developed, deployed, and
evaluated, we present a top-down approach. In our
top-down approach, we first study a problem to collect the
data needed to make informed decisions about what sensors
to implement, then develop and validate those sensors. The
approach can be summarized as seven steps:

• Collect exploratory recordings of the environment into
which sensors will be deployed.

• Collect a measure or estimate of the concept that will be
predicted, which is human interruptibility in our work.

• Examine the collected recordings to develop ideas for
what sensors may be predictive of the collected measure.

• Simulate the presence of those potential sensors in a
systematic way from the collected recordings.

• Select sensors based on the utility of their simulated
versions and the expected cost of their implementation.

• Implement the selected sensors.
• Validate the effectiveness of the implemented sensors in

the deployment environment.

Our prior work has applied this approach to examining the
interruptibility of office workers. In this paper, we use our
approach to examine how programmers respond to
interruptions when they are programming and what sensors
might be used to predict their interruptibility.

In the next section, we further discuss our decision to
examine task engagement and motivate our decision to
study programmers. We then present our experimental
setup and data collection mechanisms. This is followed by
a discussion of the collected recordings and how those
recordings influenced the direction of this work. We then
present our simulated sensors and the results of our
simulations. After brief comments on our implementation,
we discuss our validation and present the resulting model.
We then discuss our results and conclude.

TASK ENGAGEMENT AND PROGRAMMERS
Both our intuition and the literature suggest that capturing
task engagement is important for creating reliable models of
human interruptibility [14, 23, 25]. We also note that
results from our prior work suggest that the task-related
sensors we deployed in that work (software to detect the
active application, other open applications, and the level of
mouse and keyboard activity) could be significantly
improved upon. Specifically, there are interesting
differences in the classification errors that we observed with
models of different types of office workers [9]. A model of
two manager participants, selected because we expected
their interruptibility to be heavily influenced by social
engagement, correctly identified 90.6% of the interruptible
manager observations and 81.0% of the non-interruptible
manager observations. In contrast, a model of five
researcher participants, all of whom did at least some
programming and whom we expected to be less dominated
by social engagement, also correctly identified 90.6% of
interruptible researcher observations but only 60.9% of
non-interruptible researcher observations. Some difference
between the researcher participants and the manager
participants resulted in models that were significantly less
likely to detect that a researcher was non-interruptible
(χ2(1, 219) = 8.12, p < .01), and it seems like this difference
might be an inability of the deployed sensors to capture
some types of task engagement.

Beyond our desire to further investigate this aspect of prior
work, programmers have several other properties that make
them good candidates for a study of task engagement in
sensor-based statistical models of human interruptibility.
Programming is a complex activity that places significant
demands on working memory and other cognitive
resources, and failures in working memory are known to

result in programming errors [1, 17]. Because interruptions
increase the likelihood of such failures, we may be able to
develop tools that use models of interruptibility to help
reduce programming errors, perhaps by preventing
interruptions or by noticing when programmers are
interrupted at particularly non-interruptible points in their
work and then helping them recover. Programmers also
seem to be a good example of knowledge workers whose
work involves significant interaction with computers, and
so we are hopeful that results obtained with programmers
will transfer to other computer-centric knowledge work.
While results seem less likely to transfer to office workers
who use computers relatively little, we are comfortable with
this tradeoff because it seems like the advances offered by
sensor-based statistical models of human interruptibility
will initially be most relevant to computer-centric workers.

EXPERIMENTAL SETUP
In order to control the effects of social engagement and
focus on task engagement, we studied programmers in a
laboratory environment completing a realistic programming
task while being subjected to interruptions. Participants
worked in a small office that was free of other people or
environmental distractions (other than the experimenter,
who was available for questions about the task or the
equipment but did not otherwise interfere). Participants
worked in Eclipse 2.1.2, a modern development
environment popular with Java programmers. Commercial
screen capture software captured the entire screen at 12
frames per second in 24-bit color, with no noticeable impact
on the computer’s performance.

The Paint Program Primary Task
The Paint program, shown in Figure 1, is a 503-line
program consisting of nine classes implemented in Java
with the Swing toolkit. It provides basic paint support,
allowing users to draw, erase, clear, and undo colored
strokes on a white canvas. Participants were given the
Paint program and allowed 70 minutes to address five
requests. These requests were:

• “Users complained that scroll bars don’t always appear
after painting outside the canvas, but when they do
appear, the canvas doesn’t look right. Fix Paint so that
(1) the scroll bars appear immediately when painting
outside the visible canvas and (2) the canvas is correctly
rendered when using the scroll bars to navigate the
canvas.”

• “Users complained that they can’t select yellow. Fix
Paint so that users can paint with the color yellow.”

• “Users complained that the ‘Undo my last stroke’ button
doesn’t always work. Fix Paint so that the ‘Undo my last
stroke’ button undoes the last stroke or clear of the
canvas.”

• “Users requested a line tool. There’s a radio button for it,
but it doesn’t work yet. Create a line tool that allows
users to draw a line between points. Users should be able
to see the line while dragging.”

• “Users requested control over the stroke thickness of the
pencil, eraser, and line tools. Create a thickness slider
with values from 1 to 50, which controls the thickness of
the stroke for all tools.”

Participants were given access to whatever resources they
desired, including the Internet and the Java API
documentation. They were also given full control over in
what order to address the requests and how to manage their
time. They were told they would be paid $10 for each
successfully completed request.

Mental Arithmetic Interruptions
At random time intervals averaging approximately once
every three minutes, an audio alert and the flashing taskbar
icon shown in Figure 2 notified participants of a pending

Figure 1. The Paint program that participants enhanced.

Figure 2. The Eclipse development environment, with a
pending interruption flashing on the taskbar.

interruption. Participants could choose whether to address
it immediately or continue with their primary programming
task until they wanted to address the interruption. In his
work on techniques for coordinating interruptions,
McFarlane refers to this approach as a negotiated solution,
because a person is able to choose when they want to
address an interruption. McFarlane found that this
negotiated solution generally works best, as long as small
differences in the time taken to begin addressing an
interruption are not critical [21]. Robertson et al. have
compared immediate and negotiated coordination of error
messages when programming in a spreadsheet application,
finding that task performance was significantly better with
negotiated coordination [24]. This evidence that negotiated
coordination is the best approach to interruptions in
development environments informed our use of negotiated
coordination, as we want our study to be based in how
programmers handle normal interruptions. Value was
associated with the interruptions by telling participants that
they would lose $2 for any ignored or incorrectly answered
interruption, but we did not enforce this penalty.

When the participant clicked on the notification, a two digit
multiplication problem was presented, as in Figure 3.
Participants were required to do the multiplication mentally,
and were not allowed to use scratch paper or other
programs. Because this task is known to place significant
demands on working memory [20] and working memory
failures are known to be a significant cause of programming
errors [1, 17], this is an effective interruption of a
programming task. To ensure the difficulty of the task,
neither multiplicand had a 0 or 1 in its digits. To ensure
participants understood the interruption mechanism and
were practiced in mental arithmetic, several practice
interruptions were given prior to the 70 minute primary
task, during a 10 minute session of surfing web pages
unrelated to programming.

EXPLORATORY DATA COLLECTION AND OVERVIEW
To collect our exploratory data and recordings, we recruited
ten participants. Five were undergraduates majoring in
computer science, four were graduate students in disciplines
related to computing, and one was a graduate student in
another field. Half of the subjects reported more than a
year of industry programming experience, and the other
half reported an average of less than two months of industry
experience. This section reports on our exploratory
analyses of the screen capture videos and how those
analyses directed the work presented in the remainder of
this paper.

Given the focus of this work on task engagement, we
designed our primary programming task and the mental
arithmetic interruption such that we could use a measure of
interruptibility based in task performance, as opposed to
more subjective measures like the self-reports used in our
prior work [8, 9, 15] or the retrospective labeling used by
Horvitz and Apacible [11]. However, prior to examining
our exploratory recordings, it was unclear which of several
potential measures was most appropriate.

After examining our exploratory data, we decided to
measure interruptibility in terms of the difference between
the time when the blinking taskbar notification was
displayed, indicating that an interruption was pending, and
the time that the participant acknowledged the interruption
by clicking on the taskbar notification, which caused the
multiplication dialog to take over the screen. We decided
on this measure of interruptibility because the exploratory
recordings repeatedly show participants finishing an edit or
navigation before responding to the interruption. These
behaviors are consistent with the notion that the participants
were externalizing their working memory into the state of
their development environment before addressing the
pending interruption. Less abstractly, participants who
were editing code tended to finish the edit before
addressing the interruption, as opposed to responding to the
interruption and then trying to resume the edit. Similarly,
participants who were navigating to a particular location in
the source code, such as a method or variable declaration,
tended to finish the navigation, as opposed to addressing the
interruption and then trying to remember to where they
were navigating. This explanation held even for
exceptionally long delays in addressing an interruption. For
example, we inspected some delays of more than a minute
that we initially thought resulted from missed or ignored
notifications. We found that participants had pasted a large
chunk of code shortly before the notification, and the long
delay was due to the participant completing all planned
modifications of the recently pasted code before attending
to the interruption.

One of the more interesting potential measures of
interruptibility that we considered but decided against is
whether interruptions resulted in the introduction of actual
errors into the Paint program. We did not pursue this
measure of interruptibility because we found very few

Figure 3. A mental arithmetic interruption.
Note that it obscures the entire screen.

instances of an error being introduced as a result of an
interruption. We believe this is because the negotiated
coordination of the interruptions allowed participants to
carefully externalize their working memory in the
development environment, as just discussed, and note that
Gillie and Broadbent found similar results [10]. We believe
that more programming errors would have resulted if the
interruptions had been presented without warning or delay,
but decided against this approach in order to remain closer
to the types of interruptions that programmers experience in
their normal programming environments.

SIMULATED SENSORS
Based on the major activities we observed in the
exploratory recordings and our decision to measure
interruptibility as the time for a participant to respond to an
interruption notification, we developed a set of 21
simulated sensors in 6 categories, shown in Figure 4. These
simulated sensors were chosen because they occurred with
reasonable frequency in the exploratory recordings, because
they seem like they might relate to interruptibility, and
because they might reasonably be implemented. While the
specifics of some of these sensors, such as the difference
between PERUSE and GOTO, might be rather difficult to
implement, we included them because knowing that such a
sensor would be predictive could possibly justify the effort
needed to develop it.

Working from a specification of when to mark the
beginning and end of activation for each of these simulated
sensors, we simulated their output for the minute preceding
each notification of a pending mental arithmetic
interruption. We then created features to capture the
frequency, duration, and recency of simulated sensor
activation and built statistical models from these features,
attempting to predict the interruptibility of the participants.
We will not present a detailed analysis of these simulated
sensors, leaving such a presentation for the results obtained

with our implemented sensors. Instead, we now comment
on the results of these analyses that influenced our choice of
sensor implementation.

While we had expected the EDIT sensor to be useful, we
were surprised to find it was the only simulated sensor to
emerge as predictive. This might be because the other
activities for which we created simulated sensors do not
have the same working memory requirements as editing,
and so therefore do not result in delays when responding to
an interruption. It might also be that they impose working
memory requirements, but do not occur often enough in our
collected data to emerge as predictive of interruptibility. In
any case, this result led us to focus on implementing a
sensor to detect the frequency, duration, and recency of
low-level input events. On the other hand, if simulated
sensors like PERUSE, which is based in the activities a
participant is performing over a period of time, had
emerged as predictive, we might have instead chosen to
implement a sensor that analyzed sequences of input events
to detect different patterns.

IMPLEMENTATION
We implemented our sensor by developing an Eclipse
plug-in that subscribes to every system event generated by
widgets in the Eclipse development environment. Because
Eclipse is implemented in the Standard Widget Toolkit
(SWT), our plug-in uses the SWT to start from each
top-level SWT window and recursively descend its widget
hierarchy, adding appropriate SWT event listeners to each
widget encountered. These event listeners log the
appropriate parameters of each low-level event. This
recursive search is executed twice per second, such that
newly created widgets and dialogs are detected and logged.

Beyond logging the basic parameters of each event, the
plug-in also logs some additional information more specific
to the programming task. For appropriate events, our

Reading

LINE
Highlights line(s) or moves
cursor through a brief series of
lines without editing

COMMENT Edits comments in the code

PURUSE Scrolls through code, but not to
specific line of code, as if reading

BROWSE
Expands nodes and/or scrolls in
the package explorer, but not to a
specific object

HOVER
Interacts with the system, but
hovers the cursor over a specific
line of code or explorer object

IDLE Does not interact with mouse or
keyboard for more than 2 seconds

Coding

EDIT
Edits program code, including any
cursor movements or line
selections

Code Navigation

FIND
Expands nodes and/or scrolls in
the package explorer to a specific
object

GOTO Scrolls to a specific line of code

METHOD Opens a method or variable from
the package explorer

SEARCH Places the cursor in a text field to
searching or replace

Interface Navigation

UI
Searches menus, context menus,
or toolbars for commands for
more than 1 second

WAIT Is waiting for a progress bar or
hour glass cursor

Task Switching
ACTIVATE Makes the Eclipse window active

OUTSIDE
Performs actions outside the
Eclipse environment and their
program

RUN
Executes the program with
CTRL-F11, the Run button, or the
menu item

TEST Interacts with their program

VIEW Switches Eclipse perspectives, or
closes or open a source file

Debugging

FIND
Expands nodes and/or scrolls in
the package explorer to a specific
object

GOTO Scrolls to a specific line of code

Figure 4. The set of 21 simulated sensors, grouped into 6 categories.

plug-in examines the source code currently visible in the
editor, logging which methods of which classes are visible
and how many lines of code from each of those methods are
visible. This allows events to be associated with classes
and methods, rather than just characters or screen
coordinates.

VALIDATION DATA COLLECTION
In order to examine the effectiveness of our implemented
sensor, we recruited twenty additional participants. Eight
were undergraduates majoring in computer science, six
were undergraduates majoring in related fields, two had
bachelor’s degrees in other fields and several years of
industry programming experience, two were graduate
students in computer science, and two were graduate
students in related fields. Thirteen participants reported
more than a year of industry programming experience, and
the other seven reported an average of less than two months
of industry experience. We collected a total of 475
response time observations from these participants.

In order to apply a classifier, we clustered participant
response times using the Expectation Maximization
algorithm [6] as implemented in Weka, an open source
machine learning toolkit [26]. Given a set of values and a
number of clusters to produce, the algorithm computes the
means and standard deviations of the normal distributions
most likely to have generated the given values. We
examined the algorithm’s output for two, three, and four
clusters and decided to proceed by analyzing the data in
three clusters, for reasons we will discuss later in this
section.

The first cluster, which we will refer to as interruptible,
represents an immediate response to an interruption
notification and contains 278 response time observations
with a mean of 2.281 seconds and a standard deviation of
752 milliseconds. The second cluster, which we will refer
to as engaged, represents a short delay from notification to
response and contains 143 response time observations with
a mean of 6.917 seconds and a standard deviation of 3.434
seconds. The final cluster, which we will refer to as deeply
engaged, represents a long delay from notification to
response and contains 54 response time observations with a
mean of 43.065 seconds and a standard deviation of 37.399
seconds. Each pair of clusters is significantly different
(interruptible vs. engaged: t(419) = 21.55, p < .001,
interruptible vs. deeply engaged: t(330) = 18.28, p < .001,
engaged vs. deeply engaged: t(195) = 11.48, p < .001).

Note that the very small deviation in response time for
observations in the interruptible cluster was one of the
reasons we decided to use three clusters to analyze this
data, as we believe it indicates a more realistic partitioning
of the data. When using only two clusters, observations in
our interruptible and engaged clusters were grouped
together into a single cluster with a mean of 2.946 seconds,
but the small deviation of response times for observations

in the interruptible cluster gave this combined set of
observations a standard deviation of 1.529 seconds. The
larger standard deviation meant that some entries from our
engaged cluster instead appeared in the second cluster
generated, which had a mean of 27.116 seconds and a
standard deviation of 31.601 seconds. Examining this data,
we felt that three clusters represented a more appropriate
division of the data, and found that moving to four clusters
appeared to offer no improvement.

ANALYSIS
This section first presents our extraction of a set of features
from the raw event logs collected by our sensor
implementation. We then discuss our method for selecting
a useful subset of these features and present the accuracy of
a statistical model constructed from this useful subset.
Finally, we present some of the most predictive features in
the model, so that the community might include such
features in their systems.

Feature Extraction
Unprocessed sensor data is typically inadequate for creating
sensor-based statistical models, for a variety of reasons.
One reason is that observations of the value that a model
will predict (the interruptibility of a programmer in our
work) tend to be relatively sparse compared to the
abundance of sensor data. This makes it important to
consider recent values of sensors, rather than training
models from only the sensor data available at the exact
moment of each observation of the value that is to be
predicted. Another reason can be found in continuous
sensor data, such as the number of keystrokes in the last
minute. Because statistical models are based on extracting
correlations between input features and the value to be
predicted, better models typically result if such continuous
values are discretized, a process of grouping ranges of
values into discrete bins, prior to model construction. This
allows the determination, for example, that it is not
important whether two or three keystrokes have occurred in
the last five seconds, rather it is only important that more
than zero have occurred.

In our prior work and in our analysis of our simulated
sensors, we used manually-developed scripts to extract
features based on the frequency, recency, and duration of
events in the raw sensor logs. For our evaluation analysis,
however, we automatically extracted features from our raw
sensor data using AmIBusy, a system that we are creating
to support the development and deployment of sensor-based
statistical models of human interruptibility. AmIBusy
works by recursively applying sequences of operators to
sensor data. For example, one operator can get all of the
sensor readings reported as XML strings by a sensor in the
60 seconds prior to an interruptibility observation, another
operator can then extract the value of an attribute from the
XML for each reading, a third can convert the value from a
string to a double, and a fourth can discretize the double.

While AmIBusy and automated feature extraction are not
the topic of this paper, it is important to point out that the
features used by our models were automatically generated,
because we want to make clear that the model construction
process we use can be fully automated. We do not believe
that sensor-based statistical models of interruptibility
should be considered static entities in deployed systems, but
rather believe that they should be continuously and
automatically refined. The automated extraction of
appropriate features from low-level sensor data is an
important part of making this feasible. AmIBusy enables
this, and the results we present here demonstrate the
effectiveness of such an approach.

Feature Selection
Not all of the features that are automatically extracted from
raw sensor data are appropriate for use in a statistical
model. For some features this is because they simply do
not correlate with interruptibility and so are not predictive.
Other features are inappropriate for use in a statistical
model due to a phenomenon known as over-fitting.
Because it is computationally intractable to examine the
utility of every potential combination of features, a
two-stage heuristic search is used to select an appropriate
subset of the generated features.

This heuristic search starts by selecting the individual
features that are most correlated with interruptibility, using
three common but distinct measures of correlation
(information gain, gain ratio, and symmetrical uncertainty).
For each measure, AmIBusy selects the 250 features most
correlated with interruptibility. Additional features are then
selected using Yu and Liu’s fast-correlation based filter
technique [27] with each measure of correlation. This
technique selects a small number of features that are not in
the top 250 but have some predictive value that is distinct
from the top 250 features. These correlation-based
techniques can be applied quickly, and the union of features
selected is used as input to the second stage of the search.

The second stage of the search is a wrapper-based feature
selection, which examines the predictiveness of different
combinations of potential features. In a wrapper-based
feature selection, the algorithm starts with an empty set of
features and slowly adds or removes features, examining
the effect of these changes on the accuracy of the model
being constructed. When no change to the candidate subset
results in an improvement, the feature selection terminates
[18]. While this optimization can select the best feature
subset, it is computationally expensive. It is this expense
that motivates us to first reduce the size of the search by
using correlation-based techniques.

Resulting Model
Using the feature generation and selection mechanisms just
discussed, we constructed a statistical model of the
interruptibility of the programmers in our experiment. This
model differentiates between interruptible observations and

observations in one of the other two clusters, engaged and
deeply engaged. Figure 5 shows the accuracy of this
model, presented in a form known as a confusion matrix.
This result was obtained using a standard ten-fold
cross-validation, wherein ten trials of model construction
are executed, each using 90% of the data for training and
the remaining 10% to evaluate the model in that trial. The
values reported are the sums from all ten trials. The rows
represent the actual number of response time observations
in each group, and the columns represent the estimates
made by our sensor-based statistical model. The unshaded
diagonal, therefore, represents the cases there the model
correctly predicted whether the participant was
interruptible. Conversely, the shaded diagonal represents
the cases where the model was incorrect.

With an overall accuracy of 71.8%, this model is
significantly more accurate than the base performance of
58.5% typical of current systems, which generally assume
that people are always interruptible (χ2(1, 950) = 18.4,
p < .001). Built with a naïve Bayes classifier [7, 19], this
model is based on 23 automatically generated features.
Considering the expected difficulty of building a reliable
model of the interruptibility of programmers from low-level
input events, we consider this a strong result. The
difference between the models dominated by social
engagement in our prior work and the task-related models
built in this work mean that we should be careful not to
directly compare their accuracy. However, it would be
unreasonable to expect perfect performance, as our prior
work has shown that human observers of office workers can
only estimate the interruptibility of those office workers
with an accuracy of 76.9% [8]. In using sensor-based
statistical models of human interruptibility, whether in
social environments or task-based environments, it will be
important for applications to negotiate entry into
interruptions, rather than treating an interruptibility estimate
as if it provides absolute guidance.

We also note that applications can threshold the output of
this model based on their own needs. The confusion matrix
in Figure 5 was computed by labeling a situation as
interruptible if the probability of being interruptible output
by the model was .617 or greater (this probability was
chosen to maximize the overall accuracy). At this

 Naïve Bayes Model

 Interruptible
Engaged or

Deeply
Engaged

Interruptible

208
52.9%

70
4.7%

R
es

po
ns

e
Ti

m
e

Engaged or
Deeply

Engaged

64
27.0%

133
15.3%

 Accuracy: 71.8%
Base: 58.5%

Figure 5. Accuracy of a model to distinguish interruptible
situations from other situations (engaged or deeply engaged).

threshold, the model correctly detects 74.8% of
interruptible situations and 67.5% of non-interruptible
situations. This tradeoff might be appropriate for some
applications, but other applications might prefer higher
detection of interruptible situations. Choosing a different
tradeoff does not necessarily imply a large sacrifice in
accuracy, as using our model with an interruptible threshold
of .372 results in an accuracy of 71.6%. At this threshold,
the model correctly detects 90.0% of interruptible
situations, while still detecting 45.7% of non-interruptible
situations. We will not introduce ROC curves in the space
available here, but note that our model has an A' value of
.776, significantly better than chance (Z = 18.7, p < .001).

Selected Features
To provide more insight into our model, Figure 6 presents
an ordered list of its seven most predictive features. This
ordering was determined using an accuracy-based forward
selection through the features in the model. So the first
feature is the single feature that results in the highest
accuracy. Once this first feature has been chosen, the
second feature is the best addition to the model, and so on.
The accuracy column on the extreme left presents the
cumulative effect of these features on the accuracy of the
model. After adding the seventh feature, the model has an
accuracy of 70.5%. The additional 16 features, not shown
here, improve the accuracy of the model to 71.8%.

For each feature, Figure 6 shows how different values of
the feature influence the model’s estimate of whether a
person is interruptible or engaged. Consider the first
feature, how many ExtendedModify events (which are
generated whenever the text of a file is modified) occurred
in the 15 seconds prior to an interruption. If we look only
at the data for which no ExtendedModify events occurred,
there are 132 situations where the programmer was
interruptible and 86 non-interruptible situations. These 218
situations represent 45.9% of our total data, and our
participants were interruptible for 60.6% of these situations.
Accounting for rounding in our presentation, the difference
between this likelihood of being interruptible and the 58.5%
likelihood in the full data set is +2.0%. This shows it was
common for no ExtendedModify events to have occurred in
the 15 seconds before an interruption (45.9% of the data),
but this meant relatively little in terms interruptibility (the
+2.0%). On the other hand, when more than one
ExtendedModify event had occurred in the past 15 seconds,
participants were much less likely to be interruptible (a
difference of -15.6%). The magnitude of this difference,
together with the fact that it occurred in 25.5% of the data,
is a big part of why this feature was selected as most
predictive. This is also consistent with our simulated
sensors, which found editing to be the primary indicator.

Because considering a programmer non-interruptible if they
have recently edited text is a more satisfying baseline than
assuming a programmer is always interruptible, we note
that our full model performs significantly better than a

model based on this single feature (comparing accuracy:
χ2(1, 950) = 10.1, p ≈ .001, comparing area under the ROC
curve: .776 vs .577, Z = 5.7, p < .001).

The additional features show that programmers were less
interruptible if they had recently switched away from
Eclipse, perhaps because they were in the middle of testing
the Paint application or searching through documentation.
Subjects were also less interruptible if modifying two files,
but the difficulty of modifying three files in 15 seconds
makes it likely that those 19 cases are an artifact of the task,
possibly due to a need for making a single small paste into
multiple files. The next feature shows that programmers
were less interruptible when generating KeyTraversed
events, which the SWT sends when the arrows or other
keys are used to move the input cursor. The fourth feature,
indicating that subjects were interruptible when their last
keyboard event occurred between 15 and 20 seconds in the
past, might be related to task completion, but it occurs too
infrequently to warrant much confidence. Programmers
were also more interruptible when they were interacting
with tree controls. This is consistent with our simulated
sensor results, as a programmer interacting with a tree
control cannot be actively editing code. The seventh
feature shows that programmers were less interruptible
when they had recently resized part of the Eclipse
environment, which may be related to maximizing one of
the child windows in the development environment to focus
on its contents.

Accuracy Value Num
Int

Num
Non

% of
Data % Int Change

58.5% No Features
62.1% ExtendedModify Event in Past 15 Seconds

 No Event 132 86 45.9% 60.6% +2.0%
 1 Event 94 42 28.6% 69.1% +10.6%
 > 1 Event 52 69 25.5% 43.0% -15.6%

64.6% Application Focus Change in Past 5 Seconds
 No Change 221 151 78.3% 59.4% +0.9%
 Eclipse Gained 36 12 10.1% 75.0% +16.5%
 Eclipse Lost 21 34 11.6% 38.2% -20.3%

67.2% Switch Between Modifying PaintWindow.java
and Modifying Another File in the Past 15 Seconds

 < 2 Files Modified 123 78 42.3% 61.2% +2.7%
 2 Files Modified 138 116 53.5% 54.3% -4.2%
 3 Files Modified 17 2 4.0% 89.5% +30.9%

68.6% Most Common Key Event in Past 60 Seconds
 No Key 150 101 52.8% 59.8% +1.2%
 Key Pressed 14 13 5.7% 51.9% -6.7%
 Key Released 65 26 19.2% 71.4% +12.9%
 Key Traversed 49 57 22.3% 46.2% -12.3%

69.1% Recently Stopped Typing
(Last Key Event 15 to 20 Seconds Ago)

 < 15 or > 20 267 197 97.7% 57.5% -1.0%
 15 to 20 11 0 2.3% 100% +41.5%

69.5% Tree Event in Past 5 Seconds
 No Events 228 179 85.7% 56.0% -2.5%
 1 Event 43 17 12.6% 71.7% +13.1%
 2 Events 6 0 1.3% 100% +41.5%

70.5% Control Resize Event in Past 5 Seconds
 No Resize 265 178 93.3% 59.8% 1.3%
 Controls Resized 13 19 6.7% 40.6% -17.9%

Figure 6. Seven most predictive features from the model.

RELATED WORK
Field studies of interruptions and how people perceive their
interruptibility have informed our work, but do not directly
inform the deployment of sensor-based statistical models of
human interruptibility. As mentioned in our introduction,
Hudson et al. studied the perceptions of interruptions held
by managers in a research organization, finding that some
managers consider interruptions to be such a problem that
they physically move away from their computers or even
away from their offices in order to obtain uninterrupted
working time [14]. Perlow found a self-perpetuating cycle
of interruptions in the workplace, wherein workers in
danger of missing a deadline interrupt other workers with
requests, which then causes the interrupted workers to fall
behind in their own work, leading them to then interrupt
others [23].

Field studies that more directly inform sensor-based
statistical models of human interruptibility have typically
reported findings primarily related to social engagement. In
our own prior work, we have used the approach presented
in this paper to study the interruptibility of office workers in
their normal working environments [8, 9, 15]. In that work,
we measured interruptibility using an experience sampling
technique, prompting workers to report their interruptibility
at random intervals approximately once per hour. We
collected data for several weeks from each participant, and
showed that real sensors could support models of their
interruptibility with accuracies as good as or better than
human observers. These results were largely dominated by
social engagement, helping to motivate the work presented
in this paper. Horvitz and Apacible also directly studied
interruptibility, asking workers to retrospectively review
several hours of collected recordings to provide labels of
their interruptibility, then examining models of these labels
based on system events, perceptual analyses of audio and
video streams, and electronic calendar entries [11]. They
do not explicitly differentiate between sensors related to
task engagement and social engagement, but the perceptual
systems and electronic calendar analyses on which their
discussion is focused seem to be primarily related to social
engagement.

Other work has studied interruptibility in laboratory tasks,
but without the goal of enabling sensor-based statistical
models of human interruptibility. For example, Czerwinski
et al. examined interruptions by instant message
notifications during some relatively simple list-browsing
and office software tasks, finding that even ignored
notifications can be disruptive [4, 5]. Gillie and Broadbent
studied resumption of a task after different types of
interruptions, also finding that the externalization of
working memory into the state of the task meant that very
few errors resulted from interruptions [10]. McFarlane
points out that models of interruptibility can be used as part
of a mediated approach to coordinating interruptions, but
his studies of interruptions and task performance compare
strategies for coordinating interruptions, rather than

informing the development of sensor-based statistical
models of human interruptibility [21]. Robertson et al.
studied interruption coordination specifically in the context
of spreadsheet programming, finding that negotiated
coordination lead to better task performance, but their work
does not inform the development of statistical models of the
interruptibility of programmers [24].

A variety of systems have explored concepts related to
interruptibility. The Priorities system, by Horvitz et al.,
considers patterns of prior device access to reason about
when a person is likely to be available on a given device,
such as a personal computer or a mobile phone, and can
consider the apparent importance of a message in deciding
whether to forward it to a mobile device [12]. The
Coordinate system, also by Horvitz et al., adds perceptual
sensors based on audio and video streams, together with
analyses of electronic calendar entries, to reason about the
presence and availability of people [13]. Begole et al.
analyzed logs of presence in their Awarenex system and
developed a method to automatically extract temporal
patterns, such as recurring meetings [2, 3]. Kern and
Schiele examined the ability of wearable sensors to detect
different contexts and activities that they argue relate to
interruptibility [16]. A major difference between our work
and these systems is our use of an evaluation based on an
explicit measure of interruptibility. Evaluations of other
systems typically examine the ability of a system to
recognize particular contexts, but do not explicitly evaluate
how those contexts actually relate to interruptibility.

DISCUSSION AND CONCLUSION
We have presented our work to more carefully explore task
engagement in sensor-based statistical models of human
interruptibility by studying the interruption of programmers
working on a realistic programming task. This work
contributes an evaluation of a model based on low-level
system events in a development environment, finding that it
can distinguish situations where a programmer is
interruptible from other situations with an accuracy of
71.8%, significantly better than the base accuracy of 58.5%
accuracy typical of current systems that generally assume
that a programmer is always interruptible and significantly
better than a model that assumes programmers are
non-interruptible if they recently edited their code.

Beyond the specifics of the models created in this work, we
contribute an explicit presentation and application of our
approach to developing sensor-based statistical models.
Because sensor development can often be costly and
time-consuming, our approach is based on collecting
recordings from an environment into which sensors will be
deployed and then using the recordings to simulate the
presence of sensors that might be predictive. The
information obtained from these simulated sensors allows
informed decisions to be made about which sensors to
implement, thus making it more likely that the resulting
system will be successful.

Moving forward, there are several lines of future work we
intend to pursue. The models presented here offer to reduce
the costs of inappropriate interruptions experienced by
programmers, and we are interested how to best deploy
such models into programming environments. We are also
interested in expanding these results beyond programmers,
perhaps by studying task engagement with different types
of office workers or by building a sensor that logs low-level
input events in the entire system, rather than just in the
development environment. Our approach to developing
sensor-based statistical models of human interruptibility has
yielded strong results in both our prior work and this work,
but we remain interested in the possibility of refining or
improving it. We also intend to integrate the results of this
work and the results of our prior work, with the goal of
developing more accurate models of human interruptibility.

ACKNOWLEDGMENTS
We would like to thank Santosh Mathan for his work in an early
stage of this research. We would also like to thank all of the
contributors to Weka. This work was funded in part by DARPA,
by the NASA High Dependability Computing Program under
cooperative agreement NCC-2-1298, by an NDSEG fellowship, by
an AT&T Labs fellowship, and by the National Science
Foundation under grants CCR-03244770, IIS-0329090,
IIS-0121560, and IIS-0325351. The views and conclusions
contained in this document are those of the authors.

REFERENCES
1. Anderson, J.R. and Jeffries, R. (1985) Novice LISP Errors:

Undetected Losses of Information from Working Memory.
Human-Computer Interaction, 1 (2). 107-131.

2. Begole, J.B., Tang, J.C. and Hill, R. (2003) Rhythm
Modeling, Visualizations, and Applications. Proceedings of
the ACM Symposium on User Interface Software and
Technology (UIST 2003), 11-20.

3. Begole, J.B., Tang, J.C., Smith, R.B. and Yankelovich, N.
(2002) Work Rhythms: Analyzing Visualizations of
Awareness Histories of Distributed Groups. Proceedings of
the ACM Conference on Computer Supported Cooperative
Work (CSCW 2002), 334-343.

4. Cutrell, E., Czerwinski, M. and Horvitz, E. (2001)
Notification, Disruption, and Memory: Effects of Messaging
Interruptions on Memory and Performance. Proceedings of
the IFIP Conference on Human-Computer Interaction
(INTERACT 2001), 263-269.

5. Czerwinski, M., Cutrell, E. and Horvitz, E. (2000) Instant
Messaging and Interruptions: Influence of Task Type on
Performance. Proceedings of the Australian Conference on
Computer-Human Interaction (OZCHI 2000), 356-361.

6. Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum
Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society, 39 (1). 1-38.

7. Duda, R.O. and Hart, P.E. (1973) Pattern Classification and
Scene Analysis. John Wiley and Sons.

8. Fogarty, J., Hudson, S., Atkeson, C., Avrahami, D., Forlizzi,
J., Kiesler, S., Lee, J. and Yang, J. (2004) Predicting Human
Interruptibility with Sensors. To Appear, ACM Transactions
on Computer-Human Interaction (TOCHI).

9. Fogarty, J., Hudson, S. and Lai, J. (2004) Examining the
Robustness of Sensor-Based Statistical Models of Human
Interruptibility. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2004), 207-214.

10. Gillie, T. and Broadbent, D. (1989) What Makes
Interruptions Disruptive? A Study of Length, Similarity, and
Complexity. Psychological Research, 50. 243-250.

11. Horvitz, E. and Apacible, J. (2003) Learning and Reasoning
about Interruption. Proceedings of the International
Conference on Multimodal Interfaces (ICMI 2003), 20-27.

12. Horvitz, E., Jacobs, A. and Hovel, D. (1999) Attention-
Sensitive Alerting. Proceeding of the Conference on
Uncertainty and Artificial Intelligence (UAI 1999), 305-313.

13. Horvitz, E., Koch, P., Kadie, C.M. and Jacobs, A. (2002)
Coordinate: Probabilistic Forecasting of Presence and
Availability. Proceedings of the Conference on Uncertainty
in Artificial Intelligence (UAI 2002), 224-233.

14. Hudson, J.M., Christensen, J., Kellogg, W.A. and Erickson,
T. (2002) "I'd be overwhelmed, but it's just one more thing to
do": Availability and Interruption in Research Management.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2002), 97-104.

15. Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D., Forlizzi,
J., Kiesler, S., Lee, J. and Yang, J. (2003) Predicting Human
Interruptibility with Sensors: A Wizard of Oz Feasibility
Study. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2003), 257-264.

16. Kern, N. and Schiele, B. (2003) Context-Aware Notification
for Wearable Computing. Proceedings of the IEEE
International Symposium on Wearable Computing (ISWC
2003).

17. Ko, A.J. and Myers, B. (2004) A Framework and
Methodology for Studying the Causes of Software Errors in
Programming Systems. To Appear, Journal of Visual
Languages and Computing.

18. Kohavi, R. and John, G.H. (1997) Wrappers for Feature
Subset Selection. Artificial Intelligence, 97 (1-2). 273-324.

19. Langley, P. and Sage, S. (1994) Induction of Selected
Bayesian Classifiers. Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI 1994), 399-406.

20. Lemaire, P., Abdi, H. and Faylo, M. (1996) The Role of
Working Memory Resources in Simple Cognitive Arithmetic.
European Journal of Cognitive Psychology, 8 (1). 73-103.

21. McFarlane, D.C. (2002) Comparison of Four Primary
Methods for Coordinating the Interruption of People in
Human-Computer Interaction. Human-Computer Interaction,
17 (1). 63-139.

22. Milewski, A.E. and Smith, T.M. (2000) Providing Presence
Cues to Telephone Users. Proceedings of the ACM
Conference on Computer Supported Cooperative Work
(CSCW 2000), 89-96.

23. Perlow, L.A. (1999) The Time Famine: Toward a Sociology of
Work Time. Administrative Science Quarterly, 44 (1). 57-81.

24. Robertson, T.J., Prabhakararao, S., Burnett, M., Cook, C.,
Ruthruff, J.R., Beckwith, L. and Phalgune, A. Impact of
Interruption Style on End-User Debugging. In Proceedings of
the ACM Conference on Human Factors in Computing
Systems (CHI 2004), ACM Press, 2004, 287-294.

25. Seshadri, S. and Shapira, Z. (2001) Managerial Allocation of
Time and Effort: The Effects of Interruptions. Management
Science, 47 (5). 647-662.

26. Witten, I.H. and Frank, E. (1999) Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann.

27. Yu, L. and Liu, H. (2003) Feature Selection for High-
Dimensional Data: A Fast Correlation-Based Filter Solution.
The International Conference on Machine Learning (ICML
2003), 856-863.

Contribution and Benefit Statement

Examines task engagement in models of human interruptibility by studying programmers
working on a realistic programming task. Models of interruptibility offer to reduce costly
interruptions while still allowing timely notifications.

